Search results for: Privacy Preserving Data Publication (PPDP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26027

Search results for: Privacy Preserving Data Publication (PPDP)

24647 Imputation of Urban Movement Patterns Using Big Data

Authors: Eusebio Odiari, Mark Birkin, Susan Grant-Muller, Nicolas Malleson

Abstract:

Big data typically refers to consumer datasets revealing some detailed heterogeneity in human behavior, which if harnessed appropriately, could potentially revolutionize our understanding of the collective phenomena of the physical world. Inadvertent missing values skew these datasets and compromise the validity of the thesis. Here we discuss a conceptually consistent strategy for identifying other relevant datasets to combine with available big data, to plug the gaps and to create a rich requisite comprehensive dataset for subsequent analysis. Specifically, emphasis is on how these methodologies can for the first time enable the construction of more detailed pictures of passenger demand and drivers of mobility on the railways. These methodologies can predict the influence of changes within the network (like a change in time-table or impact of a new station), explain local phenomena outside the network (like rail-heading) and the other impacts of urban morphology. Our analysis also reveals that our new imputation data model provides for more equitable revenue sharing amongst network operators who manage different parts of the integrated UK railways.

Keywords: big-data, micro-simulation, mobility, ticketing-data, commuters, transport, synthetic, population

Procedia PDF Downloads 232
24646 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory

Authors: Xiaochen Mu

Abstract:

Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.

Keywords: data protection, property rights, intellectual property, Big data

Procedia PDF Downloads 45
24645 The Influence of Housing Choice Vouchers on the Private Rental Market

Authors: Randy D. Colon

Abstract:

Through a freedom of information request, data pertaining to Housing Choice Voucher (HCV) households has been obtained from the Chicago Housing Authority, including rent price and number of bedrooms per HCV household, community area, and zip code from 2013 to the first quarter of 2018. Similar data pertaining to the private rental market will be obtained through public records found through the United States Department of Housing and Urban Development. The datasets will be analyzed through statistical and mapping software to investigate the potential link between HCV households and distorted rent prices. Quantitative data will be supplemented by qualitative data to investigate the lived experience of Chicago residents. Qualitative data will be collected at community meetings in the Chicago Englewood neighborhood through participation in neighborhood meetings and informal interviews with residents and community leaders. The qualitative data will be used to gain insight on the lived experience of community leaders and residents of the Englewood neighborhood in relation to housing, the rental market, and HCV. While there is an abundance of quantitative data on this subject, this qualitative data is necessary to capture the lived experience of local residents effected by a changing rental market. This topic reflects concerns voiced by members of the Englewood community, and this study aims to keep the community relevant in its findings.

Keywords: Chicago, housing, housing choice voucher program, housing subsidies, rental market

Procedia PDF Downloads 123
24644 The Dynamic Metadata Schema in Neutron and Photon Communities: A Case Study of X-Ray Photon Correlation Spectroscopy

Authors: Amir Tosson, Mohammad Reza, Christian Gutt

Abstract:

Metadata stands at the forefront of advancing data management practices within research communities, with particular significance in the realms of neutron and photon scattering. This paper introduces a groundbreaking approach—dynamic metadata schema—within the context of X-ray Photon Correlation Spectroscopy (XPCS). XPCS, a potent technique unravelling nanoscale dynamic processes, serves as an illustrative use case to demonstrate how dynamic metadata can revolutionize data acquisition, sharing, and analysis workflows. This paper explores the challenges encountered by the neutron and photon communities in navigating intricate data landscapes and highlights the prowess of dynamic metadata in addressing these hurdles. Our proposed approach empowers researchers to tailor metadata definitions to the evolving demands of experiments, thereby facilitating streamlined data integration, traceability, and collaborative exploration. Through tangible examples from the XPCS domain, we showcase how embracing dynamic metadata standards bestows advantages, enhancing data reproducibility, interoperability, and the diffusion of knowledge. Ultimately, this paper underscores the transformative potential of dynamic metadata, heralding a paradigm shift in data management within the neutron and photon research communities.

