Search results for: evolutionary algorithms (EA's)
777 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization
Authors: Marcell Serra de Almeida Martins, Benedito de Souza Ribeiro Neto, Gerson Lima Serejo, Carlos Gustavo Resque Dos Santos
Abstract:
Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm were implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.Keywords: multiscale recognition, indoor localization, tape-shaped marker, fiducial marker
Procedia PDF Downloads 134776 An Approach to Maximize the Influence Spread in the Social Networks
Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel
Abstract:
In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network
Procedia PDF Downloads 248775 Resource Creation Using Natural Language Processing Techniques for Malay Translated Qur'an
Authors: Nor Diana Ahmad, Eric Atwell, Brandon Bennett
Abstract:
Text processing techniques for English have been developed for several decades. But for the Malay language, text processing methods are still far behind. Moreover, there are limited resources, tools for computational linguistic analysis available for the Malay language. Therefore, this research presents the use of natural language processing (NLP) in processing Malay translated Qur’an text. As the result, a new language resource for Malay translated Qur’an was created. This resource will help other researchers to build the necessary processing tools for the Malay language. This research also develops a simple question-answer prototype to demonstrate the use of the Malay Qur’an resource for text processing. This prototype has been developed using Python. The prototype pre-processes the Malay Qur’an and an input query using a stemming algorithm and then searches for occurrences of the query word stem. The result produced shows improved matching likelihood between user query and its answer. A POS-tagging algorithm has also been produced. The stemming and tagging algorithms can be used as tools for research related to other Malay texts and can be used to support applications such as information retrieval, question answering systems, ontology-based search and other text analysis tasks.Keywords: language resource, Malay translated Qur'an, natural language processing (NLP), text processing
Procedia PDF Downloads 318774 Impact of Enhanced Business Models on Technology Companies in the Pandemic: A Case Study about the Revolutionary Change in Management Styles
Authors: Murat Colak, Berkay Cakir Saridogan
Abstract:
Since the dawn of modern corporations, almost every single employee has been working in the same loop, which contains three basic steps: going to work, providing the needs for the work, and getting back home. Only a small amount of people were able to break that standard and live outside the box. As the 2019 pandemic hit the Earth and most companies shut down their physical offices, that loop had to change for everyone. This means that the old management styles had to be significantly re-arranged to the "work from home" type of business methods. The methods include online conferences and meetings, time and task tracking using algorithms, globalization of the work, and, most importantly, remote working. After the global epidemic started, even the tech giants were concerned. Now, it can be seen those technology companies have an incredible step-up in their shares compared to the other companies because they know how to manage such situations even better than every other industry. This study aims to take the old traditional management styles in big companies and compare them with the post-covid methods (2019-2022). As a result of this comparison made using the annual reports and shared statistics, this study aims to explain why the winners of this crisis are the technology companies.Keywords: Covid-19, technology companies, business models, remote work
Procedia PDF Downloads 64773 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join
Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel
Abstract:
Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.Keywords: map reduce, hadoop, semi join, two way join
Procedia PDF Downloads 513772 Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth
Authors: Elif Gencturk, Ekin Yurdakul, Ahmet Y. Celik, Senol Mutlu, Kutlu O. Ulgen
Abstract:
Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.Keywords: COP, HMF, ribosome biogenesis, thermoplastic microbioreactor, yeast
Procedia PDF Downloads 171771 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 66770 Prediction of Disability-Adjustment Mental Illness Using Machine Learning
Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad
Abstract:
Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population. Procedia PDF Downloads 36769 Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion
Authors: Doyoung Kim, Hyo Seon Park
Abstract:
Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared.Keywords: modal assurance criterion, mode shape, operating deflection shape, system identification
Procedia PDF Downloads 410768 Optimal Design of Propellant Grain Shape Based on Structural Strength Analysis
Authors: Chen Xiong, Tong Xin, Li Hao, Xu Jin-Sheng
Abstract:
Experiment and simulation researches on the structural integrity of propellant grain in solid rocket motor (SRM) with high volumetric fraction were conducted. First, by using SRM parametric modeling functions with secondary development tool Python of ABAQUS, the three dimensional parameterized modeling programs of star shaped grain, wheel shaped grain and wing cylindrical grain were accomplished. Then, the mechanical properties under different loads for star shaped grain were obtained with the application of automatically established finite element model in ABAQUS. Next, several optimization algorithms are introduced to optimize the star shaped grain, wheel shaped grain and wing cylindrical grain. After meeting the demands of burning surface changes and volumetric fraction, the optimum three dimensional shapes of grain were obtained. Finally, by means of parametric modeling functions, pressure data of SRM’s cold pressurization test was directly applied to simulation of grain in terms of mechanical performance. The results verify the reliability and practical of parameterized modeling program of SRM.Keywords: cold pressurization test, ğarametric modeling, structural integrity, propellant grain, SRM
Procedia PDF Downloads 361767 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies
Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi
Abstract:
Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)
Procedia PDF Downloads 209766 Organizational Innovations of the 20th Century as High Tech of the 21st: Evidence from Patent Data
Authors: Valery Yakubovich, Shuping wu
Abstract:
