Search results for: wind turbine placing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1704

Search results for: wind turbine placing

354 DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy

Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao

Abstract:

Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.

Keywords: distributed generation, operational cost, exact loss formula, optimum size, optimum location

Procedia PDF Downloads 483
353 Evaluation of Different High Tunnel Protection Methods for Quality Banana Production in Bangladesh

Authors: Shormin Choudhury, Nazrul Islam, Atiqur Rahman Shaon

Abstract:

High tunnels can provide several benefits to horticultural crops, including environmental stress protection such as hail, frost, excessive rainfall, and high wind. In hot and sunny areas, high tunnel is one of the cooling ways for modifying the microclimate and maximizing crop development. Present study was carried out to assess the effect of different type of high tunnels on banana growth, yield, and fruit quality characteristics. Net houses, poly net houses, UV poly shed houses, and open field (control) conditions are among the experimental treatments. The results revealed that the plants produced in the poly net house condition had maximum pseudo stem height (171.00cm), stem girth (68.66 cm), chlorophyll content (57.63), number of fruits (140), number of hands (9.66), individual fruit weight (125.00) and pulp: peel ratio (3.35) of bananas as compared to the other treatments. Quality parameters like total soluble solid (21.78°Brix), ascorbic acid (10.24 mg/100g), total sugar (25.44%), and reducing sugar (15.75%) were higher in fruits grown in poly net house. The study revealed that the poly net house is the best growing environment for bananas in terms of growth, yield, and quality attributes.

Keywords: shed houses, banana, chlorophyll content, fruit yield, quality

Procedia PDF Downloads 83
352 Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant

Authors: Ebuwa Osagie, Chet Biliyok, Yeung Hoi

Abstract:

Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies.

Keywords: natural gas-fired, power plant, MEA, CO2 capture, modelling, simulation

Procedia PDF Downloads 444
351 Experimental Investigation on the Effect of Cross Flow on Discharge Coefficient of an Orifice

Authors: Mathew Saxon A, Aneeh Rajan, Sajeev P

Abstract:

Many fluid flow applications employ different types of orifices to control the flow rate or to reduce the pressure. Discharge coefficients generally vary from 0.6 to 0.95 depending on the type of the orifice. The tabulated value of discharge coefficients of various types of orifices available can be used in most common applications. The upstream and downstream flow condition of an orifice is hardly considered while choosing the discharge coefficient of an orifice. But literature shows that the discharge coefficient can be affected by the presence of cross flow. Cross flow is defined as the condition wherein; a fluid is injected nearly perpendicular to a flowing fluid. Most researchers have worked on water being injected into a cross-flow of water. The present work deals with water to gas systems in which water is injected in a normal direction into a flowing stream of gas. The test article used in the current work is called thermal regulator, which is used in a liquid rocket engine to reduce the temperature of hot gas tapped from the gas generator by injecting water into the hot gas so that a cooler gas can be supplied to the turbine. In a thermal regulator, water is injected through an orifice in a normal direction into the hot gas stream. But the injection orifice had been calibrated under backpressure by maintaining a stagnant gas medium at the downstream. The motivation of the present study aroused due to the observation of a lower Cd of the orifice in flight compared to the calibrated Cd. A systematic experimental investigation is carried out in this paper to study the effect of cross-flow on the discharge coefficient of an orifice in water to a gas system. The study reveals that there is an appreciable reduction in the discharge coefficient with cross flow compared to that without cross flow. It is found that the discharge coefficient greatly depends on the ratio of momentum of water injected to the momentum of the gas cross flow. The effective discharge coefficient of different orifices was normalized using the discharge coefficient without cross-flow and it is observed that normalized curves of effective discharge coefficient of different orifices with momentum ratio collapsing into a single curve. Further, an equation is formulated using the test data to predict the effective discharge coefficient with cross flow using the calibrated Cd value without cross flow.

Keywords: cross flow, discharge coefficient, orifice, momentum ratio

Procedia PDF Downloads 142
350 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies

Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani

Abstract:

The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a)synthesizing such PTMDs for particular applications and b)evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.