Keywords: metadata, FAIR, data analysis, XPCS, IoT

Procedia PDF Downloads 67
24643 The Role of General Councils in the Supervision of the Organizational Performance of Higher Education Institutions

Authors: Rodrigo T. Lourenço, Margarida Mano

Abstract:

Higher Education Institutions (HEI), and other levels of Education, face important challenges. One of the most relevant one is the ability to adapt to a society that is changing over time, whilst guarantying levels of training that do not merely react to such changes. Thus, interacting with society, particularly with surrounding communities and key stakeholders, has become an essential requirement for the sustainability of these institutions. One of the formal mechanisms implemented in European educational institutions has been the design of organizational structures that include a top governance body sharing its constitution with both internal members, students and external members. Such frame holds the core mission of involving communities in the governance of educational institutions, assuming, both strategic decision-making functions, with the approval of the institutions’ strategic plans, and a supervision function, approved by activity reports. It also plays an essential role in the life of institutions by holding the responsibility of electing its top executives. In Portugal, it has been almost a decade since the publication of RJIES, the legal framework of Higher Education, such bodies being designated by General Councils. Thus, one may highlight that there has been a better understanding of the operative process of these bodies, as well as their added value to the education system. It has also been possible to analyse the extent to which their core mission has been fulfilled and to understand its growing relevance, particularly regarding the autonomy of institutions. This article aims to contribute to this theme by presenting the results of a study on the role of these bodies in the governance of Public Portuguese HEI, with a special focus on the supervisory competence of organizational performance. Through questionnaires made to board members and interviews with chairpersons of the bodies and top managers of the institutions, it was possible to conclude that there is a high concern with the connections to the external environment. However, regarding organizational performance and the role of the Council as a supervisor of that performance, the activity of the bodies has fallen short of what would be expected. Several reasons may be identified. It is important to emphasize the importance of the profile of the external members and the relationship between the organ’s standard functioning and the election of the head of the institution.

Keywords: governance, stakeholders, supervision, performance

Procedia PDF Downloads 180
24642 Factors Influencing the Uptake of Family Planning Services among Young People (18-24 Years) at Community Level in Rural Budaka District, Uganda

Authors: Mathew Nyashanu, George K. Kiggundu, Mandu S. Ekpenyong

Abstract:

There is an increased number of young people engaging in early sexual relationships worldwide. Furthermore, statistics for early pregnancy among young people have also increased, especially in low and middle-income countries. This has health implications for both the parents and the baby. High uptake in family planning contraception among young people can reduce early pregnancy and subsequent negative health outcomes on the young parents and the baby. This study was set to explore the factors influencing the uptake of family planning contraceptive services among young people (18-24 years) at a community level in rural Budaka district, Uganda. The study utilised an explorative qualitative approach. The study found out that religion, partner resistance; perceived loss of libido, perceived barren, long waiting time and distance from the health facility, lack of privacy/confidentiality, excessive menstrual bleeding, cancer, and fear of having disabled babies, limited the utilisation of family planning contraceptive services while contraception as HIV prevention and child spacing encouraged young people to use family planning contraceptive services. There is a need for a culturally orientated community-based contraceptive health promotion approach to increase the uptake of family planning contraception services among young people.

Keywords: Young people, Family Planning, Contraceptives, Black sub-Sahara African

Procedia PDF Downloads 142
24641 Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns

Authors: Jae Young Park, Hwansu Jung, Jong Tae Kim

Abstract:

Whether the data has been well parallelized is an important factor in the Solid-State-Drive (SSD) performance. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns.

