Search results for: nonlinear filter generator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2584

Search results for: nonlinear filter generator

1144 Fragility Assessment for Torsionally Asymmetric Buildings in Plan

Authors: S. Feli, S. Tavousi Tafreshi, A. Ghasemi

Abstract:

The present paper aims at evaluating the response of three-dimensional buildings with in-plan stiffness irregularities that have been subjected to two-way excitation ground motion records simultaneously. This study is broadly-based fragility assessment with greater emphasis on structural response at in-plan flexible and stiff sides. To this end, three type of three-dimensional 5-story steel building structures with stiffness eccentricities, were subjected to extensive nonlinear incremental dynamic analyses (IDA) utilizing Ibarra-Krawinkler deterioration models. Fragility assessment was implemented for different configurations of braces to investigate the losses in buildings with center of resisting (CR) eccentricities.

Keywords: Ibarra-Krawinkler, fragility assessment, flexible and stiff side, center of resisting

Procedia PDF Downloads 205
1143 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications

Authors: Andrés Gomez-Casseres, Rubén Contreras

Abstract:

In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.

Keywords: average current control, boost converter, electrical tuning, energy harvesting

Procedia PDF Downloads 762
1142 Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Washwater

Authors: Syazwani Idrus, S. Charles J. Banks, Sonia Heaven

Abstract:

The study compared the performance of upflow anaerobic sludge blanket (UASB) reactors and anaerobic filters (AF) for the treatment of wheat straw washwater (WSW) which has a high concentration of Potassium ions. The trial was conducted at mesophilic temperatures (37 °C). The digesters were started up over a 48-day period using a synthetic wastewater feed and reached an organic loading rate (OLR) of 6 g COD L^-1 day^-1 with a specific methane production (SMP) of 0.333 L CH4 g^-1 COD. When the feed was switched to WSW it was not possible to maintain the same loading rate as the SMP in all reactors fell sharply to less than 0.1 L CH4 g^-1 COD, with the AF affected more than the UASB. On reducing the OLR to 3 g COD L^-1 day^-1 the reactors recovered to produce 0.21 L CH4 g^-1 CODadded and gave 82% COD removal. A discrepancy between the COD consumed and the methane produced could be accounted for through increased maintenance energy requirement of the microbial community for osmo-regulation as K+ was found to accumulate in the sludge and in the UASB reached a concentration of 4.5 mg K g^-1 wet weight of granules.

Keywords: anaerobic digestion, osmotic stress, chemical oxygen demand, specific methane production

Procedia PDF Downloads 655
1141 Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading

Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate

Abstract:

This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.

Keywords: limit state, shakedown analysis, homogenization, heterogeneous structure

Procedia PDF Downloads 341
1140 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers

Authors: Jayahar Sivasubramanian

Abstract:

Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.

Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet

Procedia PDF Downloads 183
1139 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions

Authors: M. Y. Malika, Farzana, Abdul Rehman

Abstract:

The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.

Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution

Procedia PDF Downloads 589
1138 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: optical soliton, soliton interaction, soliton switching, WDM

Procedia PDF Downloads 505
1137 Comparison of Concentration of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-Ray Fluorescence

Authors: Sungroul Kim, Yeonjin Kim

Abstract:

This study was conducted by comparing the concentrations of heavy metals analyzed from the same samples with three X-Ray fluorescence (XRF) spectrometer in three different global research institutions, including PAN (A Branch of Malvern Panalytical, Seoul, South Korea), RTI (Research Triangle Institute, NC, U.S.A), and aerosol laboratory in Harvard University, Boston, U.S.A. To achieve our research objectives, the indoor air filter samples were collected at homes (n=24) of adults or child asthmatics then analyzed in PAN followed by Harvard University and RTI consecutively. Descriptive statistics were conducted for data comparison as well as correlation and simple regression analysis using R version 4.0.3. As a result, detection rates of most heavy metals analyzed in three institutions were about 90%. Of the 25 elements commonly analyzed among those institutions, 16 elements showed an R² (coefficient of determination) of 0.7 or higher (10 components were 0.9 or higher). The findings of this study demonstrated that XRF was a useful device ensuring reproducibility and compatibility for measuring heavy metals in PM2.5 collected from indoor air of asthmatics’ home.

