Search results for: time series feature extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22024

Search results for: time series feature extraction

21904 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm

Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu

Abstract:

Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.

Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model

Procedia PDF Downloads 249
21903 Solvent Free Microwave Extraction of Essential Oils: A Clean Chemical Processing in the Teaching and Research Laboratory

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Microwave Clevenger or microwave accelerated distillation (MAD) is a combination of microwave heating and distillation, performed at atmospheric pressure without added any solvent or water. Isolation and concentration of volatile compounds are performed by a single stage. MAD extraction of orange essential oil was studied using fresh orange peel from Valencia late cultivar oranges as the raw material. MAD has been compared with a conventional technique, which used a Clevenger apparatus with hydro-distillation (HD). MAD and HD were compared in term of extraction time, yields, chemical composition and quality of the essential oil, efficiency and costs of the process. Extraction of essential oils from orange peels with MAD was better in terms of energy saving, extraction time (30 min versus 3 h), oxygenated fraction (11.7% versus 7.9%), product yield (0.42% versus 0.39%) and product quality. Orange peels treated by MAD and HD were observed by scanning electronic microscopy (SEM). Micrographs provide evidence of more rapid opening of essential oil glands treated by MAD, in contrast to conventional hydro-distillation.

Keywords: clevenger, microwave, extraction; hydro-distillation, essential oil, orange peel

Procedia PDF Downloads 348
21902 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 390
21901 Reconstructing the Segmental System of Proto-Graeco-Phrygian: a Bottom-Up Approach

Authors: Aljoša Šorgo

Abstract:

Recent scholarship on Phrygian has begun to more closely examine the long-held belief that Greek and Phrygian are two very closely related languages. It is now clear that Graeco-Phrygian can be firmly postulated as a subclade of the Indo-European languages. The present paper will focus on the reconstruction of the phonological and phonetic segments of Proto-Graeco-Phrygian (= PGPh.) by providing relevant correspondence sets and reconstructing the classes of segments. The PGPh. basic vowel system consisted of ten phonemic oral vowels: */a e o ā ē ī ō ū/. The correspondences of the vowels are clear and leave little open to ambiguity. There were four resonants and two semi-vowels in PGPh.: */r l m n i̯ u̯/, which could appear in both a consonantal and a syllabic function, with the distribution between the two still being phonotactically predictable. Of note is the fact that the segments *m and *n seem to have merged when their phonotactic position would see them used in a syllabic function. Whether the segment resulting from this merger was a nasalized vowel (most likely *[ã]) or a syllabic nasal *[N̥] (underspecified for place of articulation) cannot be determined at this stage. There were three fricatives in PGPh.: */s h ç/. *s and *h are easily identifiable. The existence of *ç, which may seem unexpected, is postulated on the basis of the correspondence Gr. ὄς ~ Phr. yos/ιος. It is of note that Bozzone has previously proposed the existence of *ç ( < PIE *h₁i̯-) in an early stage of Greek even without taking into account Phrygian data. Finally, the system of stops in PGPh. distinguished four places of articulation (labial, dental, velar, and labiovelar) and three phonation types. The question of which three phonation types were actually present in PGPh. is one of great importance for the ongoing debate on the realization of the three series in PIE. Since the matter is still very much in dispute, we ought to, at this stage, endeavour to reconstruct the PGPh. system without recourse to the other IE languages. The three series of correspondences are: 1. Gr. T (= tenuis) ~ Phr. T; 2. Gr. D (= media) ~ Phr. T; 3. Gr. TA (= tenuis aspirata) ~ Phr. M. The first series must clearly be reconstructed as composed of voiceless stops. The second and third series are more problematic. With a bottom-up approach, neither the second nor the third series of correspondences are compatible with simple modal voicing, and the reflexes differ greatly in voice onset time. Rather, the defining feature distinguishing the two series was [±spread glottis], with ancillary vibration of the vocal cords. In PGPh. the second series was undergoing further spreading of the glottis. As the two languages split, this process would continue, but be affected by dissimilar changes in VOT, which was ultimately phonemicized in both languages as the defining feature distinguishing between their series of stops.

Keywords: bottom-up reconstruction, Proto-Graeco-Phrygian, spread glottis, syllabic resonant

Procedia PDF Downloads 48
21900 The Role of Named Entity Recognition for Information Extraction

Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov

Abstract:

Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.

Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area

Procedia PDF Downloads 78
21899 A Research and Application of Feature Selection Based on IWO and Tabu Search

Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu

Abstract:

Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.

Keywords: intrusion detection, feature selection, iwo, tabu search

Procedia PDF Downloads 527
21898 Variability Management of Contextual Feature Model in Multi-Software Product Line

Authors: Muhammad Fezan Afzal, Asad Abbas, Imran Khan, Salma Imtiaz

Abstract:

Software Product Line (SPL) paradigm is used for the development of the family of software products that share common and variable features. Feature model is a domain of SPL that consists of common and variable features with predefined relationships and constraints. Multiple SPLs consist of a number of similar common and variable features, such as mobile phones and Tabs. Reusability of common and variable features from the different domains of SPL is a complex task due to the external relationships and constraints of features in the feature model. To increase the reusability of feature model resources from domain engineering, it is required to manage the commonality of features at the level of SPL application development. In this research, we have proposed an approach that combines multiple SPLs into a single domain and converts them to a common feature model. Extracting the common features from different feature models is more effective, less cost and time to market for the application development. For extracting features from multiple SPLs, the proposed framework consists of three steps: 1) find the variation points, 2) find the constraints, and 3) combine the feature models into a single feature model on the basis of variation points and constraints. By using this approach, reusability can increase features from the multiple feature models. The impact of this research is to reduce the development of cost, time to market and increase products of SPL.

Keywords: software product line, feature model, variability management, multi-SPLs

Procedia PDF Downloads 65
21897 Analytical Study of Cobalt(II) and Nickel(II) Extraction with Salicylidene O-, M-, and P-Toluidine in Chloroform

Authors: Sana Almi, Djamel Barkat

Abstract:

The solvent extraction of cobalt (II) and nickel (II) from aqueous sulfate solutions were investigated with the analytical methods of slope analysis using salicylidene aniline and the three isomeric o-, m- and p-salicylidene toluidine diluted with chloroform at 25°C. By a statistical analysis of the extraction data, it was concluded that the extracted species are CoL2 with CoL2(HL) and NiL2 (HL denotes HSA, HSOT, HSMT, and HSPT). The extraction efficiency of Co(II) was higher than Ni(II). This tendency is confirmed from numerical extraction constants for each metal cations. The best extraction was according to the following order: HSMT > HSPT > HSOT > HSA for Co2+ and Ni2+.

Keywords: solvent extraction, nickel(II), cobalt(II), salicylidene aniline, o-, m-, and p-salicylidene toluidine

Procedia PDF Downloads 482
21896 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models

Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah

Abstract:

In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.

Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model

Procedia PDF Downloads 238
21895 Rescaled Range Analysis of Seismic Time-Series: Example of the Recent Seismic Crisis of Alhoceima

Authors: Marina Benito-Parejo, Raul Perez-Lopez, Miguel Herraiz, Carolina Guardiola-Albert, Cesar Martinez

Abstract:

Persistency, long-term memory and randomness are intrinsic properties of time-series of earthquakes. The Rescaled Range Analysis (RS-Analysis) was introduced by Hurst in 1956 and modified by Mandelbrot and Wallis in 1964. This method represents a simple and elegant analysis which determines the range of variation of one natural property (the seismic energy released in this case) in a time interval. Despite the simplicity, there is complexity inherent in the property measured. The cumulative curve of the energy released in time is the well-known fractal geometry of a devil’s staircase. This geometry is used for determining the maximum and minimum value of the range, which is normalized by the standard deviation. The rescaled range obtained obeys a power-law with the time, and the exponent is the Hurst value. Depending on this value, time-series can be classified in long-term or short-term memory. Hence, an algorithm has been developed for compiling the RS-Analysis for time series of earthquakes by days. Completeness time distribution and locally stationarity of the time series are required. The interest of this analysis is their application for a complex seismic crisis where different earthquakes take place in clusters in a short period. Therefore, the Hurst exponent has been obtained for the seismic crisis of Alhoceima (Mediterranean Sea) of January-March, 2016, where at least five medium-sized earthquakes were triggered. According to the values obtained from the Hurst exponent for each cluster, a different mechanical origin can be detected, corroborated by the focal mechanisms calculated by the official institutions. Therefore, this type of analysis not only allows an approach to a greater understanding of a seismic series but also makes possible to discern different types of seismic origins.

Keywords: Alhoceima crisis, earthquake time series, Hurst exponent, rescaled range analysis

Procedia PDF Downloads 320
21894 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.

Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision

Procedia PDF Downloads 486
21893 The Solvent Extraction of Uranium, Plutonium and Thorium from Aqueous Solution by 1-Hydroxyhexadecylidene-1,1-Diphosphonic Acid

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

In this paper, the solvent extraction of uranium(VI), plutonium(IV) and thorium(IV) from aqueous solutions using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) in treated kerosene has been investigated. The HHDPA was previously synthesized and characterized by FT-IR, 1H NMR, 31P NMR spectroscopy and elemental analysis. The effects contact time, initial pH, initial metal concentration, aqueous/organic phase ratio, extractant concentration and temperature on the extraction process have been studied. An empirical modelling was performed by using a 25 full factorial design, and regression equation for extraction metals was determined from the data. The conventional log-log analysis of the extraction data reveals that ratios of extractant to extracted U(VI), Pu(IV) and Th(IV) are 1:1, 1:2 and 1:2, respectively. Thermodynamic parameters showed that the extraction process was exothermic heat and spontaneous. The obtained optimal parameters were applied to real effluents containing uranium(VI), plutonium(IV) and thorium(IV) ions.

Keywords: solvent extraction, uranium, plutonium, thorium, 1-hydroxyhexadecylidene-1-1-diphosphonic acid, aqueous solution

Procedia PDF Downloads 287
21892 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 137
21891 Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes

Authors: Shreemoyee Sarkar, Vikhyat Chadha

Abstract:

In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided.

Keywords: local hurst exponent, lyapunov exponent, market crash prediction, time series chaos, time series local fractal properties

Procedia PDF Downloads 148
21890 Multi-Granularity Feature Extraction and Optimization for Pathological Speech Intelligibility Evaluation

Authors: Chunying Fang, Haifeng Li, Lin Ma, Mancai Zhang

Abstract:

Speech intelligibility assessment is an important measure to evaluate the functional outcomes of surgical and non-surgical treatment, speech therapy and rehabilitation. The assessment of pathological speech plays an important role in assisting the experts. Pathological speech usually is non-stationary and mutational, in this paper, we describe a multi-granularity combined feature schemes, and which is optimized by hierarchical visual method. First of all, the difference granularity level pathological features are extracted which are BAFS (Basic acoustics feature set), local spectral characteristics MSCC (Mel s-transform cepstrum coefficients) and nonlinear dynamic characteristics based on chaotic analysis. Latterly, radar chart and F-score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96-dimensions.The experimental results denote that new features by support vector machine (SVM) has the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.

Keywords: pathological speech, multi-granularity feature, MSCC (Mel s-transform cepstrum coefficients), F-score, radar chart

Procedia PDF Downloads 282
21889 A Study on Hierarchy and Popularity of Foreign TV Series with Different Origin Countries among Chinese Audiences from a Uses and Gratification Perspective

Authors: Terigele

Abstract:

Cultural products are always shelved into different classes of a hierarchy that separates so-called highbrow and lowbrow cultures. This study illustrated that audiences might even construct a hierarchy according to the origin countries when consuming certain products. Chinese audiences now have access to TV series from all around the world thanks to the internet. TV series from different origin countries show some particular features in terms of length, theme, plots, accessibility, seriousness etc. Their audiences were therefore stereotyped because of what they watch. Based on in-depth interviews with 20 participants, this research has following findings: 1) Most popular origin countries of foreign TV series in China are Korea, the United States, the United Kingdom, Japan and European countries in a descending order. Korean TV series are most popular because they are less serious and more accessible compared to others. 2) In the hierarchy of the TV series, European TV series stand on the top followed by British and American TV series. Japanese TV series are also categorized into highbrow class. Korean TV series are at the bottom and always seen as lowbrow cultural products. 3) Most audiences consume TV series from more than one origin countries and have different needs when watching them. Participants reported that they watch European TV series because those TV series are more artistic than their counterparts and of great quality. They watch British and American TV series mainly to improve their English and to learn about the culture. They find Japanese TV series very enjoyable with a large variety of themes and impressive lines. Audiences watch Korean TV series mostly to entertain and kill time. 4) Audiences do care about cultural taste. Especially those who watch European, British and American TV series usually tend to consider audiences who watch nothing but Korean TV series to be shallow. On the other hand, Korean TV series’ audiences seem to care less about the hierarchy of the TV series. Even when they discuss the hierarchy, they tend to accept the judgments with ironies and jokes. Future studies can dig deeply into the genre and content of TV series with different origin countries and also investigate more about the psychology of audiences regarding the gender, age, education, socioeconomic status etc.

