Search results for: look-ahead constrained optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3424

Search results for: look-ahead constrained optimization

1954 A Universal Approach to Categorize Failures in Production

Authors: Konja Knüppel, Gerrit Meyer, Peter Nyhuis

Abstract:

The increasing interconnectedness and complexity of production processes raise the susceptibility of production systems to failure. Therefore, the ability to respond quickly to failures is increasingly becoming a competitive factor. The research project "Sustainable failure management in manufacturing SMEs" is developing a methodology to identify failures in the production and select preventive and reactive measures in order to correct failures and to establish sustainable failure management systems.

Keywords: failure categorization, failure management, logistic performance, production optimization

Procedia PDF Downloads 361
1953 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 63
1952 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province

Authors: Yujie Zhao, Jiantao Weng

Abstract:

In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.

Keywords: air infiltration, commercial complex, heat consumption, CFD simulation

Procedia PDF Downloads 118
1951 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 135
1950 A Human Factors Approach to Workload Optimization for On-Screen Review Tasks

Authors: Christina Kirsch, Adam Hatzigiannis

Abstract:

Rail operators and maintainers worldwide are increasingly replacing walking patrols in the rail corridor with mechanized track patrols -essentially data capture on trains- and on-screen reviews of track infrastructure in centralized review facilities. The benefit is that infrastructure workers are less exposed to the dangers of the rail corridor. The impact is a significant change in work design from walking track sections and direct observation in the real world to sedentary jobs in the review facility reviewing captured data on screens. Defects in rail infrastructure can have catastrophic consequences. Reviewer performance regarding accuracy and efficiency of reviews within the available time frame is essential to ensure safety and operational performance. Rail operators must optimize workload and resource loading to transition to on-screen reviews successfully. Therefore, they need to know what workload assessment methodologies will provide reliable and valid data to optimize resourcing for on-screen reviews. This paper compares objective workload measures, including track difficulty ratings and review distance covered per hour, and subjective workload assessments (NASA TLX) and analyses the link between workload and reviewer performance, including sensitivity, precision, and overall accuracy. An experimental study was completed with eight on-screen reviewers, including infrastructure workers and engineers, reviewing track sections with different levels of track difficulty over nine days. Each day the reviewers completed four 90-minute sessions of on-screen inspection of the track infrastructure. Data regarding the speed of review (km/ hour), detected defects, false negatives, and false positives were collected. Additionally, all reviewers completed a subjective workload assessment (NASA TLX) after each 90-minute session and a short employee engagement survey at the end of the study period that captured impacts on job satisfaction and motivation. The results showed that objective measures for tracking difficulty align with subjective mental demand, temporal demand, effort, and frustration in the NASA TLX. Interestingly, review speed correlated with subjective assessments of physical and temporal demand, but to mental demand. Subjective performance ratings correlated with all accuracy measures and review speed. The results showed that subjective NASA TLX workload assessments accurately reflect objective workload. The analysis of the impact of workload on performance showed that subjective mental demand correlated with high precision -accurately detected defects, not false positives. Conversely, high temporal demand was negatively correlated with sensitivity and the percentage of detected existing defects. Review speed was significantly correlated with false negatives. With an increase in review speed, accuracy declined. On the other hand, review speed correlated with subjective performance assessments. Reviewers thought their performance was higher when they reviewed the track sections faster, despite the decline in accuracy. The study results were used to optimize resourcing and ensure that reviewers had enough time to review the allocated track sections to improve defect detection rates in accordance with the efficiency-thoroughness trade-off. Overall, the study showed the importance of a multi-method approach to workload assessment and optimization, combining subjective workload assessments with objective workload and performance measures to ensure that recommendations for work system optimization are evidence-based and reliable.

