Search results for: and mathematics
403 Problem Solving in Mathematics Education: A Case Study of Nigerian Secondary School Mathematics Teachers’ Conceptions in Relation to Classroom Instruction
Authors: Carol Okigbo
Abstract:
Mathematical problem solving has long been accorded an important place in mathematics curricula at every education level in both advanced and emerging economies. Its classroom approaches have varied, such as teaching for problem-solving, teaching about problem-solving, and teaching mathematics through problem-solving. It requires engaging in tasks for which the solution methods are not eminent, making sense of problems and persevering in solving them by exhibiting processes, strategies, appropriate attitude, and adequate exposure. Teachers play important roles in helping students acquire competency in problem-solving; thus, they are expected to be good problem-solvers and have proper conceptions of problem-solving. Studies show that teachers’ conceptions influence their decisions about what to teach and how to teach. Therefore, how teachers view their roles in teaching problem-solving will depend on their pedagogical conceptions of problem-solving. If teaching problem-solving is a major component of secondary school mathematics instruction, as recommended by researchers and mathematics educators, then it is necessary to establish teachers’ conceptions, what they do, and how they approach problem-solving. This study is designed to determine secondary school teachers’ conceptions regarding mathematical problem solving, its current situation, how teachers’ conceptions relate to their demographics, as well as the interaction patterns in the mathematics classroom. There have been many studies of mathematics problem solving, some of which addressed teachers’ conceptions using single-method approaches, thereby presenting only limited views of this important phenomenon. To address the problem more holistically, this study adopted an integrated mixed methods approach which involved a quantitative survey, qualitative analysis of open-ended responses, and ethnographic observations of teachers in class. Data for the analysis came from a random sample of 327 secondary school mathematics teachers in two Nigerian states - Anambra State and Enugu State who completed a 45-item questionnaire. Ten of the items elicited demographic information, 11 items were open-ended questions, and 25 items were Likert-type questions. Of the 327 teachers who responded to the questionnaires, 37 were randomly selected and observed in their classes. Data analysis using ANOVA, t-tests, chi-square tests, and open coding showed that the teachers had different conceptions about problem-solving, which fall into three main themes: practice on exercises and word application problems, a process of solving mathematical problems, and a way of teaching mathematics. Teachers reported that no period is set aside for problem-solving; typically, teachers solve problems on the board, teach problem-solving strategies, and allow students time to struggle with problems on their own. The result shows a significant difference between male and female teachers’ conception of problems solving, a significant relationship among teachers’ conceptions and academic qualifications, and teachers who have spent ten years or more teaching mathematics were significantly different from the group with seven to nine years of experience in terms of their conceptions of problem-solving.Keywords: conceptions, education, mathematics, problem solving, teacher
Procedia PDF Downloads 76402 Characteristics of Middle Grade Students' Solution Strategies While Reasoning the Correctness of the Statements Related to Numbers
Authors: Ayşegül Çabuk, Mine Işıksal
Abstract:
Mathematics is a sense-making activity so that it requires meaningful learning. Hence based on this idea, meaningful mathematical connections are necessary to learn mathematics. At that point, the major question has become that which educational methods can provide opportunities to provide mathematical connections and to understand mathematics. The amalgam of reasoning and proof can be the one of the methods that creates opportunities to learn mathematics in a meaningful way. However, even if reasoning and proof should be included from prekindergarten to grade 12, studies in literature generally include secondary school students and pre-service mathematics teachers. With the light of the idea that the amalgam of reasoning and proof has significant effect on middle school students' mathematical learning, this study aims to investigate middle grade students' tendencies while reasoning the correctness of statements related to numbers. The sample included 272 middle grade students, specifically 69 of them were sixth grade students (25.4%), 101 of them were seventh grade students (37.1%) and 102 of them were eighth grade students (37.5%). Data was gathered through an achievement test including 2 essay types of problems about algebra. The answers of two items were analyzed both