Search results for: climate network
5805 The Effects of Parents’ Personality Traits and Family Variables on Aggressive Behavior in Children from the State of Kuwait
Authors: Eisa Al-Balhan
Abstract:
This study explores the effects of parents’ personality and family variables on aggressive behavior in children from the State of Kuwait. The sample of 117children aged between 6 and 10 years (M=7.79 years, SD =1.4 years),117 fathers, and 117mothers from Kuwait. The following tools were used: a) the Aggressive Behavior Scale for Children (ABSC), b) the Personality Scales Inventory (PSI), and c) the Family Climate Scale (FCS). The results show that there were significant differences between children with highly aggressive behavior and those with low aggressive behavior for most of the personality traits of the father and mother, as well as most of the family climate and its different dimensions according to the father’s knowledge and the mother’s knowledge. Furthermore, there was a significant difference between males and females in the total score of aggressive behavior, verbal aggression, physical aggression, self-aggression, and aggression toward others, with higher scores occurring among males. Most of the correlations of the children’s aggressive behavior were with the personality traits of the father. The personality traits of the mother, family climate, and most of its different dimensions according to the father's and mother's knowledge had significant negative correlations with the child's aggression. There was no effect of the mother's and father's education levels on their child’s aggressive behavior. There was a significant difference between normal families and separated families in the total score of aggressive behavior, verbal aggression, and self-aggression, with a higher score occurring among separated families, and there was no significant difference between the two groups in physical aggression and aggression towards others.Keywords: aggressive behavior, personality traits of parents, family variables, parents
Procedia PDF Downloads 1155804 Would Intra-Individual Variability in Attention to Be the Indicator of Impending the Senior Adults at Risk of Cognitive Decline: Evidence from Attention Network Test(ANT)
Authors: Hanna Lu, Sandra S. M. Chan, Linda C. W. Lam
Abstract:
Objectives: Intra-individual variability (IIV) has been considered as a biomarker of healthy ageing. However, the composite role of IIV in attention, as an impending indicator for neurocognitive disorders warrants further exploration. This study aims to investigate the IIV, as well as their relationships with attention network functions in adults with neurocognitive disorders (NCD). Methods: 36adults with NCD due to Alzheimer’s disease(NCD-AD), 31adults with NCD due to vascular disease (NCD-vascular), and 137 healthy controls were recruited. Intraindividual standard deviations (iSD) and intraindividual coefficient of variation of reaction time (ICV-RT) were used to evaluate the IIV. Results: NCD groups showed greater IIV (iSD: F= 11.803, p < 0.001; ICV-RT:F= 9.07, p < 0.001). In ROC analyses, the indices of IIV could differentiateNCD-AD (iSD: AUC value = 0.687, p= 0.001; ICV-RT: AUC value = 0.677, p= 0.001) and NCD-vascular (iSD: AUC value = 0.631, p= 0.023;ICV-RT: AUC value = 0.615, p= 0.045) from healthy controls. Moreover, the processing speed could distinguish NCD-AD from NCD-vascular (AUC value = 0.647, p= 0.040). Discussion: Intra-individual variability in attention provides a stable measure of cognitive performance, and seems to help distinguish the senior adults with different cognitive status.Keywords: intra-individual variability, attention network, neurocognitive disorders, ageing
Procedia PDF Downloads 4755803 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation
Authors: Lassaad Smirani
Abstract:
In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A
Procedia PDF Downloads 3945802 Design and Thermal Analysis of a Concrete House in Libya Using BEopt
Authors: Gamal Alamri, Tariq Iqbal
Abstract:
This paper presents an optimum designs and thermal analysis of concrete house in the hot climate of Libya. For this goal we have used BEopt software (building energy optimization) that provides capabilities for estimating residential building design and thermal analysis. The most area of the house that is exposed to the sunlight’s is the roof leading to heat gain. Therefore, house cooling consumes high energy. The cooling energy consumption is three times the heating energy consumption. In order to maintain comfortable indoor conditions in a low-energy house, the entire building envelope needs to be perfectly insulated and prevented from air leakages. Insulated roof is selected to reduce cooling demand, and the paper presents details and BEopt simulation results. Designed house needs 12.02mmbtus/year. Furthermore, the modeling indicates that the designed house is close to achieving the Passive standard.Keywords: concrete house design, thermal analysis, hot climate, BEopt software