Keywords: automation, efficiency-thoroughness trade-off, human factors, job design, NASA TLX, performance optimization, subjective workload assessment, workload analysis

Procedia PDF Downloads 101
1949 Managerial Encouragement, Organizational Encouragement, and Resource Sufficiency and Its Effect on Creativity as Perceived by Architects in Metro Manila

Authors: Ferdinand de la Paz

Abstract:

In highly creative environments such as in the business of architecture, business models exhibit more focus on the traditional practice of mainstream design consultancy services as mandated and constrained by existing legislation. Architectural design firms, as business units belonging to the creative industries, have long been provoked to innovate not only in terms of their creative outputs but, more significantly, in the way they create and capture value from what they do. In the Philippines, there is still a dearth of studies exploring organizational creativity within the context of architectural firm practice, let alone across other creative industries. The study sought to determine the effects, measure the extent, and assess the relationships of managerial encouragement, organizational encouragement, and resource sufficiency on creativity as perceived by architects. A survey questionnaire was used to gather data from 100 respondents. The analysis was done using descriptive statistics, correlational, and causal-explanatory methods. The findings reveal that there is a weak positive relationship between Managerial Encouragement (ME), Organizational Encouragement (OE), and Sufficient Resources (SR) toward Creativity (C). The study also revealed that while Organizational Creativity and Sufficient Resources have significant effects on Creativity, Managerial Encouragement does not. It is recommended that future studies with a larger sample size be pursued among architects holding top management positions in architectural design firms to further validate the findings of this research. It is also highly recommended that the other stimulant scales in the KEYS framework be considered in future studies covering other locales to generate a better understanding of the architecture business landscape in the Philippines.

Keywords: managerial encouragement, organizational encouragement, resource sufficiency, organizational creativity, architecture firm practice, creative industries

Procedia PDF Downloads 75
1948 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis

Authors: Daniel Murrant, Andrew Quinn, Lee Chapman

Abstract:

A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.

Keywords: climate change, power station cooling, UK water-energy nexus, water abstraction, water resources

Procedia PDF Downloads 280
1947 Solution of Nonlinear Fractional Programming Problem with Bounded Parameters

Authors: Mrinal Jana, Geetanjali Panda

Abstract:

In this paper a methodology is developed to solve a nonlinear fractional programming problem in which the coefficients of the objective function and constraints are interval parameters. This model is transformed into a general optimization problem and relation between the original problem and the transformed problem is established. Finally the proposed methodology is illustrated through a numerical example.

Keywords: fractional programming, interval valued function, interval inequalities, partial order relation

Procedia PDF Downloads 506
1946 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas

Abstract:

The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.

Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm

Procedia PDF Downloads 71
1945 Destination of the PhDs: Determinants of International Mobility of UK PhD Graduates

Authors: Anna Siuda-Bak

Abstract:

This paper adopts a comparative approach to examining the determinants of international mobility of German, Italian and British researchers who completed their doctoral education in the UK. Structured sampling and data collection techniques have been developed in order to retrieve information on participants from publicly available sources. This systematically collected data was supplemented with an on-line survey which captures participants’ job trajectories, including movements between positions, institutions and countries. In total, data on 949 German, Italian and British PhDs was collected. Logistic regression was employed to identify factors associated with one’s probability of moving outside the UK after his or her graduation. The predictor variables included factors associated with one’s PhD (field of study, ranking of the university which awarded the PhD degree) and family factors (having a child, nationality of the partner). Then, 9 constrained models were estimated to test the effect each variable has on probability of going to a specific destination, being English-speaking country, non-English speaking country or returning to the home country. The results show that females, arts and humanities graduates, and respondents with a partner from the UK are less mobile than their counterparts. The effect of the ranking of the university differed in two groups. The UK graduates from higher ranked universities were more likely to move abroad than to stay in the UK after their graduation. In contrast, non-UK natives from the same universities were less likely to be internationally mobile than non-UK natives from lower ranked universities. The nationality of the partner was the most important predictor of the specific destination choices. Graduates with partner from the home county were more likely to return home and those with a partner from the third country least likely to return.