Keywords: dynamic allocation, NAND flash based SSD, SSD parallelism, static allocation

Procedia PDF Downloads 343
24640 Investigating the Role of Community in Heritage Conservation through the Ladder of Citizen Participation Approach: Case Study, Port Said, Egypt

Authors: Sara S. Fouad, Omneya Messallam

Abstract:

Egypt has countless prestigious buildings and diversity of cultural heritage which are located in many cities. Most of the researchers, archaeologists, stakeholders and governmental bodies are paying more attention to the big cities such as Cairo and Alexandria, due to the country’s centralization nature. However, there are other historic cities that are grossly neglected and in need of emergency conservation. For instance, Port Said which is a former colonial city that was established in nineteenth century located at the edge of the northeast Egyptian coast between the Mediterranean Sea and the Suez Canal. This city is chosen because it presents one of the important Egyptian archaeological sites that archive Egyptian architecture of the 19th and 20th centuries. The historic urban fabric is divided into three main districts; the Arab, the European (Al-Afrang), and Port Fouad. The European district is selected to be the research case study as it has culture diversity, significant buildings, and includes the largest number of the listed heritage buildings in Port Said. Based on questionnaires and interviews, since 2003 several initiative trials have been taken by Alliance Francaise, the National Organization for Urban Harmony (NOUH), some Non-Governmental Organizations (NGOs), and few number of community residents to highlight the important city legacy and protect it from being demolished. Unfortunately, the limitation of their participation in decision-making policies is considered a crucial threat facing sustainable heritage conservation. Therefore, encouraging the local community to participate in their architecture heritage conservation would create a self-confident one, capable of making decisions for the city’s future development. This paper aims to investigate the role of the local inhabitants in protecting their buildings heritage through listing the community level of participations twice (2012 and 2018) in preserving their heritage based on the ladder citizen participation approach. Also, it is to encourage community participation in order to promote city architecture conservation, heritage management, and sustainable development. The methodology followed in this empirical research involves using several data assembly methods such as structural observations, questionnaires, interviews, and mental mapping. The questionnaire was distributed among 92 local inhabitants aged 18-60 years. However, the outset of this research at the beginning demonstrated the majority negative attitude, motivation, and confidence of the local inhabitants’ role to safeguard their architectural heritage. Over time, there was a change in the negative attitudes. Therefore, raising public awareness and encouraging community participation by providing them with a real opportunity to take part in the decision-making. This may lead to a positive relationship between the community residents and the built heritage, which is essential for promoting its preservation and sustainable development.

Keywords: buildings preservation, community participation, heritage conservation, local inhabitant, ladder of citizen participation

Procedia PDF Downloads 170
24639 Corporate Sustainability Practices in Asian Countries: Pattern of Disclosure and Impact on Financial Performance

Authors: Santi Gopal Maji, R. A. J. Syngkon

Abstract:

The changing attitude of the corporate enterprises from maximizing economic benefit to corporate sustainability after the publication of Brundtland Report has attracted the interest of researchers to investigate the sustainability practices of firms and its impact on financial performance. To enrich the empirical literature in Asian context, this study examines the disclosure pattern of corporate sustainability and the influence of sustainability reporting on financial performance of firms from four Asian countries (Japan, South Korea, India and Indonesia) that are publishing sustainability report continuously from 2009 to 2016. The study has used content analysis technique based on Global Reporting Framework (3 and 3.1) reporting framework to compute the disclosure score of corporate sustainability and its components. While dichotomous coding system has been employed to compute overall quantitative disclosure score, a four-point scale has been used to access the quality of the disclosure. For analysing the disclosure pattern of corporate sustainability, box plot has been used. Further, Pearson chi-square test has been used to examine whether there is any difference in the proportion of disclosure between the countries. Finally, quantile regression model has been employed to examine the influence of corporate sustainability reporting on the difference locations of the conditional distribution of firm performance. The findings of the study indicate that Japan has occupied first position in terms of disclosure of sustainability information followed by South Korea and India. In case of Indonesia, the quality of disclosure score is considerably less as compared to other three countries. Further, the gap between the quality and quantity of disclosure score is comparatively less in Japan and South Korea as compared to India and Indonesia. The same is evident in respect of the components of sustainability. The results of quantile regression indicate that a positive impact of corporate sustainability becomes stronger at upper quantiles in case of Japan and South Korea. But the study fails to extricate any definite pattern on the impact of corporate sustainability disclosure on the financial performance of firms from Indonesia and India.