Keywords: active tuned mass damper, high-rise building, multi-frequency tuning, vibration control

Procedia PDF Downloads 103
349 Design Practices, Policies and Guidelines towards Implementing Architectural Passive Cooling Strategies in Public Library Buildings in Temperate Climates

Authors: Lesley Metibogun, Regan Potangaroa

Abstract:

Some existing sustainable public libraries in New Zealand now depend on air conditioning system for cooling. This seems completely contradictory to sustainable building initiatives. A sustainable building should be ‘self- sufficient’ and must aim at optimising the use of natural ventilation, wind and daylight and avoiding too much summer heat penetration into the building, to save energy consumption and enhance occupants’ comfort. This paper demonstrates that with appropriate architectural passive design input public libraries do not require air conditioning. Following a brief outline of how our dependence on air conditioning has spread over the full range of building types and climatic zones, this paper focuses on public libraries in temperate climates where passive cooling should be feasible for long periods of mild outside temperature. It was found that current design policies, regulations and guidelines and current building design practices militate passive cooling strategies. Perceived association with prestige, inflexibility of design process, rigid planning regulations and sustainability rating systems were identified as key factors forcing the need for air conditioning. Recommendations are made on how to further encourage development in this direction from the perspective of architectural design. This paper highlights how architectural passive cooling design strategies should be implemented in government initiated policies and regulations to develop a more sustainable public libraries.

Keywords: public library, sustainable design, temperate climate, passive cooling, air conditioning

Procedia PDF Downloads 248
348 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer

Authors: S. M. Giripunje, Mohit Kumar

Abstract:

Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.

Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)

Procedia PDF Downloads 382
347 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply

Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele

Abstract:

In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.

Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant

Procedia PDF Downloads 175
346 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 181
345 Natural Factors of Interannual Variability of Winter Precipitation over the Altai Krai

Authors: Sukovatov K.Yu., Bezuglova N.N.

Abstract:

Winter precipitation variability over the Altai Krai was investigated by retrieving temporal patterns. The spectral singular analysis was used to describe the variance distribution and to reduce the precipitation data into a few components (modes). The associated time series were related to large-scale atmospheric and oceanic circulation indices by using lag cross-correlation and wavelet-coherence analysis. GPCC monthly precipitation data for rectangular field limited by 50-550N, 77-880E and monthly climatological circulation index data for the cold season were used to perform SSA decomposition and retrieve statistics for analyzed parameters on the time period 1951-2017. Interannual variability of winter precipitation over the Altai Krai are mostly caused by three natural factors: intensity variations of momentum exchange between mid and polar latitudes over the North Atlantic (explained variance 11.4%); wind speed variations in equatorial stratosphere (quasi-biennial oscillation, explained variance 15.3%); and surface temperature variations for equatorial Pacific sea (ENSO, explained variance 2.8%). It is concluded that under the current climate conditions (Arctic amplification and increasing frequency of meridional processes in mid-latitudes) the second and the third factors are giving more significant contribution into explained variance of interannual variability for cold season atmospheric precipitation over the Altai Krai than the first factor.

Keywords: interannual variability, winter precipitation, Altai Krai, wavelet-coherence

Procedia PDF Downloads 188
344 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi

Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.

Abstract:

The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.

Keywords: ecological farming system, energy simulation, evaporative cooling system, temperature, treated waste water, temperature

Procedia PDF Downloads 249
343 Uncertainty in Near-Term Global Surface Warming Linked to Pacific Trade Wind Variability

Authors: M. Hadi Bordbar, Matthew England, Alex Sen Gupta, Agus Santoso, Andrea Taschetto, Thomas Martin, Wonsun Park, Mojib Latif

Abstract:

Climate models generally simulate long-term reductions in the Pacific Walker Circulation with increasing atmospheric greenhouse gases. However, over two recent decades (1992-2011) there was a strong intensification of the Pacific Trade Winds that is linked with a slowdown in global surface warming. Using large ensembles of multiple climate models forced by increasing atmospheric greenhouse gas concentrations and starting from different ocean and/or atmospheric initial conditions, we reveal very diverse 20-year trends in the tropical Pacific climate associated with a considerable uncertainty in the globally averaged surface air temperature (SAT) in each model ensemble. This result suggests low confidence in our ability to accurately predict SAT trends over 20-year timescale only from external forcing. We show, however, that the uncertainty can be reduced when the initial oceanic state is adequately known and well represented in the model. Our analyses suggest that internal variability in the Pacific trade winds can mask the anthropogenic signal over a 20-year time frame, and drive transitions between periods of accelerated global warming and temporary slowdown periods.