Procedia PDF Downloads 4125801 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach
Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday
Abstract:
One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach
Procedia PDF Downloads 1985800 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: Bahareh Golchin, Nooshin Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia PDF Downloads 1375799 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram
Abstract:
Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification
Procedia PDF Downloads 2975798 Use of Vegetative Coverage for Slope Stability in the Brazilian Midwest: Case Study
Authors: Weber A. R. Souza, Andre A. N. Dantas, Marcio A. Medeiros, Rafaella F. Costa
Abstract:
The erosive processes are natural phenomena that cause changes in the soil continuously due to the actions of natural erosive agents and their speed can be intensified or retarded by factors such as climate, inclination, type of matrix rock, vegetation and anthropic activities, the latter being very relevant in occupied areas without planning and urban infrastructure. Inadequate housing sites associated with an inefficient urban drainage network and lack of vegetation cover potentiate the erosive processes that, over time, are gaining alarming proportions, as is the case of the erosion in Planaltina in Federal district, a Brazilian state in the central west. Thus, the aim of this work was to compare the use of Vetiver grass and Alfalfa as vegetation cover to slope protection. For that, a study was carried out in the scientific literature about the improvement of the soil properties provided by them and verification of the safety factor through the simulation of slopes with different heights and inclination using SLOPE / W software. The Vetiver grass presented little more satisfactory results than the Alfalfa, but these obtained results slightly closer to that of the vetiver grass in less time of planting.Keywords: erosive processes, planting, slope protection, vegetation cover
Procedia PDF Downloads 1805797 A Novel Gateway Location Algorithm for Wireless Mesh Networks
Authors: G. M. Komba
Abstract:
The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM.Keywords: Wireless Mesh Network, Gateway Location Algorithm, Quality of Service, BWM
Procedia PDF Downloads 3715796 Irrigation Challenges, Climate Change Adaptation and Sustainable Water Usage in Developing Countries. A Case Study, Nigeria
Authors: Faith Eweluegim Enahoro-Ofagbe
Abstract:
Worldwide, every nation is experiencing the effects of global warming. In developing countries, due to the heavy reliance on agriculture for socioeconomic growth and security, among other things, these countries are more affected by climate change, particularly with the availability of water. Floods, droughts, rising temperatures, saltwater intrusion, groundwater depletion, and other severe environmental alterations are all brought on by climatic change. Life depends on water, a vital resource; these ecological changes affect all water use, including agriculture and household water use. Therefore adequate and adaptive water usage strategies for sustainability are essential in developing countries. Therefore, this paper investigates Nigeria's challenges due to climate change and adaptive techniques that have evolved in response to such issues to ensure water management and sustainability for irrigation and provide quality water to residents. Questionnaires were distributed to respondents in the study area, central Nigeria, for quantitative evaluation of sustainable water resource management techniques. Physicochemical analysis was done, collecting soil and water samples from several locations under investigation. Findings show that farmers use different methods, ranging from intelligent technologies to traditional strategies for water resource management. Also, farmers need to learn better water resource management techniques for sustainability. Since more residents obtain their water from privately held sources, the government should enforce legislation to ensure that private borehole construction businesses treat water sources of poor quality before the general public uses them.Keywords: developing countries, irrigation, strategies, sustainability, water resource management, water usage
Procedia PDF Downloads 1155795 Dynamic Cellular Remanufacturing System (DCRS) Design
Authors: Tariq Aljuneidi, Akif Asil Bulgak
Abstract:
Remanufacturing may be defined as the process of bringing used products to “like-new” functional state with warranty to match, and it is one of the most popular product end-of-life scenarios. An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that consider CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi-period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.Keywords: cellular manufacturing system, remanufacturing, mathematical programming, sustainability