Keywords: corporate sustainability, quality and quantity of disclosure, content analysis, quantile regression, Asian countries

Procedia PDF Downloads 199
24638 Typology of Fake News Dissemination Strategies in Social Networks in Social Events

Authors: Mohadese Oghbaee, Borna Firouzi

Abstract:

The emergence of the Internet and more specifically the formation of social media has provided the ground for paying attention to new types of content dissemination. In recent years, Social media users share information, communicate with others, and exchange opinions on social events in this space. Many of the information published in this space are suspicious and produced with the intention of deceiving others. These contents are often called "fake news". Fake news, by disrupting the circulation of the concept and similar concepts such as fake news with correct information and misleading public opinion, has the ability to endanger the security of countries and deprive the audience of the basic right of free access to real information; Competing governments, opposition elements, profit-seeking individuals and even competing organizations, knowing about this capacity, act to distort and overturn the facts in the virtual space of the target countries and communities on a large scale and influence public opinion towards their goals. This process of extensive de-truthing of the information space of the societies has created a wave of harm and worries all over the world. The formation of these concerns has led to the opening of a new path of research for the timely containment and reduction of the destructive effects of fake news on public opinion. In addition, the expansion of this phenomenon has the potential to create serious and important problems for societies, and its impact on events such as the 2016 American elections, Brexit, 2017 French elections, 2019 Indian elections, etc., has caused concerns and led to the adoption of approaches It has been dealt with. In recent years, a simple look at the growth trend of research in "Scopus" shows an increasing increase in research with the keyword "false information", which reached its peak in 2020, namely 524 cases, reached, while in 2015, only 30 scientific-research contents were published in this field. Considering that one of the capabilities of social media is to create a context for the dissemination of news and information, both true and false, in this article, the classification of strategies for spreading fake news in social networks was investigated in social events. To achieve this goal, thematic analysis research method was chosen. In this way, an extensive library study was first conducted in global sources. Then, an in-depth interview was conducted with 18 well-known specialists and experts in the field of news and media in Iran. These experts were selected by purposeful sampling. Then by analyzing the data using the theme analysis method, strategies were obtained; The strategies achieved so far (research is in progress) include unrealistically strengthening/weakening the speed and content of the event, stimulating psycho-media movements, targeting emotional audiences such as women, teenagers and young people, strengthening public hatred, calling the reaction legitimate/illegitimate. events, incitement to physical conflict, simplification of violent protests and targeted publication of images and interviews were introduced.

Keywords: fake news, social network, social events, thematic analysis

Procedia PDF Downloads 68
24637 Social Data Aggregator and Locator of Knowledge (STALK)

Authors: Rashmi Raghunandan, Sanjana Shankar, Rakshitha K. Bhat

Abstract:

Social media contributes a vast amount of data and information about individuals to the internet. This project will greatly reduce the need for unnecessary manual analysis of large and diverse social media profiles by filtering out and combining the useful information from various social media profiles, eliminating irrelevant data. It differs from the existing social media aggregators in that it does not provide a consolidated view of various profiles. Instead, it provides consolidated INFORMATION derived from the subject’s posts and other activities. It also allows analysis over multiple profiles and analytics based on several profiles. We strive to provide a query system to provide a natural language answer to questions when a user does not wish to go through the entire profile. The information provided can be filtered according to the different use cases it is used for.

Keywords: social network, analysis, Facebook, Linkedin, git, big data

Procedia PDF Downloads 446
24636 Data Integrity between Ministry of Education and Private Schools in the United Arab Emirates

Authors: Rima Shishakly, Mervyn Misajon

Abstract:

Education is similar to other businesses and industries. Achieving data integrity is essential in order to attain a significant supporting for all the stakeholders in the educational sector. Efficient data collect, flow, processing, storing and retrieving are vital in order to deliver successful solutions to the different stakeholders. Ministry of Education (MOE) in United Arab Emirates (UAE) has adopted ‘Education 2020’ a series of five-year plans designed to introduce advanced education management information systems. As part of this program, in 2010 MOE implemented Student Information Systems (SIS) to manage and monitor the students’ data and information flow between MOE and international private schools in UAE. This paper is going to discuss data integrity concerns between MOE, and private schools. The paper will clarify the data integrity issues and will indicate the challenges that face private schools in UAE.