Keywords: trade winds, walker circulation, hiatus in the global surface warming, internal climate variability

Procedia PDF Downloads 266
342 Efficacy of CAM Methods for Pain Reduction in Acute Non-specific Lower Back Pain

Authors: John Gaber

Abstract:

Objectives: Complementary and alternative medicine (CAM) is a medicine or health practice that is used alongside conventional practice. Nowadays, CAM is commonly used in North America and other countries, and there is a need for more scientific study to understand its efficacy in different clinical cases. This retrospective study explores the effectiveness and recovery time of CAMs such as cupping, acupuncture, and sotai to treat cases of non-specific low back pain (ANLBP). Methods: We assessed the effectiveness of acupuncture, cupping, and sotai methods on pain and for the treatment of ANLBP. We have compared the magnitude of pain relief using a pain scale assessment method to compare the efficacy of each treatment. The Face Pain Scale assessment was conducted before and 24 hours post-treatment. This retrospective study analyzed 40 patients and categorized them according to the treatment they received. The study included the control group, and the three intervention groups, each with ten patients. Each of the three intervention groups received one of the intervention methods. The first group received the cupping treatment, where cups were placed on the lower back of both sides on points: BL23, BL25, BL26, BL54, BL37, BL40, and BL57. After vacuuming, the cups will stay for 10-15 minutes under infrared light (IR) heating. IR heating is applied by an infrared heat lamp. The second group received the acupuncture treatment, placing needles on points: BL23, BL25, BL26, BL52BL54, GB30, BL37, BL40, BL57, BL59, BL60, and KI3. The needles will be simulated with IR light. The final group received the sotai treatment, a Japanese form of structural realignment that relieves pain, balance, and mobility -moving the body naturally and spontaneously towards a comfortable direction by focusing on the inner feeling and synchronizing with the patient’s breathing. The SPSS statistical software was used to analyze the data using repeated-measures ANOVA. The data collected demonstrates the change in the FPS assessment method value over the course of treatment. p<0.05 was considered statistically significant. Results: In the cupping, acupuncture, and sotai therapy groups, the mean of the FPS value reduced from 8.7±1.2, 8.8±1.2, 9.0±0.8 before the intervention to 3.5±1.4, 4.3±1.4, 3.3±1.3, 24 hours after the intervention, respectively. The data collected shows that the CAM methods included in this study all show improvements in pain relief 24 hours after treatment. Conclusion: Complementary and alternative medicine were developed to treat injuries and illnesses with the whole body in mind, designed to be used in addition to standard treatments. The data above shows that the use of these treatments can have a pain-relieving effect, but more research should be done on the matter, as finding CAM methods that are efficacious is crucial in the landscape of health sciences.

Keywords: acupuncture, cupping, alternative medicine, rehabilitation, acute injury

Procedia PDF Downloads 55
341 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry

Authors: Qianhui Li, Christoph H. Bruecker

Abstract:

Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.

Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry

Procedia PDF Downloads 173
340 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 474
339 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 116
338 Unattended Crowdsensing Method to Monitor the Quality Condition of Dirt Roads

Authors: Matias Micheletto, Rodrigo Santos, Sergio F. Ochoa

Abstract:

In developing countries, the most roads in rural areas are dirt road. They require frequent maintenance since are affected by erosive events, such as rain or wind, and the transit of heavy-weight trucks and machinery. Early detection of damages on the road condition is a key aspect, since it allows to reduce the main-tenance time and cost, and also the limitations for other vehicles to travel through. Most proposals that help address this problem require the explicit participation of drivers, a permanent internet connection, or important instrumentation in vehicles or roads. These constraints limit the suitability of these proposals when applied into developing regions, like in Latin America. This paper proposes an alternative method, based on unattended crowdsensing, to determine the quality of dirt roads in rural areas. This method involves the use of a mobile application that complements the road condition surveys carried out by organizations in charge of the road network maintenance, giving them early warnings about road areas that could be requiring maintenance. Drivers can also take advantage of the early warnings while they move through these roads. The method was evaluated using information from a public dataset. Although they are preliminary, the results indicate the proposal is potentially suitable to provide awareness about dirt roads condition to drivers, transportation authority and road maintenance companies.

Keywords: dirt roads automatic quality assessment, collaborative system, unattended crowdsensing method, roads quality awareness provision

Procedia PDF Downloads 198
337 Comparative Analysis of Local Acceptance of Renewable Energy Facilities and Spent Nuclear Fuel Repositories

Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim

Abstract:

Public deliberation committee on Shin-Gori Nuclear Reactors No. 5 & 6 in South Korea recently suggested policy recommendation in July 2017 including complementary measures for resumption of construction: 1) nuclear power generation reduction, 2) expansion of investment to increase proportion of renewable energy, 3) repositories of spent nuclear fuel. Even when constructing eco-friendly renewable energy facilities such as solar and wind power plants, local residents are opposed to construction of these facilities due to environmental pollution and health impacts. In order to transform eco-friendly energy, it is necessary to convert nuclear energy into renewable energy and to take measures to increase the acceptance of residents through the participation of citizens. Therefore, this study aims to compare the factors of local acceptance of renewable energy facilities and spent nuclear fuel repositories through literature review and in-depth interview. The results show that environmental and economic concerns, risk perceptions, sociality, demographic characteristics and subjective recognition types affect the local acceptance for spent nuclear fuel repository. The factors of local acceptance for renewable energy facilities are partially coincide with those for spent nuclear fuel repository. The results of this study will contribute to improving residents' acceptance and reducing conflicts when determining the location of facilities in the future.

