Search results for: decision distance
4372 Artificial Intelligence in Management Simulators
Authors: Nuno Biga
Abstract:
Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant
Procedia PDF Downloads 1054371 The Significance of Awareness about Gender Diversity for the Future of Work: A Multi-Method Study of Organizational Structures and Policies Considering Trans and Gender Diversity
Authors: Robin C. Ladwig
Abstract:
The future of work becomes less predictable, which requires increasing the adaptability of organizations to social and work changes. Society is transforming regarding gender identity in the sense that more people come forward to identify as trans and gender diverse (TGD). Organizations are ill-equipped to provide a safe and encouraging work environment by lacking inclusive organizational structures. The qualitative multi-method research about TGD inclusivity in the workplace explores the enablers and barriers for TGD individuals to satisfactory engage in the work environment and organizational culture. Furthermore, these TGD insights are analyzed about their organizational implications and awareness from a leadership and management perspective. The semi-structured online interviews with TGD individuals and the photo-elicit open-ended questionnaire addressed to leadership and management in diversity, career development, and human resources have been analyzed with a critical grounded theory approach. Findings demonstrated the significance of TGD voices, the support of leadership and management, as well as the synergy between voices and leadership. Hence, it indicates practical implications such as the revision of exclusive language used in policies, data collection, or communication and reconsideration of organizational decision-making by leaders to include TGD voices.Keywords: future of work, occupational identity, organisational decision-making, trans and gender diverse identity
Procedia PDF Downloads 1274370 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1484369 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 2534368 Optimizing Design Works in Construction Consultant Company: A Knowledge-Based Application
Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai
Abstract:
The optimal construction design used during the execution of a construction project is a key factor in determining high productivity and customer satisfaction, however, this management process sometimes is carried out without care and the systematic method that it deserves, bringing negative consequences. This study proposes a knowledge management (KM) approach that will enable the intelligent use of experienced and acknowledged engineers to improve the management of construction design works for a project. Then a knowledge-based application to support this decision-making process is proposed and described. To define and design the system for the application, semi-structured interviews were conducted within five construction consulting organizations with the purpose of studying the way that the method’ optimizing process is implemented in practice and the knowledge supported with it. A system of an optimizing construction design works (OCDW) based on knowledge was developed then validated with construction experts. The OCDW was liked as a valuable tool for construction design works’ optimization, by supporting organizations to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The benefits are described as provided by the performance support system, reducing costs and time, improving product design quality, satisfying customer requirements, expanding the brand organization.Keywords: optimizing construction design work, construction consultant organization, knowledge management, knowledge-based application
Procedia PDF Downloads 1294367 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance
Authors: Yuguang Gao, Mingtao Deng
Abstract:
The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.Keywords: collaborative medical alliance, disease related group, patient referral, simulation
Procedia PDF Downloads 594366 Debate between Breast Milk and Formula Milk in Nutritional Value
Authors: Nora Alkharji, Wafa Fallatah
Abstract:
Introduction: One of the major issues to consider when is deciding on what to feed a baby is the quality of the food itself. Whilst commercially prepared infant formulas are a nutritious alternative to breast milk, and even contain some vitamins and nutrients, most major medical organizations consider breastfeeding the best nutritional option for babies. Choosing whether to breastfeed or formula feed your baby is one of the first decisions expectant parents will make. The American Academy of Pediatrics (AAP) is in agreement with other organizations such as the American Medical Association (AMA), the American Dietetic Association (ADA), and the World Health Organization (WHO) in recommending breastfeeding as the best nutrition for babies and best suited for a baby's digestive system. In addition, breastfeeding helps in the combatting of infections, prevention of allergies, and protection against various chronic conditions. The decision to breastfeed or formula feed one’s baby is a very personal one. However, certain points need to be clarified regarding the nutritional value of breastfeeding versus formula feeding to allow for informed decision-making. Methodology: -A formal debate about whether to breastfeed or formula feed babies as the better choice. -There will be two debaters, both lactation consultants -Arguments will be based on evidence-based medicine -Duration period of debated: 45 min Result: Clarification and heightened awareness of the benefits of breastfeeding. Conclusion: This debate will make the choice between breastfeeding or formula feeding a relatively easy one to make by both health worker and parents.Keywords: breastmilk, formula milk, nutritional, comparison