Keywords: heavy metals, indoor air quality, PM2.5, X-ray fluorescence

Procedia PDF Downloads 200
1136 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.

Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections

Procedia PDF Downloads 431
1135 Analysis of Epileptic Electroencephalogram Using Detrended Fluctuation and Recurrence Plots

Authors: Mrinalini Ranjan, Sudheesh Chethil

Abstract:

Epilepsy is a common neurological disorder characterised by the recurrence of seizures. Electroencephalogram (EEG) signals are complex biomedical signals which exhibit nonlinear and nonstationary behavior. We use two methods 1) Detrended Fluctuation Analysis (DFA) and 2) Recurrence Plots (RP) to capture this complex behavior of EEG signals. DFA considers fluctuation from local linear trends. Scale invariance of these signals is well captured in the multifractal characterisation using detrended fluctuation analysis (DFA). Analysis of long-range correlations is vital for understanding the dynamics of EEG signals. Correlation properties in the EEG signal are quantified by the calculation of a scaling exponent. We report the existence of two scaling behaviours in the epileptic EEG signals which quantify short and long-range correlations. To illustrate this, we perform DFA on extant ictal (seizure) and interictal (seizure free) datasets of different patients in different channels. We compute the short term and long scaling exponents and report a decrease in short range scaling exponent during seizure as compared to pre-seizure and a subsequent increase during post-seizure period, while the long-term scaling exponent shows an increase during seizure activity. Our calculation of long-term scaling exponent yields a value between 0.5 and 1, thus pointing to power law behaviour of long-range temporal correlations (LRTC). We perform this analysis for multiple channels and report similar behaviour. We find an increase in the long-term scaling exponent during seizure in all channels, which we attribute to an increase in persistent LRTC during seizure. The magnitude of the scaling exponent and its distribution in different channels can help in better identification of areas in brain most affected during seizure activity. The nature of epileptic seizures varies from patient-to-patient. To illustrate this, we report an increase in long-term scaling exponent for some patients which is also complemented by the recurrence plots (RP). RP is a graph that shows the time index of recurrence of a dynamical state. We perform Recurrence Quantitative analysis (RQA) and calculate RQA parameters like diagonal length, entropy, recurrence, determinism, etc. for ictal and interictal datasets. We find that the RQA parameters increase during seizure activity, indicating a transition. We observe that RQA parameters are higher during seizure period as compared to post seizure values, whereas for some patients post seizure values exceeded those during seizure. We attribute this to varying nature of seizure in different patients indicating a different route or mechanism during the transition. Our results can help in better understanding of the characterisation of epileptic EEG signals from a nonlinear analysis.

Keywords: detrended fluctuation, epilepsy, long range correlations, recurrence plots

Procedia PDF Downloads 176
1134 Control of Underactuated Biped Robots Using Event Based Fuzzy Partial Feedback Linearization

Authors: Omid Heydarnia, Akbar Allahverdizadeh, Behnam Dadashzadeh, M. R. Sayyed Noorani

Abstract:

Underactuated biped robots control is one of the interesting topics in robotics. The main difficulties are its highly nonlinear dynamics, open-loop instability, and discrete event at the end of the gait. One of the methods to control underactuated systems is the partial feedback linearization, but it is not robust against uncertainties and disturbances that restrict its performance to control biped walking and running. In this paper, fuzzy partial feedback linearization is presented to overcome its drawback. Numerical simulations verify the effectiveness of the proposed method to generate stable and robust biped walking and running gaits.