quantitatively and qualitatively in terms of students' solutions strategies while reasoning the correctness of the statements. Similar on the findings in the literature, most of the students, in all grade levels, used numerical examples to judge the statements. Moreover the results also showed that the majority of these students appear to believe that providing one or more selected examples is sufficient to show the correctness of the statement. Hence based on the findings of the study, even students in earlier ages have proving and reasoning abilities their reasoning's generally based on the empirical evidences. Therefore, it is suggested that examples and example-based reasoning can be a fundamental role on to generate systematical reasoning and proof insight in earlier ages.Keywords: reasoning, mathematics learning, middle grade students
Procedia PDF Downloads 420401 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 75400 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions
Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu
Abstract:
Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge
Procedia PDF Downloads 482399 Awakeness, Awareness and Learning Mathematics for Arab Students: A Pilot Study
Authors: S. Rawashdi, D. Bshouty
Abstract:
This paper aimed at discussing how to urge middle and high school Arab students in Israel to be aware of the importance of and investing in learning mathematics. In the first phase of the study, three questionnaires were passed to two nine-grade classes, one on Awareness, one on Awakeness and one on Learning. One of the two classes was an outstanding class from a public school (PUBS) of 31 students, and the other a heterogeneous class from a private school (PRIS) with 31 students. The Learning questionnaire which was administrated to the Awareness and Awareness topics was passed to PRIS and the Awareness and Awareness Questionnaires were passed to the PUBS class After two months we passed the post-questionnaire to both classes to validate the long-term impact of the study. The findings of the study show that awakeness and awareness processes have an effect on the math learning process, on its context in students' daily lives and their growing interest in learning math.Keywords: awakeness, awareness, learning mathematics, pupils
Procedia PDF Downloads 138398 Use of Mobile Phone Applications in Teaching Precalculus
Authors: Jay-R. Hosana Leonidas, Jayson A. Lucilo
Abstract:
The K-12 Curriculum in the Philippines shed light to mathematics education as it recognizes the use of smartphones/mobile phones as appropriate tools necessary in teaching mathematics. However, there were limited pieces of evidence on the use of these devices in teaching and learning process. This descriptive study developed lessons integrating the use of mobile phone applications with basis on low-level competencies of students in Precalculus and determined its effects on students’ conceptual understanding, procedural skills, and attitudes towards Precalculus. Employing Bring Your Own Device (BYOD) scheme in the study, lessons developed were conducted among Grade 11 Science, Technology, Engineering, and Mathematics (STEM) students at Central Bicol State University of Agriculture for the academic year 2018-2019. This study found that there is a significant difference between the competency levels of students along conceptual understanding and procedural skills prior to and after the conduct of lessons developed. Also, it disclosed that the use of mobile phone applications had positive effects on students’ attitudes towards Precalculus. Thus, the use of mobile phone applications in teaching Precalculus can enrich students’ understanding of concepts and procedural skills (solving and graphing skills) and can increase students’ motivation, self-confidence, and enjoyment in dealing with Precalculus.Keywords: bring your own device, mathematics education, mobile phone applications, senior high school
Procedia PDF Downloads 163397 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management
Authors: A. Giannakopoulos, S. B. Buckley
Abstract:
Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.Keywords: critical thinking, knowledge management, mathematics, problem solving
Procedia PDF Downloads 596396 Effectiveness of Geogebra Training Activities through Teams for Junior High School Teachers
Authors: Idha Novianti, Suci Nurhayati, Puryati, Elang Krisnadi
Abstract:
Community service activities are activities of the academic community in practicing and cultivating science, knowledge, and technology to advance the general welfare and educate the nation's life as described in the Higher Education Law. Training activities on the use of GeoGebra software are an option because GeoGebra software is software that is easy to operate and complete in the presentation of graphic design. The training activity was held for 3 hours online via teams and 3 hours offline. Involving 15 junior high school mathematics teachers located around south Tangerang. As a result, all teachers were satisfied with the activity, and they had additional new knowledge and skills to teach mathematics in the topic of geometry and algebra. The existence of new knowledge made the participants increase their confidence in developing mathematical science for students at school.Keywords: geogebra, Ms. teams, junior high school teacher, mathematics