Procedia PDF Downloads 4674365 Foresight in Food Supply System in Bogota
Authors: Suarez-Puello Alejandro, Baquero-Ruiz Andrés F, Suarez-Puello Rodrigo
Abstract:
This paper discusses the results of a foresight exercise which analyzes Bogota’s fruit, vegetable and tuber supply chain strategy- described at the Food Supply and Security Master Plan (FSSMP)-to provide the inhabitants of Bogotá, Colombia, with basic food products at a fair price. The methodology consisted of using quantitative and qualitative foresight tools such as system dynamics and variable selection methods to better represent interactions among stakeholders and obtain more integral results that could shed light on this complex situation. At first, the Master Plan is an input to establish the objectives and scope of the exercise. Then, stakeholders and their relationships are identified. Later, system dynamics is used to model product, information and money flow along the fruit, vegetable and tuber supply chain. Two scenarios are presented, discussing actions by the public sector and the reactions that could be expected from the whole food supply system. Finally, these impacts are compared to the Food Supply and Security Master Plan’s objectives suggesting recommendations that could improve its execution. This foresight exercise performed at a governmental level is intended to promote the widen the use of foresight as an anticipatory, decision-making tool that offers solutions to complex problems.Keywords: decision making, foresight, public policies, supply chain, system dynamics
Procedia PDF Downloads 4394364 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories
Authors: Rene Hellmuth
Abstract:
The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 1344363 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 454362 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization
Procedia PDF Downloads 3994361 Organizational Decision to Adopt Digital Forensics: An Empirical Investigation in the Case of Malaysian Law Enforcement Agencies
Authors: Siti N. I. Mat Kamal, Othman Ibrahim, Mehrbakhsh Nilashi, Jafalizan M. Jali
Abstract:
The use of digital forensics (DF) is nowadays essential for law enforcement agencies to identify analysis and interpret the digital information derived from digital sources. In Malaysia, the engagement of Malaysian Law Enforcement Agencies (MLEA) with this new technology is not evenly distributed. To investigate the factors influencing the adoption of DF in Malaysia law enforcement agencies’ operational environment, this study proposed the initial theoretical framework based on the integration of technology organization environment (TOE), institutional theory, and human organization technology (HOT) fit model. A questionnaire survey was conducted on selected law enforcement agencies in Malaysia to verify the validity of the initial integrated framework. Relative advantage, compatibility, coercive pressure, normative pressure, vendor support and perceived technical competence of technical staff were found as the influential factors on digital forensics adoption. In addition to the only moderator of this study (agency size), any significant moderating effect on the perceived technical competence and the decision to adopt digital forensics by Malaysian law enforcement agencies was found insignificant. Thus, these results indicated that the developed integrated framework provides an effective prediction of the digital forensics adoption by Malaysian law enforcement agencies.Keywords: digital forensics, digital forensics adoption, digital information, law enforcement agency
Procedia PDF Downloads 1514360 The Impact of Cognition and Communication on the Defense of Capital Murder Cases
Authors: Shameka Stanford
Abstract:
This presentation will discuss how cognitive and communication disorders in the areas of executive functioning, receptive and expressive language can impact the problem-solving and decision making of individuals with such impairments. More specifically, this presentation will discuss approaches the legal defense team of capital case lawyers can add to their experience when servicing individuals who have a history of educational decline, special education, and limited intervention and treatment. The objective of the research is to explore and identify the correlations between impaired executive function skills and decision making and competency for individuals facing death penalty charges. To conduct this research, experimental design, randomized sampling, qualitative analysis was employed. This research contributes to the legal and criminal justice system related to how they view, defend, and characterize, and judge individuals with documented cognitive and communication disorders who are eligible for capital case charges. More importantly, this research contributes to the increased ability of death penalty lawyers to successfully defend clients with a history of academic difficulty, special education, and documented disorders that impact educational progress and academic success.Keywords: communication disorders, cognitive disorders, capital murder, death penalty, executive function
Procedia PDF Downloads 1564359 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 3134358 Aerodynamic Interference of Propellers Group with Adjustable Mutual Position
Authors: Michal Biały, Krzysztof Skiba, Zdzislaw Kaminski
Abstract:
The research results of the influence of the adjustable mutual position of the propellers for getting optimal lift force on a specially designed bench. The bench consists of frame with electric motors and with attached propellers. Engines were arranged in a matrix of two columns and three rows. The distance between the columns averages from 0 to 20”, while the engine was placed at a height of 8”, 15.5” and 23.6”. By adjusting the tilt of an electric motor, an angle of the propeller in the range of 0° to 60°, by 15° was controlled. Propellers with a diameter of 8" and pitch of 4.5” were driven by brushless model engines Roxxy BL-Outrunner 2827/26 with a power of 110W (each). Rotational speed control of electric motors were realized parallel for all propellers. The speed adjustment was realized using an aggregate of radio-controlled regulators. Electric power supplied to the engines from zero to maximum power, by the setting for every 14W, was controlled by radio system. Measurement system was placed on a laboratory scale. The lift was measured and recorded by an electronic scale. The lift force for different configurations of propellers arrangement was recorded during the test. All propellers were driven in one rotational direction and in different directions when they were in the same pairs. Propellers were driven concurrently and contra-concurrently along one of the columns and along the selected rows. During the tests, except the lift, parameters such as: rotational speed of propellers, voltage and current to the electric engines were recorded. The main aim of the research was to show the influence of aerodynamic interference between the propellers to receive lift force depending on the drive configuration of individual propellers. The research has shown that, this interference exists. The increase of the lift force for a distance between columns above 26.6” was noticed during the driving propellers in different directions. The optimum tilt angle of the propeller was 45°. Furthermore there has been also approx. 12% increase of the lift for propellers driven alternately in column and contra-concurrently in relation to the contra-rotating drive in the row.Keywords: aerodynamic, interference, lift force, propeller, propulsion system
Procedia PDF Downloads 3444357 Analysis of Complex Business Negotiations: Contributions from Agency-Theory
Authors: Jan Van Uden
Abstract:
The paper reviews classical agency-theory and its contributions to the analysis of complex business negotiations and gives an approach for the modification of the basic agency-model in order to examine the negotiation specific dimensions of agency-problems. By illustrating fundamental potentials for the modification of agency-theory in context of business negotiations the paper highlights recent empirical research that investigates agent-based negotiations and inter-team constellations. A general theoretical analysis of complex negotiation would be based on a two-level approach. First, the modification of the basic agency-model in order to illustrate the organizational context of business negotiations (i.e., multi-agent issues, common-agencies, multi-period models and the concept of bounded rationality). Second, the application of the modified agency-model on complex business negotiations to identify agency-problems and relating areas of risk in the negotiation process. The paper is placed on the first level of analysis – the modification. The method builds on the one hand on insights from behavior decision research (BRD) and on the other hand on findings from agency-theory as normative directives to the modification of the basic model. Through neoclassical assumptions concerning the fundamental aspects of agency-relationships in business negotiations (i.e., asymmetric information, self-interest, risk preferences and conflict of interests), agency-theory helps to draw solutions on stated worst-case-scenarios taken from the daily negotiation routine. As agency-theory is the only universal approach able to identify trade-offs between certain aspects of economic cooperation, insights obtained provide a deeper understanding of the forces that shape business negotiation complexity. The need for a modification of the basic model is illustrated by highlighting selected issues of business negotiations from agency-theory perspective: Negotiation Teams require a multi-agent approach under the condition that often decision-makers as superior-agents are part of the team. The diversity of competences and decision-making authority is a phenomenon that overrides the assumptions of classical agency-theory and varies greatly in context of certain forms of business negotiations. Further, the basic model is bound to dyadic relationships preceded by the delegation of decision-making authority and builds on a contractual created (vertical) hierarchy. As a result, horizontal dynamics within the negotiation team playing an important role for negotiation success are therefore not considered in the investigation of agency-problems. Also, the trade-off between short-term relationships within the negotiation sphere and the long-term relationships of the corporate sphere calls for a multi-period perspective taking into account the sphere-specific governance-mechanisms already established (i.e., reward and monitoring systems). Within the analysis, the implementation of bounded rationality is closely related to findings from BRD to assess the impact of negotiation behavior on underlying principal-agent-relationships. As empirical findings show, the disclosure and reservation of information to the agent affect his negotiation behavior as well as final negotiation outcomes. Last, in context of business negotiations, asymmetric information is often intended by decision-makers acting as superior-agents or principals which calls for a bilateral risk-approach to agency-relations.Keywords: business negotiations, agency-theory, negotiation analysis, interteam negotiations