Keywords: education management information systems (EMIS), student information system (SIS), United Arab Emirates (UAE), ministry of education (MOE), (KHDA) the knowledge and human development authority, Abu Dhabi educational counsel (ADEC)

Procedia PDF Downloads 227
24635 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 537
24634 Effects of Medication Reminder Innovation on Adherence and the Quality of Medicine

Authors: Suparpit von Bormann, Winai Sayorwan, Sirichai Channim, Sararat Rungruangkhanarak, Premchai Suksamran, Piyaporn Srisuk, Piyatida Phosri

Abstract:

The best medicine will not work if the patient does not take them. There are several methods developed to help patients to be adherent to medicine. However, non-adherent rate still high: 24% in physically ill and 42% in mentally ill patients. Moreover, patients might feel less confident when carrying medicine around. Normal medicine box has no alarm; whereas the one with alarm is not handy and might be left at home. Therefore, Medication Reminder (MR) was invented. MR is a medicine pocket that has an alarm clock to remind the patient when it is the time to take medicine. It also has a small light indicating the medicine the patient has to take. This pocket is attached within a purse or wallet because most people forget medicine but do not forget to take their money. This research was conducted to develop innovation assisting patients to take their medicine on time. Samples were 24 volunteers who went out to work every day. Uncoated tablets, coated tablets, and capsules were filled in three types of containers: MR, plastic bag with ziplock, and normal plastic box. Each volunteer carried three types of containers everywhere during day time. After three days, medicines were tested for physical quality (appearance, odor, color, hardness, and weight) in laboratory. Medication adherence and satisfaction questionnaires were completed by participants. The results showed that MR showed significant improvement in participants’ adherence than plastic bag with ziplock, and normal plastic box at p < .001 (x̄(SD) = 11.16(0.75), 7.83(0.98), 8.83(1.32), respectively). Based on the quality test, MR and normal plastic box significantly better protected medicine than plastic bag with zip lock at p < .001 (x̄(SD) = 4(0.00), 4(0.00), 2.5(0.54), respectively). Most participants were satisfied with the innovation in highest level (4.50 out of 5). MR has a potential to improve adherent rates of participants and therefore to be an innovation that helps reducing the cost of treatment due to non-adherence. MR also has a potential in commercial aspect due to its effects in preserving quality of medicine. MR can be integrated with local products such as silk purse that can increase income for local people.

Keywords: medication, reminder, adherence, satisfaction

Procedia PDF Downloads 443
24633 Review of the Road Crash Data Availability in Iraq

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.

Keywords: road safety, Iraq, crash data, road risk assessment, The International Road Assessment Program (iRAP)

Procedia PDF Downloads 262
24632 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method

Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens

Abstract:

Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.

Keywords: healthcare, knowledge acquisition, maximal data sets, action design science

Procedia PDF Downloads 375
24631 Tool for Metadata Extraction and Content Packaging as Endorsed in OAIS Framework

Authors: Payal Abichandani, Rishi Prakash, Paras Nath Barwal, B. K. Murthy

Abstract:

Information generated from various computerization processes is a potential rich source of knowledge for its designated community. To pass this information from generation to generation without modifying the meaning is a challenging activity. To preserve and archive the data for future generations it’s very essential to prove the authenticity of the data. It can be achieved by extracting the metadata from the data which can prove the authenticity and create trust on the archived data. Subsequent challenge is the technology obsolescence. Metadata extraction and standardization can be effectively used to resolve and tackle this problem. Metadata can be categorized at two levels i.e. Technical and Domain level broadly. Technical metadata will provide the information that can be used to understand and interpret the data record, but only this level of metadata isn’t sufficient to create trustworthiness. We have developed a tool which will extract and standardize the technical as well as domain level metadata. This paper is about the different features of the tool and how we have developed this.

Keywords: digital preservation, metadata, OAIS, PDI, XML

Procedia PDF Downloads 398
24630 The Trigger-DAQ System in the Mu2e Experiment

Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella

Abstract:

The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).