Procedia PDF Downloads 3785794 Instant Fire Risk Assessment Using Artifical Neural Networks
Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan
Abstract:
Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index
Procedia PDF Downloads 1375793 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China
Authors: Weikang Peng
Abstract:
The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network
Procedia PDF Downloads 205792 Router 1X3 - RTL Design and Verification
Authors: Nidhi Gopal
Abstract:
Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.Keywords: data packets, networking, router, routing
Procedia PDF Downloads 8145791 Social Media, Networks and Related Technology: Business and Governance Perspectives
Authors: M. A. T. AlSudairi, T. G. K. Vasista
Abstract:
The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support.Keywords: CRASP methodology, formative assessment, literature review, semantic web services, social media, social networks
Procedia PDF Downloads 4515790 Hydro-Climatological, Geological, Hydrogeological and Geochemical Study of the Coastal Aquifer System of Chiba Watershed (Cape Bon Peninsula)
Authors: Khawla Askri, Mohamed Haythem Msaddek, AbdelAziz Sebei
Abstract:
Climate change combined with the increase in anthropogenic activities will affect coastal groundwater systems around the world and, more particularly, the Cap Bon region in the North East of Tunisia. This study aims to study the impact of climate change and human stress on the salinization and quantification of groundwater in the Wadi Chiba watershed. In this regard, a hydro-climatological study and a hydrogeological study were carried out based on the characterization of the aquifer system of the eastern coast at the level of the watershed of Wadi Chiba in order to seek to identify, first of all, the degradation of the state of the aquifer on the quantitative level by the study of the piezometric and its evolution over time. Secondly, we sought to identify the degradation of the state of the aquifer qualitatively by using the geochemical method, in particular the major elements, to assess the mineralization of the aquifer water and understand its hydrogeochemical functioning. The study of the Na + / Cl- and Ca2 + / Mg2 + chemical relationships confirmed the presence of a marine intrusion downstream of the Wadi Chiba watershed northeast of Cap-Bon accompanied by a piezometric depression. For this purpose, we proceeded to: 1) Mapping of both piezometric data and salinity. 2) The interpretation of the mapping results. 3)Identification of the origin of the localized deterioration in the quality of the aquifer water. Finally, the analysis of the results showed that the scarcity of water is already forcing human actions in the Chiba watershed due to the irrigation of agricultural lands and the overexploitation of the water table in the study area.Keywords: climate change, human activities, water table, Wadi Chiba watershed, piezometric depression, marine intrusion
Procedia PDF Downloads 925789 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System
Authors: Latif Yanar, Muammer Kaçan
Abstract:
Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations
Procedia PDF Downloads 5925788 Carbon Storage in Natural Mangrove Biomass: Its Destruction and Potential Impact on Climate Change in the UAE
Authors: Hedaya Ali Al Ameri, Alya A. Arabi
Abstract:
Measuring the level of carbon storage in mangroves’ biomass has a potential impact in the climate change of UAE. Carbon dioxide is one of greenhouse gases. It is considered to be a main reason for global warming. Deforestation is a key source of the increase in carbon dioxide whereas forests such as mangroves assist in removing carbon dioxide from atmosphere by storing them in its biomass and soil. By using Kauffman and Donato methodology, above- and below-ground biomass and carbon stored in UAE’s natural mangroves were quantified. Carbon dioxide equivalent (CO2eq) released to the atmosphere was then estimated in case of mangroves deforestation in the UAE. The results show that the mean total biomass of mangroves in the UAE ranged from 15.75 Mg/ha to 3098.69 Mg/ha. The estimated CO2eq released upon deforestation in the UAE was found to have a minimal effect on the temperature increase and thus global warming.Keywords: carbon stored in biomass, mangrove deforestation, temperature change, United Arab Emirate
Procedia PDF Downloads 3965787 A Case Study Approach to the Rate the Eco Sensitivity of Green Infrastructure Solutions
Abstract:
In the area of civil infrastructure, there is an urgent need to apply technologies that deliver infrastructure sustainably in a way that is cost-effective. Civil engineering projects can have a significant impact on ecological and social systems if not correctly planned, designed and implemented. It can impact climate change by addressing the issue of flooding and sustainability. Poor design choices now can result in future generations to live in a climate with depleted resources and without green spaces. The objectives of the research study were to rate the sensitivity of various greener infrastructure technologies that can be used in township infrastructure, at the various stages of the project. This paper discusses the Green Township Infrastructure Design Toolkit, that is used to rate the sustainability of infrastructure service projects. Various case studies were undertaken on a range of infrastructure projects to test the sensitivity of various design solution against sustainability criteria. The Green reporting tools ensure efficient, economical and sustainable provision of infrastructure services.Keywords: eco-efficiency, green infrastructure, green technology, infrastructure design, sustainable development
Procedia PDF Downloads 3825786 How Grasslands Respond in Terms of Functional Strategies to Stimulated Climate Change in Submediterranean Region
Authors: Andrea Catorci, Federico Maria Tardella, Alessandro Brica, Muhammad Umair
Abstract:
Climate change models predict for the Mediterranean region a strong increase of intensity and frequency of drought events, with an expected effect on grassland biodiversity and functioning. The research aim was to understand how the grassland species modulate their resource acquisition and conservation strategies to short-term variation of the pattern of summer water supply. The study area is mountain meadows located in the ‘‘Montagna di Torricchio’’ (1130 m a.s.l.) a Nature Reserve in central Italy. In 2017 we started a manipulative experiment for 2 year (2017-2018), and we defined two treatments, one with increasing water (watering condition) and the other with less water (drought condition). Then, we investigated how species change their resource strategies at different amount of water availability by measuring the specific leaf area (SLA) and leaf area (LA). We used ANOVAs to test the effect of treatment over time on leaf area and specific leaf area, considering all the species together and also separately according to their growth form (forb, grass, legume). Our results showed that species may respond differently depending on their growth form and that using all the species together may cover more detailed variation. Overall, resource retaining strategies (lower SLA, LA) are resulted by increase of drought condition, while increase in water amount and number of watering events fosters acquisitive strategies (higher SLA, LA). However, this pattern is not constant for all growth form. Grass species are able to maintain their strategies to variation of the pattern of water availability. Forb and legume species on the other side have shown decreasing trend of SLA, LA values with increasing drought condition, a pattern more marked for the latter growth form. These variations suggest not only an increase of slow-growing strategies for both growth form, but also a decrease of their nutrient pastoral values since their leaves are supposed to become harder. Local farmers should consider the effect of climate change on grassland and adapt their management practices to guarantee the cattle welfare.Keywords: function strategies, grasslands, climate change, sub Mediterranean region
Procedia PDF Downloads 1305785 Tabu Search to Draw Evacuation Plans in Emergency Situations
Authors: S. Nasri, H. Bouziri
Abstract:
Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.Keywords: dynamic network flow, load dependent transit time, evacuation strategy, earliest arrival flow problem, tabu search metaheuristic
Procedia PDF Downloads 3725784 The City Narrated from the Hill, Evaluation of Natural Fabric in Urban Plans: A Case Study of Santiago de Chile
Authors: Monica Sanchez
Abstract:
What responsibility does urban planning have on climate changes? How does the territory give us answers of resilience? Historically, urban plans have civilized territories: waters are channeled, grounds are sealed, foreign species are incorporated, native ones are extinguished, and/or enclosed spaces are heated or cooled. Socially this facilitates coexistence, but in turn brings negative environmental consequences. The past fifty years, mankind has tried to redirect these consequences through different strategies. Research studies produced strategies designed to alleviate climate change. Exploring the nature of territories has been incorporated in urban planning to discover natures response. The case to be studied is Santiago, Chile: for its combined impacts of climate change and the significant response by this city on climate governance in the last decades. Warmer areas in Santiago are seen in the areas of high-density buildings such as the commune of Recoleta, while the coldest are characterized by the predominance of low residential densities as the commune of Providencia. These two communes are separated and complemented by an undulating body that comes from the Andes mountains called San Cristobal Hill. What if the hill were taken into account when making