Keywords: underactuated system, biped robot, fuzzy control, partial feedback linearization

Procedia PDF Downloads 350
1133 In vitro and in vivo Effects of 'Sonneratia alba' Extract against the Fish Pathogen 'Aphanomyces invadans'

Authors: S. F. Afzali, W. L. Wong

Abstract:

The epizootic ulcerative syndrome (EUS) causes by the oomycete fungus, Aphanomyces invadans; known to be one of the infectious fish diseases for farmed and wild fishes in fresh and brackish-water from the Asia-pacific region, America and Africa. Although, EUS had been documented by the Office International des Epizooties (OIE) since 1995, hitherto, there is neither standard chemical agents that can be used for successful treatment of this destructive infection in the time of outbreak; nor available vaccine for prevention. Plant-based remedies in controlling fish diseases are gaining much attention recently as an alternative to chemical treatments, which possess negative effects to the environment and human. In present study, Sonneratia alba, a mangrove plant belongs to the Sonneratiaceae family, was screened in vitro and in vivo for its antifungal activity against A. invadans mycelium growth and its effects on fish innate immune system and disease resistant. The in vitro tests was performed using the disc diffusion methods with measurements of minimum inhibitory concentration (MIC) and inhibition zone. For in vivo study, the S. alba extract supplemented diets were administrated at 0.0, 1.0%, 3.0%, and 5.0% on healthy goldfish, Carassius auratus, which challenged with A. invadans zoospores (100 spores/ml). To compare the significant differences in the hematological and immunological parameters obtained from the experiments, the data were analysed using the SPSS. The methanol extract of S. alba effectively inhibited the mycelial growth of A. invadans at a minimum concentration of 1000 ppm for agar and filter paper diffusion experiments. In the agar diffusion test, 500 ppm of the extract inhibited the fungus mycelial growth up to 96 hours after exposure. The mycelial growth from the edge of the pre-inoculated A. invadans agar discs treated with S. alba extracts at concentrations of 100, 500 and 1000 ppm were 15, 8 and 0 mm respectively. The results of the filter paper disc test showed that the S. alba extract at its minimal inhibitory concentration (1000 ppm) has similar qualitative inhibitory effect as malachite green at 1 ppm and formalin at 250 ppm. According to the in vivo tests findings, in the infected fish fed with 3.0% and 5.0% supplementation diet, the numbers of white blood cell and myeloperoxidase activity significantly increased after the second week of treatment. Whilst the numbers of red blood cell significantly decreased in the infected fish fed with 0.0 and 1.0% supplementation diet. After the third week of feeding, significant increases in the total protein, albumin level, lysozyme activity were recorded in the infected fish fed with 3.0% and 5.0% supplementation diet. Also, the enriched diets increased the survival rate as compared to the untreated group that suffered from 90% mortality. The present study indicated that S. alba extract may inhibit the mycelial growth of A. invadans effectively, suggesting an alternative to other chemotherapeutic agents, which brought much environmental and health concerns to the public, for EUS treatment.

Keywords: fungal pathogen, goldfish, organic extract, treatment

Procedia PDF Downloads 288
1132 Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area

Authors: O. Arikan, C. Kocatepe, G. Ucar, Y. Hacialiefendioglu

Abstract:

In this paper, influence of harmonics on medium voltage distribution system of Bogazici Electricity Distribution Inc. (BEDAS) which takes place at Istanbul/Turkey is investigated. A ring network consisting of residential loads is taken into account for this study. Real system parameters and measurement results are used for simulations. Also, probable working conditions of the system are analyzed for %50, %75 and %100 loading of transformers with similar harmonic contents. Results of the study are exhibited the influence of nonlinear loads on %THDV, P.F. and technical losses of the medium voltage distribution system.

Keywords: distribution system, harmonic, technical losses, power factor, total harmonic distortion, residential load, medium voltage

Procedia PDF Downloads 573
1131 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations

Authors: M. Abdallah

Abstract:

Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.

Keywords: deep excavation, ground anchors, interaction soil-structure, struts

Procedia PDF Downloads 414
1130 Path Planning for Collision Detection between two Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: path planning, collision detection, convex polyhedron, neural network

Procedia PDF Downloads 438
1129 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression

Procedia PDF Downloads 416
1128 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S

Authors: Mohammad Javad Mollakazemi, Farhad Asadi

Abstract:

In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.

Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, safety margin

Procedia PDF Downloads 443
1127 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications

Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut

Abstract:

The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.

Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy

Procedia PDF Downloads 156
1126 Finite Element Analysis of a Glass Facades Supported by Pre-Tensioned Cable Trusses

Authors: Khair Al-Deen Bsisu, Osama Mahmoud Abuzeid

Abstract:

Significant technological advances have been achieved in the design and building construction of steel and glass in the last two decades. The metal glass support frame has been replaced by further sophisticated technological solutions, for example, the point fixed glazing systems. The minimization of the visual mass has reached extensive possibilities through the evolution of technology in glass production and the better understanding of the structural potential of glass itself, the technological development of bolted fixings, the introduction of the glazing support attachments of the glass suspension systems and the use for structural stabilization of cables that reduce to a minimum the amount of metal used. The variability of solutions of tension structures, allied to the difficulties related to geometric and material non-linear behavior, usually overrules the use of analytical solutions, letting numerical analysis as the only general approach to the design and analysis of tension structures. With the characteristics of low stiffness, lightweight, and small damping, tension structures are obviously geometrically nonlinear. In fact, analysis of cable truss is not only one of the most difficult nonlinear analyses because the analysis path may have rigid-body modes, but also a time consuming procedure. Non-linear theory allowing for large deflections is used. The flexibility of supporting members was observed to influence the stresses in the pane considerably in some cases. No other class of architectural structural systems is as dependent upon the use of digital computers as are tensile structures. Besides complexity, the process of design and analysis of tension structures presents a series of specificities, which usually lead to the use of special purpose programs, instead of general purpose programs (GPPs), such as ANSYS. In a special purpose program, part of the design know how is embedded in program routines. It is very probable that this type of program will be the option of the final user, in design offices. GPPs offer a range of types of analyses and modeling options. Besides, traditional GPPs are constantly being tested by a large number of users, and are updated according to their actual demands. This work discusses the use of ANSYS for the analysis and design of tension structures, such as cable truss structures under wind and gravity loadings. A model to describe the glass panels working in coordination with the cable truss was proposed. Under the proposed model, a FEM model of the glass panels working in coordination with the cable truss was established.

Keywords: Glass Construction material, Facades, Finite Element, Pre-Tensioned Cable Truss

Procedia PDF Downloads 280
1125 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing

Procedia PDF Downloads 245
1124 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E. Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval

Procedia PDF Downloads 373
1123 Architectural Thinking in a Time of Climate Emergency

Authors: Manoj Parmar

Abstract:

The article uses reflexivity as a research method to investigate and propose an architectural theory plan for climate change. It hypothecates that to discuss or formulate discourse on "Architectural Thinking in a Time of Climate Emergency," firstly, we need to understand the modes of integration that enable architectural thinking with climate change. The study intends to study the various integration modes that have evolved historically and situate them in time. Subsequently, it analyses the integration pattern, challenges the existing model, and finds a way towards climate change as central to architectural thinking. The study is fundamental on-premises that ecology and climate change scholarship has consistently out lashed the asymmetrical and nonlinear knowledge and needs approaches for architecture that are less burden to climate change to people and minimize its impact on ecology.

Keywords: climate change, architectural theory, reflexivity, modernity

Procedia PDF Downloads 285
1122 Foggy Image Restoration Using Neural Network

Authors: Khader S. Al-Aidmat, Venus W. Samawi

Abstract:

Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.

Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration

Procedia PDF Downloads 382
1121 Mechanical Characteristics on Fatigue Crack Propagation in Aluminum Plate

Authors: A. Chellil, A. Nour, S. Lecheb , H. Mechakra, L. Addar, H. Kebir

Abstract:

This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems. Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.

Keywords: aluminum alloys, plate, crack, failure

Procedia PDF Downloads 428
1120 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance

Authors: Flora Babongo, Valerie Chavez

Abstract:

Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.

Keywords: causal inference, DAGs, BAMLSS, financial index

Procedia PDF Downloads 151
1119 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.

Keywords: indoor positioning system, wireless sensor networks, measurement delay

Procedia PDF Downloads 482
1118 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 290
1117 A New Approach to Interval Matrices and Applications

Authors: Obaid Algahtani

Abstract:

An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples.

Keywords: interval analysis, interval matrices, state space model, Kalman Filter

Procedia PDF Downloads 425
1116 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 81
1115 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power

Authors: Mohammadreza Heydariazad

Abstract:

Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.

Keywords: wind energy, generator, superconducting inductor, wind turbine power

Procedia PDF Downloads 328