Keywords: trigger, daq, mu2e, Fermilab

Procedia PDF Downloads 159
24629 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 131
24628 Impacting the Processes of Freight Logistics at Upper Austrian Companies by the Use of Mobility Management

Authors: Theresa Steiner, Markus Pajones, Christian Haider

Abstract:

Traffic is being induced by companies due to their economic behavior. Basically, two different types of traffic occur at company sites: freight traffic and commuting traffic. Due to the fact that these traffic types are connected to each other in different kinds, an integrated approach to manage them is useful. Mobility management is a proved method for companies, to handle the traffic processes caused by their business activities. According to recent trend analysis in Austria, the freight traffic as well as the individual traffic, as part of the commuting traffic, will continue to increase. More traffic jams, as well as negative environmental impacts, are expected impacts for the future. Mobility management is a tool to control the traffic behavior with the scope to reduce emissions and other negative effects which are caused by traffic. Until now, mobility management is mainly used for optimizing commuting traffic without taking the freight logistics processes into consideration. However, the method of mobility management can be used to improve the freight traffic area of a company as well. The focus of this paper will be particularly laid on analyzing to what extent companies are already using mobility management to influence not only the commuting traffic they produce but also their processes of freight logistics. A further objective is to acquire knowledge about the motivating factors which persuade companies to introduce and apply mobility management. Additionally, advantages and disadvantages of this tool will be defined as well as limitations and factors of success, with a special focus on freight logistics, will be depicted. The first step of this paper is to conduct a literature review on the issue of mobility management with a special focus on freight logistics processes. To compare the theoretical findings with the practice, interviews, following a structured interview guidline, with mobility managers of different companies in Upper Austria will be undertaken. A qualitative analysis of these surveys will in a first step show the motivation behind using mobility management to improve traffic processes and how far this approach is already being used to especially influence the freight traffic of the companies. An evaluation to what extent the method of mobility management is already being approached at Upper Austrian companies to regulate freight logistics processes will be one outcome of this publication. Furthermore, the results of the theoretical and practical analysis will reveal not only the possibilities but also the limitations of using mobility management to influence the processes of freight logistics.

Keywords: freight logistics processes, freight traffic, mobility management, passenger traffic

Procedia PDF Downloads 317
24627 Addressing Supply Chain Data Risk with Data Security Assurance

Authors: Anna Fowler

Abstract:

When considering assets that may need protection, the mind begins to contemplate homes, cars, and investment funds. In most cases, the protection of those assets can be covered through security systems and insurance. Data is not the first thought that comes to mind that would need protection, even though data is at the core of most supply chain operations. It includes trade secrets, management of personal identifiable information (PII), and consumer data that can be used to enhance the overall experience. Data is considered a critical element of success for supply chains and should be one of the most critical areas to protect. In the supply chain industry, there are two major misconceptions about protecting data: (i) We do not manage or store confidential/personally identifiable information (PII). (ii) Reliance on Third-Party vendor security. These misconceptions can significantly derail organizational efforts to adequately protect data across environments. These statistics can be exciting yet overwhelming at the same time. The first misconception, “We do not manage or store confidential/personally identifiable information (PII)” is dangerous as it implies the organization does not have proper data literacy. Enterprise employees will zero in on the aspect of PII while neglecting trade secret theft and the complete breakdown of information sharing. To circumvent the first bullet point, the second bullet point forges an ideology that “Reliance on Third-Party vendor security” will absolve the company from security risk. Instead, third-party risk has grown over the last two years and is one of the major causes of data security breaches. It is important to understand that a holistic approach should be considered when protecting data which should not involve purchasing a Data Loss Prevention (DLP) tool. A tool is not a solution. To protect supply chain data, start by providing data literacy training to all employees and negotiating the security component of contracts with vendors to highlight data literacy training for individuals/teams that may access company data. It is also important to understand the origin of the data and its movement to include risk identification. Ensure processes effectively incorporate data security principles. Evaluate and select DLP solutions to address specific concerns/use cases in conjunction with data visibility. These approaches are part of a broader solutions framework called Data Security Assurance (DSA). The DSA Framework looks at all of the processes across the supply chain, including their corresponding architecture and workflows, employee data literacy, governance and controls, integration between third and fourth-party vendors, DLP as a solution concept, and policies related to data residency. Within cloud environments, this framework is crucial for the supply chain industry to avoid regulatory implications and third/fourth party risk.