roads, zoning and buildings? Was it difficult to prolong in the urban plans the hill characteristics to the city solving the intersection with other natural areas? Apparently it was, because the projected-profile informs us that the planned strategies used correspond to the same operations used in the flat areas of Santiago. This research focuses on: explaining the geographic relationships between city-hill; explaining the planning process around the hill with a morphological analysis; evaluating how the hill has been considered the in the city in the plans that intended to cushion the environmental impacts and studying what is missing on the hill and city to strengthen their integration. Therefore, the research will have different scales of understanding: addressing territorial scale -understanding the vegetation, topography and hydrology; a city scale -analyzing urban plans that Santiago has dealt with the environment and city; and a local scale -studying the integration and public spaces and coverage- norms of the adjacent communes. The expected outcome is to decipher possible deficits and capabilities of the current urban plans for climate change. It is anticipated that the hill and valley is now trying to reconcile after such a long separation. Yet it seems that never will prevail all the Rules of Nature, but the Urban Rules. The plans will require pruning, irrigation, control of invasive alien species and public safety standards, but will be rejoining a dose of nature with the building environment -this will protect us better from it from the time that we feared from it and knew little about it. Today we know a little more, enough to adapt to the process. Although nature is not perceived and we ignore it, it has a remarkable ability to respond.Keywords: resilience, climate change, urban plans, land use, hills and cities, heat islands, morphology
Procedia PDF Downloads 3675783 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers
Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang
Abstract:
In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.Keywords: centrality, patent coupling network, patent influence, social network analysis
Procedia PDF Downloads 545782 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.Keywords: ad-hoc network, MANET, ant colony routing, position based routing
Procedia PDF Downloads 4255781 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 1775780 Coupling Random Demand and Route Selection in the Transportation Network Design Problem
Authors: Shabnam Najafi, Metin Turkay
Abstract:
Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.Keywords: epsilon-constraint, multi-objective, network design, stochastic
Procedia PDF Downloads 6475779 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 4435778 [Keynote Talk]: Some Underlying Factors and Partial Solutions to the Global Water Crisis
Authors: Emery Jr. Coppola
Abstract:
Water resources are being depleted and degraded at an alarming and non-sustainable rate worldwide. In some areas, it is progressing more slowly. In other areas, irreversible damage has already occurred, rendering regions largely unsuitable for human existence with destruction of the environment and the economy. Today, 2.5 billion people or 36 percent of the world population live in water-stressed areas. The convergence of factors that created this global water crisis includes local, regional, and global failures. In this paper, a survey of some of these factors is presented. They include abuse of political power and regulatory acquiescence, improper planning and design, ignoring good science and models, systemic failures, and division between the powerful and the powerless. Increasing water demand imposed by exploding human populations and growing economies with short-falls exacerbated by climate change and continuing water quality degradation will accelerate this growing water crisis in many areas. Without regional measures to improve water efficiencies and protect dwindling and vulnerable water resources, environmental and economic displacement of populations and conflict over water resources will only grow. Perhaps more challenging, a global commitment is necessary to curtail if not reverse the devastating effects of climate change. Factors will be illustrated by real-world examples, followed by some partial solutions offered by water experts for helping to mitigate the growing water crisis. These solutions include more water efficient technologies, education and incentivization for water conservation, wastewater treatment for reuse, and improved data collection and utilization.Keywords: climate change, water conservation, water crisis, water technologies
Procedia PDF Downloads 2355777 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling
Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada
Abstract:
In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic
Procedia PDF Downloads 3235776 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 90