Keywords: doctoral graduates, international mobility, nationality, UK

Procedia PDF Downloads 308
1944 Language Teachers Exercising Agency Amid Educational Constraints: An Overview of the Literature

Authors: Anna Sanczyk

Abstract:

Teacher agency plays a crucial role in effective teaching, supporting diverse students, and providing an enriching learning environment; therefore, it is significant to gain a deeper understanding of language teachers’ sense of agency in teaching linguistically and culturally diverse students. This paper presents an overview of qualitative research on how language teachers exercise their agency in diverse classrooms. The analysis of the literature reveals that language teachers strive for addressing students’ needs and challenging educational inequalities, but experience educational constraints in enacting their agency. The examination of the research on language teacher agency identifies four major areas where language teachers experience challenges in enacting their agency: (1) implementing curriculum; (2) adopting school reforms and policies; (3) engaging in professional learning; (4) and negotiating various identities as professionals. The practical contribution of this literature review is that it provides a much-needed compilation of the studies on how language teachers exercise agency amid educational constraints. The discussion of the overview points to the importance of teacher identity, learner advocacy, and continuous professional learning and the critical need of promoting empowerment, activism, and transformation in language teacher education. The findings of the overview indicate that language teacher education programs should prepare teachers to be active advocates for English language learners and guide teachers to become more conscious of complexities of teaching in constrained educational settings so that they can become agentic professionals. This literature overview illustrates agency work in English language teaching contexts and contributes to understanding of the important link between experiencing educational constraints and development of teacher agency.

Keywords: advocacy, educational constraints, language teacher agency, language teacher education

Procedia PDF Downloads 161
1943 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 446
1942 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach

Authors: Ravi Patel, Krishna K. Krishnan

Abstract:

In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.

Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS

Procedia PDF Downloads 154
1941 Design for Sustainability

Authors: Qiuying Li, Fan Chen

Abstract:

It is a shared opinion that sustainable development requires continuously updated, meaning that apparent changes in the way we usually produce our buildings are strongly needed. In China’s construction field, the associated environmental, health problems are quite prominent.Especially low sustainable performance (as opposed to Green creation) flooding the real estate boom and high-speed urban and rural urbanization. Currently, we urgently need to improve the existing design basis,objectives,scope and procedures,optimization design portfolio.More new evaluation system designed to facilitate the building to enhance the overall level.

Keywords: design for sustainability, design and materials, ecomaterials, sustainable architecture and urban design

Procedia PDF Downloads 507
1940 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 117
1939 Privatization and Ensuring Accountability in the Provision of Essential Services: A Case of Water in South Africa

Authors: Odufu Ifakachukwu Clifford

Abstract:

Developing country governments are struggling to meet the basic needs and demands of citizens, especially so for the rural poor. With tightly constrained budgets, these governments have followed the lead of developed countries that have sought to restructure public service delivery through privatization, contracting out, public-private partnerships, and similar reforms. Such reforms in service delivery are generally welcomed when it is believed that private sector partners are better equipped to provide certain services than are governments. With respect to basic and essential services, however, a higher degree of uncertainty and apprehension exists as the focus shifts from simply minimizing the costs of delivering services to broadening access to all citizens. The constitution stipulates that everyone has the right to have access to sufficient food and water. Affordable and/or subsidized water, then, is not a privilege but a basic right of all citizens. Citizens elect political representatives to serve in office, with their sole mandate being to provide for the needs of the citizenry. As governments pass on some amount of responsibility for service delivery to private businesses, these governments must be able to exercise control in order to account to the people for the work done by private partners. This paper examines the legislative and policy frameworks as well as the environment within which PPPs take place in South Africa and the extent to which accountability can be strengthened in this environment. Within the aforementioned backdrop of PPPs and accountability, the constricted focus area of the paper aims to assess the extent to which the provision of clean and safe consumable water in South Africa is sustainable, cost-effective in terms of provision, and affordable to all.

Keywords: privatisation, accountability, essential services, government

Procedia PDF Downloads 43
1938 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.

Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI

Procedia PDF Downloads 335
1937 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 246
1936 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 135
1935 Building Information Modelling for Construction Delay Management

Authors: Essa Alenazi, Zulfikar Adamu

Abstract:

The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country’s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays.  It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management.  A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM’s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned.

Keywords: building information modelling (BIM), clients perspective, delay management, optimism bias, public sector projects

Procedia PDF Downloads 307
1934 Tram Track Deterioration Modeling

Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi

Abstract:

Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.