Keywords: security by design, data security architecture, cybersecurity framework, data security assurance

Procedia PDF Downloads 94
24626 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies

Authors: Lindelwa Mngomezulu, Tonderai Muchenje

Abstract:

Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.

Keywords: e-mail security, cyber-attacks, data integrity, authentication

Procedia PDF Downloads 141
24625 Epidemiology of Toxoplasma gondii Infection in Animals of the Arabian Peninsula: A Systematic Review and Meta-Analysis

Authors: Ebtisam A. Al-Mslemani, Khalid A. Enan, Asmaa Abdelgadier, Nada Assaad, Zaynab Elhussein, Khalid Eltom

Abstract:

Background: Toxoplasma gondii (T. gondii) is a zoonotic parasite that can be transmitted from animals to humans, with felids acting as its definitive host. Thus, understanding the epidemiology of this parasite in animal populations is vital to controlling its transmission to humans as well as to other animal groups. Objectives: This systematic review and meta-analysis aim to summarise and analyse reports of T. gondii infection in animal species residing in the Arabian Peninsula. Methods: It was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), with relevant studies being retrieved from MEDLINE/PubMed, Scopus, Cochrane Library, Google Scholar and ScienceDirect. All articles published in Arabic or English languages between January 2000 and December 2020 were screened for eligibility. The random effects model was used to calculate the pooled prevalence of T. gondii infection in different animal populations which were found to harbour this infection. The critical appraisal tool for prevalence studies designed by the Joanna Briggs Institute (JBI) was used to assess the risk of bias in all included studies. Results: A total of 15 studies were retrieved, reporting prevalence estimates from 4 countries in this region and in 13 animal species. A quantitative meta-analysis estimated a pooled prevalence of 43% in felids [95% confidence interval (CI) = 23-64%, I2 index = 100%], 48% in sheep (95% CI = 27-70%, I2 = 99%) and 21% in camels (95% CI = 7-35%, I2 = 99%). Evidence of possible publication bias was found in both felids and sheep. Conclusions: This meta-analysis estimates a high prevalence of T. gondii infection in animal species that are of high economic and cultural importance to countries of this region. Hence, these findings provide valuable insight to public health authorities as well as economic and animal resources advisors in countries of the Arabian Peninsula.

Keywords: Arabian Peninsula, toxoplasma gondii, animals; meta-analysis, toxoplasmosis

Procedia PDF Downloads 88
24624 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 156
24623 Testing the Change in Correlation Structure across Markets: High-Dimensional Data

Authors: Malay Bhattacharyya, Saparya Suresh

Abstract:

The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.

Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition

Procedia PDF Downloads 131
24622 Development and Evaluation of a Portable Ammonia Gas Detector

Authors: Jaheon Gu, Wooyong Chung, Mijung Koo, Seonbok Lee, Gyoutae Park, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we present a portable ammonia gas detector for performing the gas safety management efficiently. The display of the detector is separated from its body. The display module is received the data measured from the detector using ZigBee. The detector has a rechargeable li-ion battery which can be use for 11~12 hours, and a Bluetooth module for sending the data to the PC or the smart devices. The data are sent to the server and can access using the web browser or mobile application. The range of the detection concentration is 0~100ppm.

Keywords: ammonia, detector, gas, portable

Procedia PDF Downloads 420
24621 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 88
24620 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning

Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park

Abstract:

The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.

Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement

Procedia PDF Downloads 241
24619 A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging

Authors: Bodhayan Nandi, Shubhajit Roy Chowdhury

Abstract:

This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely.

Keywords: non invasive, blood glucose concentration, microcontroller, IoT, application server, database server

Procedia PDF Downloads 225
24618 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions

Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias

Abstract:

This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented.

Keywords: teledosimetric data, efficiency, reliability, safety, cluster solution

Procedia PDF Downloads 519