Procedia PDF Downloads 115395 From Equations to Structures: Linking Abstract Algebra and High-School Algebra for Secondary School Teachers
Authors: J. Shamash
Abstract:
The high-school curriculum in algebra deals mainly with the solution of different types of equations. However, modern algebra has a completely different viewpoint and is concerned with algebraic structures and operations. A question then arises: What might be the relevance and contribution of an abstract algebra course for developing expertise and mathematical perspective in secondary school mathematics instruction? This is the focus of this paper. The course Algebra: From Equations to Structures is a carefully designed abstract algebra course for Israeli secondary school mathematics teachers. The course provides an introduction to algebraic structures and modern abstract algebra, and links abstract algebra to the high-school curriculum in algebra. It follows the historical attempts of mathematicians to solve polynomial equations of higher degrees, attempts which resulted in the development of group theory and field theory by Galois and Abel. In other words, algebraic structures grew out of a need to solve certain problems, and proved to be a much more fruitful way of viewing them. This theorems in both group theory and field theory. Along the historical ‘journey’, many other major results in algebra in the past 150 years are introduced, and recent directions that current research in algebra is taking are highlighted. This course is part of a unique master’s program – the Rothschild-Weizmann Program – offered by the Weizmann Institute of Science, especially designed for practicing Israeli secondary school teachers. A major component of the program comprises mathematical studies tailored for the students at the program. The rationale and structure of the course Algebra: From Equations to Structures are described, and its relevance to teaching school algebra is examined by analyzing three kinds of data sources. The first are position papers written by the participating teachers regarding the relevance of advanced mathematics studies to expertise in classroom instruction. The second data source are didactic materials designed by the participating teachers in which they connected the mathematics learned in the mathematics courses to the school curriculum and teaching. The third date source are final projects carried out by the teachers based on material learned in the course.Keywords: abstract algebra , linking abstract algebra and school mathematics, school algebra, secondary school mathematics, teacher professional development
Procedia PDF Downloads 146394 First-Year Undergraduate Students' Dilemma with Kinematics Graphs
Authors: Itumeleng Phage
Abstract:
Students’ comprehension of graphs may be affected by the characteristics of the discipline in which the graph is used, the type of the task as well as the background of the students who are the readers or interpreters of the graph. This research study investigated these aspects of the graph comprehension of 152 first-year undergraduate physics students by comparing their responses to corresponding tasks in the mathematics and physics disciplines. The discipline characteristics were analysed for four task-related constructs namely coordinates, representations, area and slope. Students’ responses to corresponding visual decoding and judgement tasks set in mathematics and kinematics contexts were statistically compared. The effects of the participants’ gender, year of school completion and study course were determined as reader characteristics. The results of the empirical study indicated that participants generally transferred their mathematics knowledge on coordinates and representation of straight line graphs to the physics contexts, but not in the cases of parabolic and hyperbolic functions or area under graphs. Insufficient understanding of the slope concept contributed to weak performances on this construct in both mathematics and physics contexts. Discipline characteristics seem to play a vital role in students’ understanding, while reader characteristics had insignificant to medium effects on their responses.Keywords: kinematics graph, discipline characteristics, constructs, coordinates, representations, area and slope
Procedia PDF Downloads 260393 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations
Authors: Meziane Belkacem
Abstract:
We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics.Keywords: Physics, optics, nonlinear dynamics, chaos
Procedia PDF Downloads 156392 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning
Authors: Zhanna Dedovets
Abstract:
Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.
