Search results for: convergence results
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37455

Search results for: convergence results

37335 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback

Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim

Abstract:

A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.

Keywords: model mismatch, repetitive control, singular values, state feedback

Procedia PDF Downloads 155
37334 A New Approach for Solving Fractional Coupled Pdes

Authors: Prashant Pandey

Abstract:

In the present article, an effective Laguerre collocation method is used to obtain the approximate solution of a system of coupled fractional-order non-linear reaction-advection-diffusion equation with prescribed initial and boundary conditions. In the proposed scheme, Laguerre polynomials are used together with an operational matrix and collocation method to obtain approximate solutions of the coupled system, so that our proposed model is converted into a system of algebraic equations which can be solved employing the Newton method. The solution profiles of the coupled system are presented graphically for different particular cases. The salient feature of the present article is finding the stability analysis of the proposed method and also the demonstration of the lower variation of solute concentrations with respect to the column length in the fractional-order system compared to the integer-order system. To show the higher efficiency, reliability, and accuracy of the proposed scheme, a comparison between the numerical results of Burger’s coupled system and its existing analytical result is reported. There are high compatibility and consistency between the approximate solution and its exact solution to a higher order of accuracy. The exhibition of error analysis for each case through tables and graphs confirms the super-linearly convergence rate of the proposed method.

Keywords: fractional coupled PDE, stability and convergence analysis, diffusion equation, Laguerre polynomials, spectral method

Procedia PDF Downloads 145
37333 A Study of Using Multiple Subproblems in Dantzig-Wolfe Decomposition of Linear Programming

Authors: William Chung

Abstract:

This paper is to study the use of multiple subproblems in Dantzig-Wolfe decomposition of linear programming (DW-LP). Traditionally, the decomposed LP consists of one LP master problem and one LP subproblem. The master problem and the subproblem is solved alternatively by exchanging the dual prices of the master problem and the proposals of the subproblem until the LP is solved. It is well known that convergence is slow with a long tail of near-optimal solutions (asymptotic convergence). Hence, the performance of DW-LP highly depends upon the number of decomposition steps. If the decomposition steps can be greatly reduced, the performance of DW-LP can be improved significantly. To reduce the number of decomposition steps, one of the methods is to increase the number of proposals from the subproblem to the master problem. To do so, we propose to add a quadratic approximation function to the LP subproblem in order to develop a set of approximate-LP subproblems (multiple subproblems). Consequently, in each decomposition step, multiple subproblems are solved for providing multiple proposals to the master problem. The number of decomposition steps can be reduced greatly. Note that each approximate-LP subproblem is nonlinear programming, and solving the LP subproblem must faster than solving the nonlinear multiple subproblems. Hence, using multiple subproblems in DW-LP is the tradeoff between the number of approximate-LP subproblems being formed and the decomposition steps. In this paper, we derive the corresponding algorithms and provide some simple computational results. Some properties of the resulting algorithms are also given.

Keywords: approximate subproblem, Dantzig-Wolfe decomposition, large-scale models, multiple subproblems

Procedia PDF Downloads 166
37332 Improving Research Collaborations in Medical Device Development in Korea from an SMEs’ Perspective

Authors: Yoon Chung Kim

Abstract:

In this coming aging society, medical device industry is expected to become one of the major industries. Since developing medical devices usually requires technology convergence, research collaboration is important, especially for some small and medium enterprises (SMEs) that do not have enough R&D resources in each related field. Collaboration in medical device development has some unique properties. Since it requires convergence technology, collaboration with different fields, and different types of people are often required. Since it requires clinical test, the development process usually takes longer and collaboration with hospitals is also required. However, despite these importance and uniqueness, collaboration in medical device development has not yet been widely studied. Thus, our research focuses on investigating collaborations in medical device development. For our research, we conducted surveys and interviews, especially with SMEs’ perspective in Korea. The result and discussion will be presented with a major impact factors for collaboration result, as well as future strategies that will improve and strengthen collaboration process in medical devices.

Keywords: medical device, SME, research collaboration, development, clinical

Procedia PDF Downloads 329
37331 Common Fixed Point Results and Stability of a Modified Jungck Iterative Scheme

Authors: Hudson Akewe

Abstract:

In this study, we introduce a modified Jungck (Dual Jungck) iterative scheme and use the scheme to approximate the unique common fixed point of a pair of generalized contractive-like operators in a Banach space. The iterative scheme is also shown to be stable with respect to the maps (S,T). An example is taken to justify the convergence of the scheme. Our result is a generalization and improvement of several results in the literature on single map T.