Keywords: deterioration modeling, asset management, railway, tram

Procedia PDF Downloads 360
1933 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 55
1932 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 33
1931 Borrower Discouragement in Spain: An Empirical Analysis Using a Survey Data Set

Authors: Ginés Hernández-Cánovas, Mª Camino Ramón-Llorens, Johanna Koëter-Kant

Abstract:

This paper uses a survey data-set of 837 Spanish SMEs to analyze the association between borrower discouragement and prior firm´s strategic decisions, while controlling for firm and owner characteristics. While existing literature has neglected factors limiting the demand for resources by an overreliance on arguments which attempt to explain the existence of discouraged borrowers solely in terms of lack of access to supply of credit. The objective of this paper is to show that factors limiting the demand for resources and, therefore, reducing the availability of funds, can be traced back to the firm manager´s decision. Our hypothesis is that managers that undertake strategic decisions seeking growth or improvement in their business performance participate more in the banking market than those showing contentment with their current business situation. Our results shows that SMEs that undertake an active role in research and development activities and that achieve improvements in the operating performance of their business are less likely to be discouraged from applying for a loan. Who needs credit and who applies for credit is important for firms, prospective lenders and policymakers interested in the financial health of these firms. Credit constrained firms are less likely to invest in R&D and to introduce new products, possibly harming long-term economic growth. Knowing how important borrower discouragement is in Europe, is important for judging the priority which should be attached to government policies aimed at reducing its effects. For example, policy makers could encourage the transparency about credit eligibility and conditions in order to reduce discouragement.

Keywords: discouragement, financial constraints, SMEs financing

Procedia PDF Downloads 340
1930 Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace

Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini

Abstract:

Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.

Keywords: energy cunsumption, energy recovery, modeling, energy eficiency

Procedia PDF Downloads 49
1929 The Security Trade-Offs in Resource Constrained Nodes for IoT Application

Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve

Abstract:

The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.

Keywords: energy consumption, IEEE 802.15.4, IoT security, security cost evaluation

Procedia PDF Downloads 150
1928 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment

Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa

Abstract:

The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 4
1927 Women's Challenges in Access to Urban Spaces and Infrastructures: A Comparative Study of the Urban Infrastructures Conforming to Women's Needs in Tehran and Istanbul

Authors: Parastoo Kazemiyan

Abstract:

Over the past 80 years, in compliance with the advent of modernity in Iran and Turkey, the presence of women in economic and social arenas has creates serious challenges in the capacity of urban spaces to respond to their presence and transport because urban spaces up until then were based on masculine criteria and therefore, women could use such spaces in the company of their fathers or husbands. However, as modernity expanded by Reza Shah and Ataturk, women found the opportunity to work and be present in urban spaces alongside men and their presence in economic and social domains resulted in their presence in these spaces in the early and late hours of the day. Therefore, the city had to be transformed in structural, social, and environmental terms to accommodate women's activities and presence in various urban arenas, which was a huge step in transition from a masculine man-based culture to an all-inclusive human-based culture in these two countries. However, the optimization of urban space was subject to political changes in the two countries, leading to significant differences in designing urban spaces in Tehran and Istanbul. What shows the importance and novelty of the present study lie in the differences in urban planning and optimization in the two capital cities, which gave rise to different outcomes in desirability and quality of living in these two capital cities. Due to the importance of the topic, one of the most significant factors in desirability and acceptability of urban space for women was examined using a descriptive-analytic method based on qualitative methodology in Tehran and Istanbul. The results showed that the infrastructural factors in Istanbul, including safety of access, variety, and number of public transport modes, transparency, and supervision over public spaces have provided women with a safer and more constant presence compared to Tehran. It seems that challenges involved in providing access to urban spaces in Tehran in terms of infrastructure and function have made Tehran unable to respond to the most basic needs of its female citizens.

Keywords: gender differences, urban space security, access to transportation systems, women's challenges

Procedia PDF Downloads 107
1926 Energy Trading for Cooperative Microgrids with Renewable Energy Resources

Authors: Ziaullah, Shah Wahab Ali

Abstract:

Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.

Keywords: distributed energy management, information and communication technologies, microgrid, energy management

Procedia PDF Downloads 361
1925 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 62