Procedia PDF Downloads 46391 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers
Authors: R. M. Kashim
Abstract:
The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.Keywords: conceptual knowledge, primary school teachers, procedural knowledge, rational numbers
Procedia PDF Downloads 328390 [Keynote Speech]: Guiding Teachers to Make Lessons Relevant, Appealing, and Personal (RAP) for Academically-Low-Achieving Students in STEM Subjects
Authors: Nazir Amir
Abstract:
Teaching approaches to present science and mathematics content amongst academically-low-achieving students may need to be different than approaches that are adopted for the more academically-inclined students, primarily due to the different learning needs and learning styles of these students. In crafting out lessons to motivate and engage these students, teachers need to consider the backgrounds of these students and have a good understanding of their interests so that lessons can be presented in ways that appeal to them, and made relevant not just to the world around them, but also to their personal experiences. This presentation highlights how the author worked with a Professional Learning Community (PLC) of teachers in crafting out fun and feasible classroom teaching approaches to present science and mathematics content in ways that are made Relevant, Appealing, and Personal (RAP) to groups of academically-low-achieving students in Singapore. Feedback from the students and observations from their work suggest that they were engaged through the RAP-modes of instruction, and were able to appreciate the role of science and mathematics through a variety of low-cost design-based STEM (Science, Technology, Engineering, and Mathematics) activities. Such results imply that teachers teaching academically-low-achieving students, and those in under-resourced communities, could consider infusing RAP-infused instructions into their lessons in getting students develop positive attitudes towards STEM subjects.Keywords: STEM Education, STEAM Education, Curriculum Instruction, Academically At-Risk Students, Singapore
Procedia PDF Downloads 304389 Improvement of Camera Calibration Based on the Relationship between Focal Length and Aberration Coefficient
Authors: Guorong Sui, Xingwei Jia, Chenhui Yin, Xiumin Gao
Abstract:
In the processing of camera-based high precision and non-contact measurement, the geometric-optical aberration is always inevitably disturbing the measuring system. Moreover, the aberration is different with the different focal length, which will increase the difficulties of the system’s calibration. Therefore, to understand the relationship between the focal length as a function of aberration properties is a very important issue to the calibration of the measuring systems. In this study, we propose a new mathematics model, which is based on the plane calibration method by Zhang Zhengyou, and establish a relationship between the focal length and aberration coefficient. By using the mathematics model and carefully modified compensation templates, the calibration precision of the system can be dramatically improved. The experiment results show that the relative error is less than 1%. It is important for optoelectronic imaging systems that apply to measure, track and position by changing the camera’s focal length.Keywords: camera calibration, aberration coefficient, vision measurement, focal length, mathematics model
Procedia PDF Downloads 364388 An Exploratory Case Study of Pre-Service Teachers' Learning to Teach Mathematics to Culturally Diverse Students through a Community-Based After-School Field Experience
Authors: Eugenia Vomvoridi-Ivanovic
Abstract:
It is broadly assumed that participation in field experiences will help pre-service teachers (PSTs) bridge theory to practice. However, this is often not the case since PSTs who are placed in classrooms with large numbers of students from diverse linguistic, cultural, racial, and ethnic backgrounds (culturally diverse students (CDS)) usually observe ineffective mathematics teaching practices that are in contrast to those discussed in their teacher preparation program. Over the past decades, the educational research community has paid increasing attention to investigating out-of-school learning contexts and how participation in such contexts can contribute to the achievement of underrepresented groups in Science, Technology, Engineering, and mathematics (STEM) education and their expanded participation in STEM fields. In addition, several research studies have shown that students display different kinds of mathematical behaviors and discourse practices in out-of-school contexts than they do in the typical mathematics classroom since they draw from a variety of linguistic and cultural resources to negotiate meanings and participate in joint problem solving. However, almost no attention has been given to exploring these contexts as field experiences for pre-service mathematics teachers. The purpose of this study was to explore how participation in a community based after-school field experience promotes understanding of the content pedagogy concepts introduced in elementary mathematics methods courses, particularly as they apply to teaching mathematics to CDS. This study draws upon a situated, socio-cultural theory of teacher learning that centers on the concept of learning as situated social practice, which includes discourse, social interaction, and participation structures. Consistent with exploratory case study