Keywords: generalized contractive-like operators, modified Jungck iterative scheme, stability results, weakly compatible maps, unique common fixed point

Procedia PDF Downloads 348
37330 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
37329 A Dynamic Software Product Line Approach to Self-Adaptive Genetic Algorithms

Authors: Abdelghani Alidra, Mohamed Tahar Kimour

Abstract:

Genetic algorithm must adapt themselves at design time to cope with the search problem specific requirements and at runtime to balance exploration and convergence objectives. In a previous article, we have shown that modeling and implementing Genetic Algorithms (GA) using the software product line (SPL) paradigm is very appreciable because they constitute a product family sharing a common base of code. In the present article we propose to extend the use of the feature model of the genetic algorithms family to model the potential states of the GA in what is called a Dynamic Software Product Line. The objective of this paper is the systematic generation of a reconfigurable architecture that supports the dynamic of the GA and which is easily deduced from the feature model. The resultant GA is able to perform dynamic reconfiguration autonomously to fasten the convergence process while producing better solutions. Another important advantage of our approach is the exploitation of recent advances in the domain of dynamic SPLs to enhance the performance of the GAs.

Keywords: self-adaptive genetic algorithms, software engineering, dynamic software product lines, reconfigurable architecture

Procedia PDF Downloads 285
37328 Efficient Study of Substrate Integrated Waveguide Devices

Authors: J. Hajri, H. Hrizi, N. Sboui, H. Baudrand

Abstract:

This paper presents a study of SIW circuits (Substrate Integrated Waveguide) with a rigorous and fast original approach based on Iterative process (WCIP). The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS.

Keywords: convergence study, HFSS, modal decomposition, SIW circuits, WCIP method

Procedia PDF Downloads 498
37327 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception

Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom

Abstract:

Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.

Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots

Procedia PDF Downloads 194
37326 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm

Authors: A. Baviskar, C. Sandeep, K. Shankar

Abstract:

Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.

Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)

Procedia PDF Downloads 277
37325 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle

Authors: R. Haoui

Abstract:

The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.

Keywords: finite volume, lunchers, nozzles, shock wave

Procedia PDF Downloads 289
37324 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 399
37323 Reconstruction and Rejection of External Disturbances in a Dynamical System

Authors: Iftikhar Ahmad, A. Benallegue, A. El Hadri

Abstract:

In this paper, we have proposed an observer for the reconstruction and a control law for the rejection application of unknown bounded external disturbance in a dynamical system. The strategy of both the observer and the controller is designed like a second order sliding mode with a proportional-integral (PI) term. Lyapunov theory is used to prove the exponential convergence and stability. Simulations results are given to show the performance of this method.

Keywords: non-linear systems, sliding mode observer, disturbance rejection, nonlinear control

Procedia PDF Downloads 334
37322 Smartphone Photography in Urban China

Authors: Wen Zhang

Abstract:

The smartphone plays a significant role in media convergence, and smartphone photography is reconstructing the way we communicate and think. This article aims to explore the smartphone photography practices of urban Chinese smartphone users and images produced by smartphones from a techno-cultural perspective. The analysis consists of two types of data: One is a semi-structured interview of 21 participants, and the other consists of the images created by the participants. The findings are organised in two parts. The first part summarises the current tendencies of capturing, editing, sharing and archiving digital images via smartphones. The second part shows that food and selfie/anti-selfie are the preferred subjects of smartphone photographic images from a technical and multi-purpose perspective and demonstrates that screenshots and image texts are new genres of non-photographic images that are frequently made by smartphones, which contributes to improving operational efficiency, disseminating information and sharing knowledge. The analyses illustrate the positive impacts between smartphones and photography enthusiasm and practices based on the diffusion of innovation theory, which also makes us rethink the value of photographs and the practice of ‘photographic seeing’ from the screen itself.

Keywords: digital photography, image-text, media convergence, photographic- seeing, selfie/anti-selfie, smartphone, technological innovation

Procedia PDF Downloads 354
37321 Numerical Study of Elastic Performances of Sandwich Beam with Carbon-Fibre Reinforced Skins

Authors: Soukaina Ounss, Hamid Mounir, Abdellatif El Marjani

Abstract:

Sandwich materials with composite reinforced skins are mostly required in advanced construction applications with a view to ensure resistant structures. Their lightweight, their high flexural stiffness and their optimal thermal insulation make them a suitable solution to obtain efficient structures with performing rigidity and optimal energy safety. In this paper, the mechanical behavior of a sandwich beam with composite skins reinforced by unidirectional carbon fibers is investigated numerically through analyzing the impact of reinforcements specifications on the longitudinal elastic modulus in order to select the adequate sandwich configuration that has an interesting rigidity and an accurate convergence to the analytical approach which is proposed to verify performed numerical simulations. Therefore, concerned study starts by testing flexion performances of skins with various fibers orientations and volume fractions to determine those to use in sandwich beam. For that, the combination of a reinforcement inclination of 30° and a volume ratio of 60% is selected with the one with 60° of fibers orientation and 40% of volume fraction, this last guarantees to chosen skins an important rigidity with an optimal fibers concentration and a great enhance in convergence to analytical results in the sandwich model for the reason of the crucial core role as transverse shear absorber. Thus, a resistant sandwich beam is elaborated from a face-sheet constituted from two layers of previous skins with fibers oriented in 60° and an epoxy core; concerned beam has a longitudinal elastic modulus of 54 Gpa (gigapascal) that equals to the analytical value by a negligible error of 2%.