Keywords: foreign TV series, hierarchy, popularity, uses and gratification

Procedia PDF Downloads 241
21888 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 135
21887 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria

Authors: Khaled Mawardi

Abstract:

Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.

Keywords: microwaves, extraction, Laurel oil, solvent-free

Procedia PDF Downloads 65
21886 Stroke Rehabilitation via Electroencephalogram Sensors and an Articulated Robot

Authors: Winncy Du, Jeremy Nguyen, Harpinder Dhillon, Reinardus Justin Halim, Clayton Haske, Trent Hughes, Marissa Ortiz, Rozy Saini

Abstract:

Stroke often causes death or cerebro-vascular (CV) brain damage. Most patients with CV brain damage lost their motor control on their limbs. This paper focuses on developing a reliable, safe, and non-invasive EEG-based robot-assistant stroke rehabilitation system to help stroke survivors to rapidly restore their motor control functions for their limbs. An electroencephalogram (EEG) recording device (EPOC Headset) and was used to detect a patient’s brain activities. The EEG signals were then processed, classified, and interpreted to the motion intentions, and then converted to a series of robot motion commands. A six-axis articulated robot (AdeptSix 300) was employed to provide the intended motions based on these commends. To ensure the EEG device, the computer, and the robot can communicate to each other, an Arduino microcontroller is used to physically execute the programming codes to a series output pins’ status (HIGH or LOW). Then these “hardware” commends were sent to a 24 V relay to trigger the robot’s motion. A lookup table for various motion intensions and the associated EEG signal patterns were created (through training) and installed in the microcontroller. Thus, the motion intention can be direct determined by comparing the EEG patterns obtaibed from the patient with the look-up table’s EEG patterns; and the corresponding motion commends are sent to the robot to provide the intended motion without going through feature extraction and interpretation each time (a time-consuming process). For safety sake, an extender was designed and attached to the robot’s end effector to ensure the patient is beyond the robot’s workspace. The gripper is also designed to hold the patient’s limb. The test results of this rehabilitation system show that it can accurately interpret the patient’s motion intension and move the patient’s arm to the intended position.

Keywords: brain waves, EEG sensor, motion control, robot-assistant stroke rehabilitation

Procedia PDF Downloads 382
21885 Extraction of Essential Oil From Orange Peels

Authors: Aayush Bhisikar, Neha Rajas, Aditya Bhingare, Samarth Bhandare, Amruta Amrurkar

Abstract:

Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels.

Keywords: orange peels, extraction, essential oil, distillation

Procedia PDF Downloads 85
21884 Extraction of Essential Oil from Orange Peels

Authors: Neha Rajas, Aayush Bhisikar, Samarth Bhandare, Aditya Bhingare, Amruta Amrutkar

Abstract:

Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels.

Keywords: orange peels, extraction, distillation, essential oil

Procedia PDF Downloads 79
21883 Capturing the Stress States in Video Conferences by Photoplethysmographic Pulse Detection

Authors: Jarek Krajewski, David Daxberger

Abstract:

We propose a stress detection method based on an RGB camera using heart rate detection, also known as Photoplethysmography Imaging (PPGI). This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. A stationary lab setting with simulated video conferences is chosen using constant light conditions and a sampling rate of 30 fps. The ground truth measurement of heart rate is conducted with a common PPG system. The proposed approach for pulse peak detection is based on a machine learning-based approach, applying brute force feature extraction for the prediction of heart rate pulses. The statistical analysis showed good agreement (correlation r = .79, p<0.05) between the reference heart rate system and the proposed method. Based on these findings, the proposed method could provide a reliable, low-cost, and contactless way of measuring HR parameters in daily-life environments.

Keywords: heart rate, PPGI, machine learning, brute force feature extraction

Procedia PDF Downloads 123
21882 Time Series Analysis on the Production of Fruit Juice: A Case Study of National Horticultural Research Institute (Nihort) Ibadan, Oyo State

Authors: Abiodun Ayodele Sanyaolu

Abstract:

The research was carried out to investigate the time series analysis on quarterly production of fruit juice at the National Horticultural Research Institute Ibadan from 2010 to 2018. Documentary method of data collection was used, and the method of least square and moving average were used in the analysis. From the calculation and the graph, it was glaring that there was increase, decrease, and uniform movements in both the graph of the original data and the tabulated quarter values of the original data. Time series analysis was used to detect the trend in the highest number of fruit juice and it appears to be good over a period of time and the methods used to forecast are additive and multiplicative models. Since it was observed that the production of fruit juice is usually high in January of every year, it is strongly advised that National Horticultural Research Institute should make more provision for fruit juice storage outside this period of the year.