Organization theorists have long claimed that organizational innovations are nontechnological, in part because they are unpatentable. The claim rests on the assumption that organizational innovations are abstract ideas embodied in persons and contexts rather than in context-free practical tools. However, over the last three decades, organizational knowledge has been increasingly embodied in digital tools which, in principle, can be patented. To provide the first empirical evidence regarding the patentability of organizational innovations, we trained two machine learning algorithms to identify a population of 205,434 patent applications for organizational technologies (OrgTech) and, among them, 141,285 applications that use organizational innovations accumulated over the 20th century. Our event history analysis of the probability of patenting an OrgTech invention shows that ideas from organizational innovations decrease the probability of patent allowance unless they describe a practical tool. We conclude that the present-day digital transformation places organizational innovations in the realm of high tech and turns the debate about organizational technologies into the challenge of designing practical organizational tools that embody big ideas about organizing. We outline an agenda for patent-based research on OrgTech as an emerging phenomenon.Keywords: organizational innovation, organizational technology, high tech, patents, machine learning
Procedia PDF Downloads 122765 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting
Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi
Abstract:
An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power
Procedia PDF Downloads 411764 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 53763 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport
Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos
Abstract:
Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform
Procedia PDF Downloads 177762 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles
Authors: Gopi Kandaswamy, P. Balamuralidhar
Abstract:
Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.Keywords: fault detection, health monitoring, unmanned aerial vehicles, vibration analysis
Procedia PDF Downloads 262761 Modeling Heat-Related Mortality Based on Greenhouse Emissions in OECD Countries
Authors: Anderson Ngowa Chembe, John Olukuru
Abstract:
Greenhouse emissions by human activities are known to irreversibly increase global temperatures through the greenhouse effect. This study seeks to propose a mortality model with sensitivity to heat-change effects as one of the underlying parameters in the model. As such, the study sought to establish the relationship between greenhouse emissions and mortality indices in five OECD countries (USA, UK, Japan, Canada & Germany). Upon the establishment of the relationship using correlation analysis, an additional parameter that accounts for the sensitivity of heat-changes to mortality rates was incorporated in the Lee-Carter model. Based on the proposed model, new parameter estimates were calculated using iterative algorithms for optimization. Finally, the goodness of fit for the original Lee-Carter model and the proposed model were compared using deviance comparison. The proposed model provides a better fit to mortality rates especially in USA, UK and Germany where the mortality indices have a strong positive correlation with the level of greenhouse emissions. The results of this study are of particular importance to actuaries, demographers and climate-risk experts who seek to use better mortality-modeling techniques in the wake of heat effects caused by increased greenhouse emissions.Keywords: climate risk, greenhouse emissions, Lee-Carter model, OECD
Procedia PDF Downloads 343760 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation
Authors: Simiao Ren, En Wei
Abstract:
Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN
Procedia PDF Downloads 101759 Analysis of Facial Expressions with Amazon Rekognition
Authors: Kashika P. H.
Abstract:
The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection
Procedia PDF Downloads 104758 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence
Authors: Hoora Beheshti Haradasht, Abooali Golzary
Abstract:
Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability
Procedia PDF Downloads 82757 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U Networks
Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard Jorswieck
Abstract:
The capacity of fifth-generation (5G) vehicle-to-everything (V2X) networks poses significant challenges. To ad- dress this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a heterogeneous vehicular network (HetNet). We propose a new framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles while guaranteeing the WiFi users' throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.Keywords: vehicle-to-everything (V2X), resource allocation, BS assignment, new radio (NR), new radio unlicensed (NR-U), coexistence NR-U and WiFi, deep deterministic policy gradient (DDPG), deep Q-network (DQN), joint BS assignment and resource allocation (JBSRA), duty cycle mechanism
Procedia PDF Downloads 103756 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition
Authors: Latha Subbiah, Dhanalakshmi Samiappan
Abstract:
In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.Keywords: curvelet, decomposition, levelset, ultrasound
Procedia PDF Downloads 340755 Regulating Information Asymmetries at Online Platforms for Short-Term Vacation Rental in European Union– Legal Conondrum Continues
Authors: Vesna Lukovic
Abstract:
Online platforms as new business models play an important role in today’s economy and the functioning of the EU’s internal market. In the travel industry, algorithms used by online platforms for short-stay accommodation provide suggestions and price information to travelers. Those suggestions and recommendations are displayed in search results via recommendation (ranking) systems. There has been a growing consensus that the current legal framework was not sufficient to resolve problems arising from platform practices. In order to enhance the potential of the EU’s Single Market, smaller businesses should be protected, and their rights strengthened vis-à-vis large online platforms. The Regulation (EU) 2019/1150 of the European Parliament and of the Council on promoting fairness and transparency for business users of online intermediation services aims to level the playing field in that respect. This research looks at Airbnb through the lenses of this regulation. The research explores key determinants and finds that although regulation is an important step in the right direction, it is not enough. It does not entail sufficient clarity obligations that would make online platforms an intermediary service which both accommodation providers and travelers could use with ease.Keywords: algorithm, online platforms, ranking, consumers, EU regulation