Keywords: fibers orientation, fibers volume ratio, longitudinal elastic modulus, sandwich beam

Procedia PDF Downloads 168
37320 Sensor Registration in Multi-Static Sonar Fusion Detection

Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin

Abstract:

In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.

Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem

Procedia PDF Downloads 169
37319 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 30
37318 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 106
37317 On the Solution of Boundary Value Problems Blended with Hybrid Block Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper explores the application of hybrid block methods for solving boundary value problems (BVPs), which are prevalent in various fields such as science, engineering, and applied mathematics. Traditionally, numerical approaches such as finite difference and shooting methods, often encounter challenges related to stability and convergence, particularly in the context of complex and nonlinear BVPs. To address these challenges, we propose a hybrid block method that integrates features from both single-step and multi-step techniques. This method allows for the simultaneous computation of multiple solution points while maintaining high accuracy. Specifically, we employ a combination of polynomial interpolation and collocation strategies to derive a system of equations that captures the behavior of the solution across the entire domain. By directly incorporating boundary conditions into the formulation, we enhance the stability and convergence properties of the numerical solution. Furthermore, we introduce an adaptive step-size mechanism to optimize performance based on the local behavior of the solution. This adjustment allows the method to respond effectively to variations in solution behavior, improving both accuracy and computational efficiency. Numerical tests on a variety of boundary value problems demonstrate the effectiveness of the hybrid block methods. These tests showcase significant improvements in accuracy and computational efficiency compared to conventional methods, indicating that our approach is robust and versatile. The results suggest that this hybrid block method is suitable for a wide range of applications in real-world problems, offering a promising alternative to existing numerical techniques.

Keywords: hybrid block methods, boundary value problem, polynomial interpolation, adaptive step-size control, collocation methods

Procedia PDF Downloads 31
37316 The Association of Southeast Asian Nations (ASEAN) and the Dynamics of Resistance to Sovereignty Violation: The Case of East Timor (1975-1999)

Authors: Laura Southgate

Abstract:

The Association of Southeast Asian Nations (ASEAN), as well as much of the scholarship on the organisation, celebrates its ability to uphold the principle of regional autonomy, understood as upholding the norm of non-intervention by external powers in regional affairs. Yet, in practice, this has been repeatedly violated. This dichotomy between rhetoric and practice suggests an interesting avenue for further study. The East Timor crisis (1975-1999) has been selected as a case-study to test the dynamics of ASEAN state resistance to sovereignty violation in two distinct timeframes: Indonesia’s initial invasion of the territory in 1975, and the ensuing humanitarian crisis in 1999 which resulted in a UN-mandated, Australian-led peacekeeping intervention force. These time-periods demonstrate variation on the dependent variable. It is necessary to observe covariation in order to derive observations in support of a causal theory. To establish covariation, my independent variable is therefore a continuous variable characterised by variation in convergence of interest. Change of this variable should change the value of the dependent variable, thus establishing causal direction. This paper investigates the history of ASEAN’s relationship to the norm of non-intervention. It offers an alternative understanding of ASEAN’s history, written in terms of the relationship between a key ASEAN state, which I call a ‘vanguard state’, and selected external powers. This paper will consider when ASEAN resistance to sovereignty violation has succeeded, and when it has failed. It will contend that variation in outcomes associated with vanguard state resistance to sovereignty violation can be best explained by levels of interest convergence between the ASEAN vanguard state and designated external actors. Evidence will be provided to support the hypothesis that in 1999, ASEAN’s failure to resist violations to the sovereignty of Indonesia was a consequence of low interest convergence between Indonesia and the external powers. Conversely, in 1975, ASEAN’s ability to resist violations to the sovereignty of Indonesia was a consequence of high interest convergence between Indonesia and the external powers. As the vanguard state, Indonesia was able to apply pressure on the ASEAN states and obtain unanimous support for Indonesia’s East Timor policy in 1975 and 1999. However, the key factor explaining the variance in outcomes in both time periods resides in the critical role played by external actors. This view represents a serious challenge to much of the existing scholarship that emphasises ASEAN’s ability to defend regional autonomy. As these cases attempt to show, ASEAN autonomy is much more contingent than portrayed in the existing literature.

Keywords: ASEAN, east timor, intervention, sovereignty

Procedia PDF Downloads 358
37315 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.

Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods

Procedia PDF Downloads 43
37314 Multivalued Behavior for a Two-Level System Using Homotopy Analysis Method

Authors: Angelo I. Aquino, Luis Ma. T. Bo-ot

Abstract:

We use the Homotopy Analysis Method (HAM) to solve the system of equations modeling the two-level system and extract results which will pinpoint to turbulent behavior. We look at multi-valued solutions as indicative of turbulence or turbulent-like behavior. We take di erent speci c cases which result in multi-valued velocities. The solutions are in series form and application of HAM ensures convergence in some region.

Keywords: multivalued solutions, homotopy analysis method, two-level system, equation

Procedia PDF Downloads 593
37313 Optimization of Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times Using Genetic Algorithm Approach

Authors: Sanjay Kumar Parjapati, Ajai Jain

Abstract:

This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order.

Keywords: flexible job shop, genetic algorithm, makespan, sequence dependent setup times

Procedia PDF Downloads 332
37312 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.

Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time

Procedia PDF Downloads 347
37311 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
37310 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers

Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho

Abstract:

In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modeling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.

Keywords: plate heat exchanger, optimization, modeling, simulation

Procedia PDF Downloads 518
37309 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.

Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization

Procedia PDF Downloads 418
37308 Designing State Feedback Multi-Target Controllers by the Use of Particle Swarm Optimization Algorithm

Authors: Seyedmahdi Mousavihashemi

Abstract:

One of the most important subjects of interest in researches is 'improving' which result in various algorithms. In so many geometrical problems we are faced with target functions which should be optimized. In group practices, all the functions’ cooperation lead to convergence. In the study, the optimization algorithm of dense particles is used. Usage of the algorithm improves the given performance norms. The results reveal that usage of swarm algorithm for reinforced particles in designing state feedback improves the given performance norm and in optimized designing of multi-target state feedback controlling, the network will maintain its bearing structure. The results also show that PSO is usable for optimization of state feedback controllers.

Keywords: multi-objective, enhanced, feedback, optimization, algorithm, particle, design

Procedia PDF Downloads 499
37307 Bayesian Optimization for Reaction Parameter Tuning: An Exploratory Study of Parameter Optimization in Oxidative Desulfurization of Thiophene

Authors: Aman Sharma, Sonali Sengupta

Abstract:

The study explores the utility of Bayesian optimization in tuning the physical and chemical parameters of reactions in an offline experimental setup. A comparative analysis of the influence of the acquisition function on the optimization performance is also studied. For proxy first and second-order reactions, the results are indifferent to the acquisition function used, whereas, while studying the parameters for oxidative desulphurization of thiophene in an offline setup, upper confidence bound (UCB) provides faster convergence along with a marginal trade-off in the maximum conversion achieved. The work also demarcates the critical number of independent parameters and input observations required for both sequential and offline reaction setups to yield tangible results.

Keywords: acquisition function, Bayesian optimization, desulfurization, kinetics, thiophene

Procedia PDF Downloads 182
37306 The Subjective Experiences of First-Time Chinese Parents' Transition to Parenthood and the Impact on Their Marital Satisfaction

Authors: Amy Yee Kai Wan

Abstract:

The arrival of a new baby to first-time parents is an exciting and joyous occasion, yet, the daunting task of raising the baby and the uncertainty of how it will affect the lives of the couple present a great challenge to them. This study examines the causes of conflicts and needs of the new parents through a qualitative research of five pairs of new parents in Hong Kong. Semi-structured in-depth qualitative interviews were conducted to explore the changes babies brought to their marriages, sources of support they received and found important and assistance they felt would help with their transition to parenthood. Thematic analysis was used to analyze the commonalities and differences between the five couples’ subjective experiences. Narrative analysis was used to compare the experiences of two parents who are the under-functioning parent of the couple, to study the different strategies they employed in response to the over-functioning parent and to analyze how the marital relationships were affected. Four main themes emerged from the study: 1) Change and adjustment in marital relationship, 2) parents’ level of involvement, 3) support in childcaring, and 4) challenges faced by the parents. Results from the study indicated that father involvement in childcaring is an important element in mother’s marital satisfaction Father’s marital satisfaction is dependent upon the mother – her satisfaction with father involvement, which affects the mother’s marital satisfaction. Marital convergence and co-parenting alliance acted as moderators for marital satisfaction. Implications from the study include: i) offering programmes that improve couple relationship and enhance parenting efficacy in tandem to improve overall marital satisfaction, and ii) offering prenatal counselling services or provide education to new parents from prenatal to postnatal period that can help couples reduce discrepancies between expectations and realities of their marital relationship and parenting responsibilities after their baby is born.

Keywords: co-parenting alliance, father involvement, marital convergence, maternal gatekeeping, new parents, transition to parenthood

Procedia PDF Downloads 151