Keywords: fruit juice, least square, multiplicative models, time series

Procedia PDF Downloads 140
21881 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques

Authors: Bum-Soo Kim, Jin-Uk Kim

Abstract:

In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.

Keywords: boundary image matching, indexing, partial denoising, time-series matching

Procedia PDF Downloads 134
21880 The Effect of Supercritical Fluid on the Extraction Efficiency of Heavy Metal from Soil

Authors: Haifa El-Sadi, Maria Elektorowicz, Reed Rushing, Ammar Badawieh, Asif Chaudry

Abstract:

Clay soils have particular properties that affect the assessment and remediation of contaminated sites. In clay soils, electro-kinetic transport of heavy metals has been carried out. The transport of these metals is predicated on maintaining a low pH throughout the cell, which, in turn, keeps the metals in the pore water phase where they are accessible to electro-kinetic transport. Supercritical fluid extraction and acid digestion were used for the analysis of heavy metals concentrations after the completion of electro-kinetic experimentation. Supercritical fluid (carbon dioxide) extraction is a new technique used to extract the heavy metal (lead, nickel, calcium and potassium) from clayey soil. The comparison between supercritical extraction and acid digestion of different metals was carried out. Supercritical fluid extraction, using ethylenediaminetetraacetic acid (EDTA) as a modifier, proved to be efficient and a safer technique than acid digestion technique in extracting metals from clayey soil. Mixing time of soil with EDTA before extracting heavy metals from clayey soil was investigated. The optimum and most practical shaking time for the extraction of lead, nickel, calcium and potassium was two hours.

Keywords: clay soil, heavy metals, supercritical fluid extraction, acid digestion

Procedia PDF Downloads 464
21879 Determination of Surface Deformations with Global Navigation Satellite System Time Series

Authors: Ibrahim Tiryakioglu, Mehmet Ali Ugur, Caglar Ozkaymak

Abstract:

The development of GNSS technology has led to increasingly widespread and successful applications of GNSS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical surface deformation. This study uses long-term GNSS time series that are required to determine vertical deformations. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create a coordinate time series. With the time series analyses, the GNSS stations’ behavior models (linear, periodical, etc.), the causes of these behaviors, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations shows approximately 50-80 mm/yr vertical movement.

Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations

Procedia PDF Downloads 164
21878 Use of Fabric Phase Sorptive Extraction with Gas Chromatography-Mass Spectrometry for the Determination of Organochlorine Pesticides in Various Aqueous and Juice Samples

Authors: Ramandeep Kaur, Ashok Kumar Malik

Abstract:

Fabric Phase Sorptive Extraction (FPSE) combined with Gas chromatography Mass Spectrometry (GCMS) has been developed for the determination of nineteen organochlorine pesticides in various aqueous samples. The method consolidates the features of sol-gel derived microextraction sorbents with rich surface chemistry of cellulose fabric substrate which could directly extract sample from complex sample matrices and incredibly improve the operation with decreased pretreatment time. Some vital parameters such as kind and volume of extraction solvent and extraction time were examinedand optimized. Calibration curves were obtained in the concentration range 0.5-500 ng/mL. Under the optimum conditions, the limits of detection (LODs) were in the range 0.033 ng/mL to 0.136 ng/mL. The relative standard deviations (RSDs) for extraction of 10 ng/mL 0f OCPs were less than 10%. The developed method has been applied for the quantification of these compounds in aqueous and fruit juice samples. The results obtained proved the present method to be rapid and feasible for the determination of organochlorine pesticides in aqueous samples.

Keywords: fabric phase sorptive extraction, gas chromatography-mass spectrometry, organochlorine pesticides, sample pretreatment

Procedia PDF Downloads 482
21877 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 665
21876 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models

Authors: Reza Bazargan lari, Mohammad H. Fattahi

Abstract:

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN

Procedia PDF Downloads 368
21875 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization

Procedia PDF Downloads 151