Procedia PDF Downloads 1394356 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 1284355 Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London
Authors: Sahar Navabakhsh, Rokia Raslan, Yair Schwartz
Abstract:
Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA.Keywords: life cycle assessment, participatory LCA, life cycle sustainability assessment, participatory processes, decision-making, housing estate regeneration
Procedia PDF Downloads 1474354 Deep Reinforcement Learning Model for Autonomous Driving
Authors: Boumaraf Malak
Abstract:
The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning
Procedia PDF Downloads 854353 AHP and TOPSIS Methods for Supplier Selection Problem in Medical Devices Company
Authors: Sevde D. Karayel, Ediz Atmaca
Abstract:
Supplier selection subject is vital because of development competitiveness and performance of firms which have right, rapid and with low cost procurement. Considering the fact that competition between firms is no longer on their supply chains, hence it is very clear that performance of the firms’ not only depend on their own success but also success of all departments in supply chain. For this purpose, firms want to work with suppliers which are cost effective, flexible in terms of demand and high quality level for customer satisfaction. However, diversification and redundancy of their expectations from suppliers, supplier selection problems need to be solved as a hard problem. In this study, supplier selection problem is discussed for critical piece, which is using almost all production of products in and has troubles with lead time from supplier, in a firm that produces medical devices. Analyzing policy in the current situation of the firm in the supplier selection indicates that supplier selection is made based on the purchasing department experience and other authorized persons’ general judgments. Because selection do not make based on the analytical methods, it is caused disruptions in production, lateness and extra cost. To solve the problem, AHP and TOPSIS which are multi-criteria decision making techniques, which are effective, easy to implement and can analyze many criteria simultaneously, are used to make a selection among alternative suppliers.Keywords: AHP-TOPSIS methods, multi-criteria decision making, supplier selection problem, supply chain management
Procedia PDF Downloads 2644352 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques
Authors: Elizabeth Malebogo Mosepele
Abstract:
Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation
Procedia PDF Downloads 4324351 Support for Planning of Mobile Personnel Tasks by Solving Time-Dependent Routing Problems
Authors: Wlodzimierz Ogryczak, Tomasz Sliwinski, Jaroslaw Hurkala, Mariusz Kaleta, Bartosz Kozlowski, Piotr Palka
Abstract:
Implementation concepts of a decision support system for planning and management of mobile personnel tasks (sales representatives and others) are discussed. Large-scale periodic time-dependent vehicle routing and scheduling problems with complex constraints are solved for this purpose. Complex nonuniform constraints with respect to frequency, time windows, working time, etc. are taken into account with additional fast adaptive procedures for operational rescheduling of plans in the presence of various disturbances. Five individual solution quality indicators with respect to a single personnel person are considered. This paper deals with modeling issues corresponding to the problem and general solution concepts. The research was supported by the European Union through the European Regional Development Fund under the Operational Programme ‘Innovative Economy’ for the years 2007-2013; Priority 1 Research and development of modern technologies under the project POIG.01.03.01-14-076/12: 'Decision Support System for Large-Scale Periodic Vehicle Routing and Scheduling Problems with Complex Constraints.'Keywords: mobile personnel management, multiple criteria, time dependent, time windows, vehicle routing and scheduling
Procedia PDF Downloads 3234350 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems
Authors: Aydin M. Torkabadi, Ehsan Pourjavad
Abstract:
A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM
Procedia PDF Downloads 1624349 Relationship between Static Balance and Body Characteristics in the Elderly
Authors: J. W. Kim, Y. R. Kwon, Y. J. Ho, H. M. Jeon, G. M. Eom
Abstract:
The aim of this study was to investigate the association of anthropometry with static balance in the elderly and their possible gender difference. Forty six subjects (23 men and 23 women) participated in this study. COP (Center of Pressure) was measured on a force-platform during quiet feet-together standing. As outcome measures, mean distance were derived from the COP. Weight was significantly correlated with postural variable only in the elderly men. This result suggests that the gender should be considered when normalizing postural variables.Keywords: body characteristics, postural balance, elderly, gender difference
Procedia PDF Downloads 4374348 Identification of Electric Energy Storage Acceptance Types: Empirical Findings from the German Manufacturing Industry
Authors: Dominik Halstrup, Marlene Schriever
Abstract:
The industry, as one of the main energy consumer, is of critical importance along the way of transforming the energy system to Renewable Energies. The distributed character of the Energy Transition demands for further flexibility being introduced to the grid. In order to shed further light on the acceptance of Electric Energy Storage (ESS) from an industrial point of view, this study therefore examines the German manufacturing industry. The analysis in this paper uses data composed of a survey amongst 101 manufacturing companies in Germany. Being part of a two-stage research design, both qualitative and quantitative data was collected. Based on a literature review an acceptance concept was developed in the paper and four user-types identified: (Dedicated) User, Impeded User, Forced User and (Dedicated) Non-User and incorporated in the questionnaire. Both descriptive and bivariate analysis is deployed to identify the level of acceptance in the different organizations. After a factor analysis has been conducted, variables were grouped to form independent acceptance factors. Out of the 22 organizations that do show a positive attitude towards ESS, 5 have already implemented ESS and show a positive attitude towards ESS. They can be therefore considered ‘Dedicated Users’. The remaining 17 organizations have a positive attitude but have not implemented ESS yet. The results suggest that profitability plays an important role as well as load-management systems that are already in place. Surprisingly, 2 organizations have implemented ESS even though they have a negative attitude towards it. This is an example for a ‘Forced User’ where reasons of overriding importance or supporters with overriding authority might have forced the company to implement ESS. By far the biggest subset of the sample shows (critical) distance and can therefore be considered ‘(Dedicated) Non-Users’. The results indicate that the majority of the respondents have not thought ESS in their own organization through yet. For the majority of the sample one can therefore not speak of critical distance but rather a distance due to insufficient information and the perceived unprofitability. This paper identifies the relative state of acceptance of ESS in the manufacturing industry as well as current reasons for hindrance and perspectives for future growth of ESS in an industrial setting from a policy level. The interest that is currently generated by the media could be channeled and taken into a more substantial and individual discussion about ESS in an industrial setting. If the current perception of profitability could be addressed and communicated accordingly, ESS and their use in for instance cooperative business models could become a topic for more organizations in Germany and other parts of the world. As price mechanisms tend to favor existing technologies, policy makers need to further access the use of ESS and acknowledge the positive effects when integrated in an energy system. The subfields of generation, transmission and distribution become increasingly intertwined. New technologies and business models, such as ESS or cooperative arrangements entering the market, increase the number of stakeholders. Organizations need to find their place within this array of stakeholders.Keywords: acceptance, energy storage solutions, German energy transition, manufacturing industry
Procedia PDF Downloads 2254347 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm
Abstract:
Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension
Procedia PDF Downloads 1004346 Perceived Procedural Justice and Organizational Citizenship Behavior: Evidence from a Security Organization
Authors: Noa Nelson, Orit Appel, Rachel Ben-ari
Abstract:
Organizational Citizenship Behavior (OCB) is voluntary employee behavior that contributes to the organization beyond formal job requirements. It can take different forms, such as helping teammates (OCB toward individuals; hence, OCB-I), or staying after hours to attend a task force (OCB toward the organization; hence, OCB-O). Generally, OCB contributes substantially to organizational climate, goals, productivity, and resilience, so organizations need to understand what encourages it. This is particularly challenging in security organizations. Security work is characterized by high levels of stress and burnout, which is detrimental to OCB, and security organizational design emphasizes formal rules and clear hierarchies, leaving employees with less freedom for voluntary behavior. The current research explored the role of Perceived Procedural Justice (PPJ) in enhancing OCB in a security organization. PPJ refers to how fair decision-making processes are perceived to be. It involves the sense that decision makers are objective, attentive to everyone's interests, respectful in their communications and participatory - allowing individuals a voice in decision processes. Justice perceptions affect motivation, and it was specifically suggested that PPJ creates an attachment to one's organization and personal interest in its success. Accordingly, PPJ had been associated with OCB, but hardly any research tested their association with security organizations. The current research was conducted among prison guards in the Israel Prison Service, to test a correlational and a causal association between PPJ and OCB. It differentiated between perceptions of direct commander procedural justice (CPJ), and perceptions of organization procedural justice (OPJ), hypothesizing that CPJ would relate to OCB-I, while OPJ would relate to OCB-O. In the first study, 336 prison guards (305 male) from 10 different prisons responded to questionnaires measuring their own CPJ, OPJ, OCB-I, and