Procedia PDF Downloads 130754 Testing of Canadian Integrated Healthcare and Social Services Initiatives with an Evidence-Based Case Definition for Healthcare and Social Services Integrations
Authors: S. Cheng, C. Catallo
Abstract:
Introduction: Canada's healthcare and social services systems are failing high risk, vulnerable older adults. Care for vulnerable older Canadians (65 and older) is not optimal in Canada. It does not address the care needs of vulnerable, high risk adults using a holistic approach. Given the growing aging population, and the care needs for seniors with complex conditions is one of the highest in Canada's health care system, there is a sense of urgency to optimize care. Integration of health and social services is an emerging trend in Canada when compared to European countries. There is no common and universal understanding of healthcare and social services integration within the country. Consequently, a clear understanding and definition of integrated health and social services are absent in Canada. Objectives: A study was undertaken to develop a case definition for integrated health and social care initiatives that serve older adults, which was then tested against three Canadian integrated initiatives. Methodology: A limited literature review was undertaken to identify common characteristics of integrated health and social care initiatives that serve older adults, and comprised both scientific and grey literature, in order to develop a case definition. Three Canadian integrated initiatives that are located in the province of Ontario, were identified using an online search and a screening process. They were surveyed to determine if the literature-based integration definition applied to them. Results: The literature showed that there were 24 common healthcare and social services integration characteristics that could be categorized into ten themes: 1) patient-care approach; 2) program goals; 3) measurement; 4) service and care quality; 5) accountability and responsibility; 6) information sharing; 7) Decision-making and problem-solving; 8) culture; 9) leadership; and 10) staff and professional interaction. The three initiatives showed agreement on all the integration characteristics except for those characteristics associated with healthcare and social care professional interaction, collaborative leadership and shared culture. This disagreement may be due to several reasons, including the existing governance divide between the healthcare and social services sectors within the province of Ontario that has created a ripple effect in how professions in the two different sectors interact. In addition, the three initiatives may be at maturing levels of integration, which may explain disagreement on the characteristics associated with leadership and culture. Conclusions: The development of a case definition for healthcare and social services integration that incorporates common integration characteristics can act as a useful instrument in identifying integrated healthcare and social services, particularly given the emerging and evolutionary state of this phenomenon within Canada.Keywords: Canada, case definition, healthcare and social services integration, integration, seniors health, services delivery
Procedia PDF Downloads 155753 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies
Authors: Abdelhadi Adel, Kadri Ouahab
Abstract:
This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling
Procedia PDF Downloads 336752 An Intelligent Watch-Over System Using an IoT Device, for Elderly People Living by Themselves
Authors: Hideo Suzuki, Yuya Kiyonobu, Kotaro Matsushita, Masaki Hanada, Rie Suzuki, Noriko Niijima, Noriko Uosaki, Tadao Nakamura
Abstract:
People often worry about their elderly family members who are living by themselves or staying alone somewhere. An intelligent watch-over system for such elderly people, using a Raspberry Pi IoT device, has been newly developed to monitor those who live or stay separately from their families and alert them if a problem occurs. The system consists of motion sensors and temperature-humidity combined sensors that are located at seven points within an elderly person's home. The intelligent algorithms of the system detect signs and the possibility of unhealthy situations arising for the elderly relative; e.g., an unusually long bathing time, or a visit to a restroom, too high a room temperature, etc., by using data cached by the sensors above, at seven points within their house. The system gives more consideration to the elderly person's privacy, by using the sensors above, instead of using cameras and microphones placed around the house. The system invented and described here, can send a Twitter direct message to designated family members when an elderly relative is possibly in an unhealthy condition. Thus the system helps decrease family members' anxieties regarding their elderly relatives and increases their sense of security.Keywords: elderly person, IoT device, Raspberry Pi, watch-over system
Procedia PDF Downloads 223751 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks
Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem
Abstract:
Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule
Procedia PDF Downloads 100750 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 126749 The Design of Intelligent Passenger Organization System for Metro Stations Based on Anylogic
Authors: Cheng Zeng, Xia Luo
Abstract:
Passenger organization has always been an essential part of China's metro operation and management. Facing the massive passenger flow, stations need to improve their intelligence and automation degree by an appropriate integrated system. Based on the existing integrated supervisory control system (ISCS) and simulation software (Anylogic), this paper designs an intelligent passenger organization system (IPOS) for metro stations. Its primary function includes passenger information acquisition, data processing and computing, visualization management, decision recommendations, and decision response based on interlocking equipment. For this purpose, the logical structure and intelligent algorithms employed are particularly devised. Besides, the structure diagram of information acquisition and application module, the application of Anylogic, the case library's function process are all given by this research. Based on the secondary development of Anylogic and existing technologies like video recognition, the IPOS is supposed to improve the response speed and address capacity in the face of emergent passenger flow of metro stations.Keywords: anylogic software, decision-making support system, intellectualization, ISCS, passenger organization
Procedia PDF Downloads 176748 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading
Authors: Peter Shi
Abstract:
Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market
Procedia PDF Downloads 72