methodology, qualitative methods were employed to investigate how a cohort of twelve participating pre-service teacher's approach to pedagogy and their conversations around teaching and learning mathematics to CDS evolved through their participation in the after-school field experience, and how they connected the content discussed in their mathematics methods course with their interactions with the CDS in the after-school. Data were collected over a period of one academic year from the following sources: (a) audio recordings of the PSTs' interactions with the students during the after-school sessions, (b) PSTs' after-school field-notes, (c) audio-recordings of weekly methods course meetings, and (d) other document data (e.g., PST and student generated artifacts, PSTs' written course assignments). The findings of this study reveal that the PSTs benefitted greatly through their participation in the after-school field experience. Specifically, after-school participation promoted a deeper understanding of the content pedagogy concepts introduced in the mathematics methods course and gained a greater appreciation for how students learn mathematics with understanding. Further, even though many of PSTs' assumptions about the mathematical abilities of CDS were challenged and PSTs began to view CDSs' cultural and linguistic backgrounds as resources (rather than obstacles) for learning, some PSTs still held negative stereotypes about CDS and teaching and learning mathematics to CDS in particular. Insights gained through this study contribute to a better understanding of how informal mathematics learning contexts may provide a valuable context for pre-service teacher's learning to teach mathematics to CDS.Keywords: after-school mathematics program, pre-service mathematical education of teachers, qualitative methods, situated socio-cultural theory, teaching culturally diverse students
Procedia PDF Downloads 130387 Effect of Cooperative Learning Strategy on Mathematics Achievement and Retention of Senior Secondary School Students of Different Ability Levels in Taraba State, Nigeria
Authors: Onesimus Bulus Shiaki
Abstract:
The study investigated the effect of cooperative learning strategy on mathematics achievement and retention among senior secondary school students of different abilities in Taraba State Nigeria. Cooperative learning strategy could hopefully contribute to students’ achievement which will spur the teachers to develop strategies for better learning. The quasi-experimental of pretest, posttest and control group design was adopted in this study. A sample of one hundred and sixty-four (164) Senior Secondary Two (SS2) students were selected from a population of twelve thousand, eight hundred and seventy-three (12,873) SS2 Students in Taraba State. Two schools with equivalent mean scores in the pre-test were randomly assigned to experimental and control groups. The experimental group students were stratified according to ability levels of low, medium and high. The experimental group was guided by the research assistants using the cooperative learning instructional package. After six weeks post-test was administered to the two groups while the retention test was administered two weeks after the post-test. The researcher developed a 50-item Mathematics Achievement Test (MAT) which was validated by experts obtaining the reliability coefficient of 0.87. Mean scores and standard deviations were used to answer the research questions while the Analysis of Co-variance (ANCOVA) was used to test the hypotheses. Major findings from the statistical analysis showed that cooperative learning strategy has a significant effect on the mean achievement of students as well as retention among students of high, medium and low ability in mathematics. However, cooperative learning strategy has no effect on the interaction of ability level and retention. Based on the results obtained, it was therefore recommended that the adoption of the use of cooperative learning strategy in the teaching and learning of mathematics in senior secondary schools be initiated, maintained and sustained for the benefit of senior secondary school students in Taraba State. Periodic Government sponsored in-service training in form of long vacation training programme, workshops, conferences and seminars on the nature, scope, and use of cooperative learning strategy should be organized for senior secondary school mathematics teachers in Taraba state.Keywords: ability level, cooperative learning, mathematics achievement, retention
Procedia PDF Downloads 160386 Jointly Learning Python Programming and Analytic Geometry
Authors: Cristina-Maria Păcurar
Abstract:
The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.Keywords: analytic geometry, conics, python, quadrics
Procedia PDF Downloads 292385 Computational Thinking Based Coding Environment for Coding and Free Semester Mathematics Education in Korea
Authors: Han Hyuk Cho, Hanik Jo
Abstract:
In recent years, coding education has been globally emphasized, and the Free Semester System and coding education were introduced to the public schools from the beginning of 2016 and 2018 respectively in Korea. With the introduction of the Free Semester System and the rising demand of Computational Thinking (CT) capacity, this paper aims to design ‘Coding Environment’ and Minecraft-like Turtlecraft in which learners can design and construct mathematical objects through mathematical symbolic expressions. Students can transfer the constructed mathematical objects to the Turtlecraft environment (open-source codingmath website), and also can print them out through 3D printers. Furthermore, we design learnable mathematics and coding curriculum by representing the figurate numbers and patterns in terms of executable expression in the coding context and connecting them to algebraic symbols, which will allow students to experience mathematical patterns and symbolic coding expressions.Keywords: coding education, computational thinking, mathematics education, TurtleMAL and Turtlecraft