OCB-O. Hierarchical linear regression analyses indicated the significance of commander procedural justice (CPJ): It associated with OCB-I and also associated with OPJ, which, in turn, associated with OCB-O. The second study tested CPJ's causal effects on prison guards' OCB-I and OCB-O; 311 prison guards (275 male) from 14 different prisons read scenarios that described either high or low CPJ, and then evaluated the likelihood of that commander's prison guards performing OCB-I and OCB-O. In this study, CPJ enhanced OCB-O directly. It also contributed to OCB-I, indirectly: CPJ enhanced the motivation for collaboration with the commander, which respondents also evaluated after reading scenarios. Collaboration, in turn, associated with OCB-I. The studies demonstrate that procedural justice, especially commander's PJ, promotes OCB in security work environments. This is important because extraordinary teamwork and motivation are needed to deal with emergency situations and with delicate security challenges. Following the studies, the Israel Prison Service implemented personal procedural justice training for commanders and unit level programs for procedurally just decision processes. From a theoretical perspective, the studies extend the knowledge on PPJ and OCB to security work environments and contribute evidence on PPJ's causal effects. They also call for further research, to understand the mechanisms through which different types of PPJ affect different types of OCB.Keywords: organizational citizenship behavior, perceived procedural justice, prison guards, security organizations
Procedia PDF Downloads 2214345 Use of a Business Intelligence Software for Interactive Visualization of Data on the Swiss Elite Sports System
Authors: Corinne Zurmuehle, Andreas Christoph Weber
Abstract:
In 2019, the Swiss Federal Institute of Sport Magglingen (SFISM) conducted a mixed-methods study on the Swiss elite sports system, which yielded a large quantity of research data. In a quantitative online survey, 1151 elite sports athletes, 542 coaches, and 102 Performance Directors of national sports federations (NF) have submitted their perceptions of the national support measures of the Swiss elite sports system. These data provide an essential database for the further development of the Swiss elite sports system. The results were published in a report presenting the results divided into 40 Olympic summer and 14 winter sports (Olympic classification). The authors of this paper assume that, in practice, this division is too unspecific to assess where further measures would be needed. The aim of this paper is to find appropriate parameters for data visualization in order to identify disparities in sports promotion that allow an assessment of where further interventions by Swiss Olympic (NF umbrella organization) are required. Method: First, the variable 'salary earned from sport' was defined as a variable to measure the impact of elite sports promotion. This variable was chosen as a measure as it represents an important indicator for the professionalization of elite athletes and therefore reflects national level sports promotion measures applied by Swiss Olympic. Afterwards, the variable salary was tested with regard to the correlation between Olympic classification [a], calculating the Eta coefficient. To estimate the appropriate parameters for data visualization, the correlation between salary and four further parameters was analyzed by calculating the Eta coefficient: [a] sport; [b] prioritization (from 1 to 5) of the sports by Swiss Olympic; [c] gender; [d] employment level in sports. Results & Discussion: The analyses reveal a very small correlation between salary and Olympic classification (ɳ² = .011, p = .005). Gender demonstrates an even small correlation (ɳ² = .006, p = .014). The parameter prioritization was correlating with small effect (ɳ² = .017, p = .001) as did employment level (ɳ² = .028, p < .001). The highest correlation was identified by the parameter sport with a moderate effect (ɳ² = .075, p = .047). The analyses show that the disparities in sports promotion cannot be determined by a particular parameter but presumably explained by a combination of several parameters. We argue that the possibility of combining parameters for data visualization should be enabled when the analysis is provided to Swiss Olympic for further strategic decision-making. However, the inclusion of multiple parameters massively multiplies the number of graphs and is therefore not suitable for practical use. Therefore, we suggest to apply interactive dashboards for data visualization using Business Intelligence Software. Practical & Theoretical Contribution: This contribution provides the first attempt to use Business Intelligence Software for strategic decision-making in national level sports regarding the prioritization of national resources for sports and athletes. This allows to set specific parameters with a significant effect as filters. By using filters, parameters can be combined and compared against each other and set individually for each strategic decision.Keywords: data visualization, business intelligence, Swiss elite sports system, strategic decision-making
Procedia PDF Downloads 904344 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray
Abstract:
Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer
Procedia PDF Downloads 754343 Enhance Engineering Learning Using Cognitive Simulator
Authors: Lior Davidovitch
Abstract:
Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.Keywords: cognitive simulator, decision making, engineering learning, project management
Procedia PDF Downloads 249