Procedia PDF Downloads 206384 Pedagogical Variation with Computers in Mathematics Classrooms: A Cultural Historical Activity Theory Analysis
Authors: Joanne Hardman
Abstract:
South Africa’s crisis in mathematics attainment is well documented. To meet the need to develop students’ mathematical performance in schools the government has launched various initiatives using computers to impact on mathematical attainment. While it is clear that computers can change pedagogical practices, there is a dearth of qualitative studies indicating exactly how pedagogy is transformed with Information Communication Technologies (ICTs) in a teaching activity. Consequently, this paper addresses the following question: how, along which dimensions in an activity, does pedagogy alter with the use of computer drill and practice software in four disadvantaged grade 6 mathematics classrooms in the Western Cape province of South Africa? The paper draws on Cultural Historical Activity Theory (CHAT) to develop a view of pedagogy as socially situated. Four ideal pedagogical types are identified: Reinforcement pedagogy, which has the reinforcement of specialised knowledge as its object; Collaborative pedagogy, which has the development of metacognitive engagement with specialised knowledge as its object; Directive pedagogy, which has the development of technical task skills as its object, and finally, Defensive pedagogy, which has student regulation as its object. Face-to-face lessons were characterised as predominantly Reinforcement and Collaborative pedagogy and most computer lessons were characterised as mainly either Defensive or Directive.Keywords: computers, cultural historical activity theory, mathematics, pedagogy
Procedia PDF Downloads 281383 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania
Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga
Abstract:
Sub-Saharan Africa is described as the second fastest growing mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying various bills such as water, TV, and electricity. However, the potential of using mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS quizzes questions that were used to assess mastery of the subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of science and mathematics subjects. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. The results showed that chemistry and biology had better performance compared to mathematics and physics. Teachers reported some challenges that led to poor performance, invalid answers, and non-responses and they are presented. This research has several practical implications for those who are implementing or planning to use mobile phones for teaching and learning especially in rural secondary schools in sub-Saharan Africa.Keywords: mobile learning, elearning, educational technolgies, SMS, secondary education, assessment
Procedia PDF Downloads 283382 Why and When to Teach Definitions: Necessary and Unnecessary Discontinuities Resulting from the Definition of Mathematical Concepts
Authors: Josephine Shamash, Stuart Smith
Abstract:
We examine reasons for introducing definitions in teaching mathematics in a number of different cases. We try to determine if, where, and when to provide a definition, and which definition to choose. We characterize different types of definitions and the different purposes we may have for formulating them, and detail examples of each type. Giving a definition at a certain stage can sometimes be detrimental to the development of the concept image. In such a case, it is advisable to delay the precise definition to a later stage. We describe two models, the 'successive approximation model', and the 'model of the extending definition' that fit such situations. Detailed examples that fit the different models are given based on material taken from a number of textbooks, and analysis of the way the concept is introduced, and where and how its definition is given. Our conclusions, based on this analysis, is that some of the definitions given may cause discontinuities in the learning sequence and constitute obstacles and unnecessary cognitive conflicts in the formation of the concept definition. However, in other cases, the discontinuity in passing from definition to definition actually serves a didactic purpose, is unavoidable for the mathematical evolution of the concept image, and is essential for students to deepen their understanding.Keywords: concept image, mathematical definitions, mathematics education, mathematics teaching
Procedia PDF Downloads 129381 Investigating Mathematical Knowledge of Teaching for Secondary Preservice Teachers in Papua New Guinea Based on Probabilities
Authors: Murray Olowa
Abstract:
This article examines the studies investigating the Mathematical Knowledge for Teaching (MKT) of secondary preservice teachers in Papua New Guinea based on probabilities. This research was conducted due to the continuous issues faced in the country in both primary and secondary education, like changes in curriculum, emphasis on mathematics and science education, and a decline in mathematics performance. Moreover, the mathematics curriculum doesn’t capture Pedagogical Content Knowledge (PCK) or Subject Matter Knowledge (SMK). The two main domains that have been identified are SMK and PCK, which have been further sub-divided into Common Content Knowledge (CCK), Specialised Content Knowledge (SCK) and Horizon Content Knowledge (HCK), and Knowledge of Content and Students (KCS), Knowledge of Content and Teaching (KCT) and Knowledge of Content and Curriculum (KCC), respectively. The data collected from 15-_year-_ ones and 15-_year-_fours conducted at St Peter Chanel Secondary Teachers College revealed that there is no significant difference in subject matter knowledge between year one and year four since the P-value of 0.22>0.05. However, it was revealed that year fours have higher pedagogical content knowledge than year one since P-value was 0.007<0.05. Finally, the research has proven that year fours have higher MKT than year one. This difference occurred due to final year preservice teachers’ hard work and engagement in mathematics curriculum and teaching practice.Keywords: mathematical knowledge for teaching, subject matter knowledge, pedagogical content knowledge, Papua New Guinea, preservice teachers, probability
Procedia PDF Downloads 105380 Online Augmented Reality Mathematics Application
Authors: Farhaz Amyn Rajabali, Collins Odour
Abstract:
Mathematics has been there for over 4000 years and has been one of the very first educational topics explored by human civilization. Throughout the years, it has become a complex study and has derived so many other subjects. With advancements in ICT, most of the computation in mathematics is done using powerful computers. In many different countries, the children in primary and secondary schools face difficulties in learning mathematics, and this has many reasons behind it, one being the students don’t engage much with the mathematical concepts hence failing to understand them deeply. The objective of this system is to help the students understand this mathematical concept interactively, which in return will encourage the love for learning and increase thorough understanding of many concepts. Research was conducted among a group of samples and about 50% of respondents replied that they had never used an augmented reality application before. This means that the chances for this system to be accepted in the market are high due to its innovative idea. Around 60% of people did recommend the use of this system to learn mathematics. The study also showed several challenges in an educational system, including but not limited to lack of resources which was chosen by 30% of respondents, the challenge to read from textbooks (34.6%) and how hard it is to visualize concepts (46.2%). The survey question asked what benefits the users see using augmented reality to learn mathematics. The responses that were picked the most were increased student engagement and using real-world examples to understand concepts, both being 65.4% and followed by easy access to learning material at 61.5%, and increased knowledge retention at 50%. This shows that there are plenty of issues with an education system that can be addressed by software applications; now that the newer generation is so enthusiastic about electronic devices, it can actually be used to deliver good knowledge and skills to the upcoming students and mitigate most of the challenges faced currently. The study concludes that the implementation of the system is a best practice for the educational system especially leveraging a new technology that has the ability to attract the attention of many young students and use it to deliver information. It will also give rise to awareness of new technology and on multiple ways it can be implemented. Addressing the educational sector in developing countries using information technology is an imperative task since these kids studying now is the future of the country and will use what they learn and understand during their childhood will help them to make decisions about their lives in the future which will not only affect them personally but also affect the whole society in general.Keywords: AR, mathematics, system development, augmented reality
Procedia PDF Downloads 83379 Teachers’ Reactions, Learning, Organizational Support, and Use of Lesson Study for Transformative Assessment
Authors: Melaku Takele Abate, Abbi Lemma Wodajo, Adula Bekele Hunde
Abstract:
This study aimed at exploring mathematics teachers' reactions, learning, school leaders’ support, and use of the Lesson Study for Transformative Assessment (LSforTA) program ideas in practice. The LSforTA program was new, and therefore, a local and grounded approach was needed to examine teachers’ knowledge and skills acquired using LSforTA. So, a design-based research approach was selected to evaluate and refine the LSforTA approach. The results showed that LSforTA increased teachers' knowledge and use of different levels of mathematics assessment tasks. The program positively affected teachers' practices of transformative assessment and enhanced their knowledge and skills in assessing students in a transformative way. The paper concludes how the LSforTA procedures were adapted in response to this evaluation and provides suggestions for future development and research.Keywords: classroom assessment, feedback practices, lesson study, mathematics, design-based research
Procedia PDF Downloads 55378 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements
Authors: Zhidong Zhang, Amanda Resendez
Abstract:
This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis
Procedia PDF Downloads 131377 Effect of Digital Technology on Students Interest, Achievement and Retention in Algebra in Abia State College of Education (Technical) Arochukwu
Authors: Stephen O. Amaraihu
Abstract:
This research investigated the effect of Computer Based Instruction on Students’ interest, achievement, and retention in Algebra in Abia State College of Education (Technical), Arochukwu. Three research questions and two hypotheses guided the study. Two instruments, Maths Achievement Test (MAT) and Maths Interest Inventory were employed, to test a population of three hundred and sixteen (316) NCE 1 students in algebra. It is expected that this research will lead to the improvement of students’ performance and enhance their interest and retention of basic algebraic concept. It was found that the majority of students in the college are not proficient in the use of ICT as a result of a lack of trained personnel. It was concluded that the state government was not ready to implement the usage of mathematics in Abia State College of Education. The paper recommends, amongst others, the employment of mathematics Lectures with competent skills in ICT and the training of lecturers of mathematics.Keywords: achievement, computer based instruction, interest, retention
Procedia PDF Downloads 209376 Augmented Reality Applications for Active Learning in Geometry: Enhancing Mathematical Intelligence at Phra Dabos School
Authors: Nattamon Srithammee, Ratchanikorn Chonchaiya
Abstract:
This study explores the impact of Augmented Reality (AR) technology on mathematics education, focusing on Area and Volume concepts at Phra Dabos School in Thailand. We developed a mobile augmented reality application to present these mathematical concepts innovatively. Using a mixed-methods approach, we assessed the knowledge of 79 students before and after using the application. The results showed a significant improvement in students' understanding of Area and Volume, with average test scores increasing from 3.70 to 9.04 (p < 0.001, Cohen's d = 2.05). Students also reported increased engagement and satisfaction. Our findings suggest that augmented reality technology can be a valuable tool in mathematics education, particularly for enhancing the understanding of abstract concepts like Area and Volume. This study contributes to research on educational technology in STEM education and provides insights for educators and educational technology developers.Keywords: augmented reality, mathematics education, area and volume, educational technology, STEM education
Procedia PDF Downloads 24375 Enhancing Secondary School Mathematics Retention with Blended Learning: Integrating Concepts for Improved Understanding
Authors: Felix Oromena Egara, Moeketsi Mosia
Abstract:
The study aimed to evaluate the impact of blended learning on mathematics retention among secondary school students. Conducted in the Isoko North Local Government Area of Delta State, Nigeria, the research involved 1,235 senior class one (SS 1) students. Employing a non-equivalent control group pre-test-post-test quasi-experimental design, a sample of 70 students was selected from two secondary schools with ICT facilities through purposive sampling. Random allocation of students into experimental and control groups was achieved through balloting within each selected school. The investigation included three assessment points: pre-Mathematics Achievement Test (MAT), post-MAT, and post-post-MAT (retention), administered systematically by the researchers. Data collection utilized the established MAT instrument, which demonstrated a high reliability score of 0.86. Statistical analysis was conducted using the Statistical Package for Social Sciences (SPSS) version 28, with mean and standard deviation addressing study questions and analysis of covariance scrutinizing hypotheses at a significance level of .05. Results revealed significantly greater improvements in mathematics retention scores among students exposed to blended learning compared to those instructed through conventional methods. Moreover, noticeable differences in mean retention scores were observed, with male students in the blended learning group exhibiting notably higher performance. Based on these findings, recommendations were made, advocating for mathematics educators to integrate blended learning, particularly in geometry teaching, to enhance students’ retention of mathematical concepts.Keywords: blended learning, flipped classroom model, secondary school students, station rotation model
Procedia PDF Downloads 42374 An Analysis of the Effectiveness of Computer-Assisted Instruction on Student Achievement in Differing Science Content Areas
Authors: Edwin Christmann, John Hicks
Abstract:
This meta-analysis compared the mathematics achievement of students who received either traditional instruction or traditional instruction supplemented with computer-assisted instruction (CAI). From the 27 conclusions, an overall mean effect size of 0.236 was calculated, indicating that, on average, students receiving traditional instruction supplemented with CAI attained higher mathematics achievement than did 59.48 percent of those receiving traditional instruction per se.Keywords: CAI, science, meta-analysis, traditional
Procedia PDF Downloads 169