Keywords: local acceptance, renewable energy facility, spent nuclear fuel repository, interview

Procedia PDF Downloads 300
336 Analysys of Some Solutions to Protect the Tombolo of Giens

Authors: Yves Lacroix, Van Van Than, Didier Léandri, Pierre Liardet

Abstract:

The western Tombolo of the Giens peninsula in southern France, known as Almanarre beach, is subject to coastal erosion. We are trying to use computer simulation in order to propose solutions to stop this erosion. Our aim was first to determine the main factors for this erosion and successfully apply a coupled hydro-sedimentological numerical model based on observations and measurements that have been performed on the site for decades. We have gathered all available information and data about waves, winds, currents, tides, bathymetry, coastal line, and sediments concerning the site. These have been divided into two sets: one devoted to calibrating a numerical model using Mike 21 software, the other to serve as a reference in order to numerically compare the present situation to what it could be if we implemented different types of underwater constructions. This paper presents the first part of the study: selecting and melting different sources into a coherent data basis, identifying the main erosion factors, and calibrating the coupled software model against the selected reference period. Our results bring calibration of the numerical model with good fitting coefficients. They also show that the winter South-Western storm events conjugated to depressive weather conditions constitute a major factor of erosion, mainly due to wave impact in the northern part of the Almanarre beach. Together, current and wind impact is shown negligible.

Keywords: Almanarre beach, coastal erosion, hydro-sedimentological, numerical model

Procedia PDF Downloads 318
335 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 98
334 Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries

Authors: Moustafa M. S. Sanad

Abstract:

The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques.

Keywords: structure modification, cationic substitution, non-stoichiometric synthesis, plasma treatment, lithium-ion batteries

Procedia PDF Downloads 57
333 The Cleaning Equipment to Prevents Dust Diffusion of Bus Air Filters

Authors: Jiraphorn Satechan, Thanaphon Khamthieng, Warunee Phanwong

Abstract:

This action research aimed at designing and developing the cleaning equipment to preventing dust diffusion of bus air filter. Quantitative and qualitative data collection methods were used to conduct data from October 1st, 2018 to September 30th, 2019. All of participants were male (100.0%) with aged 40- 49 years and 57.15%, of them finish bachelor degree. 71.43% of them was a driver and 57.15% of them had the working experience between 10 and 15 years. Research revealed that the participants assessed the quality of the bus air filter cleaning equipment for preventing dust diffusion at a moderate level (σ= 0.29), and 71.43 of them also suggested the development methods in order to improve the quality of bus air filters cleaning equipment as follows: 1) to install the circuit breaker for cutting the electricity and controlling the on-off of the equipment and to change the motor to the DC system, 2) should install the display monitor for wind pressure and electricity system as well as to install the air pressure gauge, 3) should install the tank lid lock for preventing air leakage and dust diffusion by increasing the blowing force and sucking power, 4) to stabilize the holding points for preventing the filter shaking while rotating and blowing for cleaning and to reduce the rotation speed in order to allow the filters to move slowly for the air system to blow for cleaning more thoroughly, 5) the amount of dust should be measured before and after cleaning and should be designed the cleaning equipment to be able to clean with a variety of filters, and sizes. Moreover, the light-weight materials should be used to build the cleaning equipment and the wheels should be installed at the base of the equipment in order to make it easier to move.

Keywords: Cleaning Equipment, Bus Air Filters, Preventing Dust Diffusion, Innovation

Procedia PDF Downloads 109
332 A Preliminary Study of the Effects of Abiotic Environmental Variables on Early Diptera Carrion Colonizers in Algiers, Algeria

Authors: M. Taleb, G. Tail, F. Z. Kara, B. Djedouani T. Moussa

Abstract:

Necrophagous insects usually colonize cadavers within a short time after death. However, they are influenced by weather conditions, and their distribution and activity vary according to different time scales, which can affect the post-mortem interval (PMI) estimation. As no data have been published in Algeria on necrophagous insects visiting corpses, two field surveys were conducted in July 2012 and March 2013 at the National Institute for Criminalistics and Criminology (INCC) using rabbit carcasses (Oryctolagus cuniculus L.). The trials were designed to identify the necrophagous Diptera fauna of Algiers, Algeria and examine their variations according to environmental variables. Four hundred and eighteen Diptera adults belonging to five families were captured during this study. The species which were identified on human corpses in different regions of Algeria were also observed on the rabbit carcasses. Although seasonal variations of the species were observed, their abundance did not significantly vary between the two seasons. In addition to seasonal effects, the ambient temperature, the wind speed, and precipitation affect the number of trapped flies. These conclusions highlight the necessity of considering the environmental factors at a scene to estimate the post-mortem interval accurately. It is hoped that these findings provide basic information regarding the necrophagous Diptera fauna of Algeria.

Keywords: forensic entomology, necrophagous diptera, post-mortem interval, abiotic factors, Algeria

Procedia PDF Downloads 386
331 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 412
330 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 232
329 A Study on Legal Regimes Alternatives from the Aspect of Shenzhen Global Ocean Central City Construction

Authors: Jinsong Zhao, Lin Zhao

Abstract:

Shenzhen, one of the fastest growing cities in the world, has been building a global ocean central city since 2017, facing many challenges, especially how to innovate new legal regimes to meet the future demands of the development of global shipping. First, the current legal regime of bills of lading as a document of title was established by English law in the 18th century but limited to the period of marine transportation from port of loading to port of discharge (namely, port to port). The e-commerce era is asking for such a function to be extended from port to port to door to door. Secondly, the function of the port has also been upgraded from the traditional loading and unloading of goods to a much wider area, such as being custody of warehousing goods for its mortgage bank, and therefore its legal status is changing, so it is necessary to amend the law of ports and harbours and innovate the rights and responsibilities of the port under its new role as the custody. Thirdly, the development of new marine energy has made more and more offshore floating wind power and floating photovoltaic devices face new legal issues such as legal status, nationality and ownership registration, mortgage, maritime lien, and possessory lien. Fourthly, the jurisdiction of the above issues, as well as conflicts of law and the applicable law, are also questions pending answers. This paper will discuss these issues of private international law, especially the innovation of new legal regimes with an aim to solve the above problems.

Keywords: maritime law, bills of lading, e-commerce, port law, marine clean energy

Procedia PDF Downloads 39
328 Investigation of Effects of Geomagnetic Storms Produced by Different Solar Sources on the Total Electron Content (TEC)

Authors: P. K. Purohit, Azad A. Mansoori, Parvaiz A. Khan, Purushottam Bhawre, Sharad C. Tripathi, A. M. Aslam, Malik A. Waheed, Shivangi Bhardwaj, A. K. Gwal

Abstract:

The geomagnetic storm represents the most outstanding example of solar wind-magnetospheric interaction, which causes global disturbances in the geomagnetic field as well as the trigger ionospheric disturbances. We study the behaviour of ionospheric Total Electron Content (TEC) during the geomagnetic storms. For the present investigation we have selected 47 intense geomagnetic storms (Dst ≤ -100nT) that were observed during the solar cycle 23 i.e. during 1998-2006. We then categorized these storms into four categories depending upon their solar sources like Magnetic Cloud (MC), Co-rotating Interaction Region (CIR), SH+ICME and SH+MC. We then studied the behaviour of ionospheric TEC at a mid latitude station Usuda (36.13N, 138.36E), Japan during these storm events produced by four different solar sources. During our study we found that the smooth variations in TEC are replaced by rapid fluctuations and the value of TEC is strongly enhanced during the time of these storms belonging to all the four categories. However, the greatest enhancements in TEC are produced during those geomagnetic storms which are either caused by sheath driven magnetic cloud (SH+MC) or sheath driven ICME (SH+ICME). We also derived the correlation between the TEC enhancements produced during storms of each category with the minimum Dst. We found the strongest correlation exists for the SH+ICME category followed by SH+MC, MC and finally CIR. Since the most intense storms were either caused by SH+ICME or SH+MC while the least intense storms were caused by CIR, consequently the correlation was the strongest with SH+ICME and SH+MC and least with CIR.

Keywords: GPS, TEC, geomagnetic storm, sheath driven magnetic cloud

Procedia PDF Downloads 542
327 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data

Authors: Zegrar Ahmed, Ghabi Mohamed

Abstract:

The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.

Keywords: remote sensing, SIG, ecosystem, degradation, desertification

Procedia PDF Downloads 337
326 Development of Fault Diagnosis Technology for Power System Based on Smart Meter

Authors: Chih-Chieh Yang, Chung-Neng Huang

Abstract:

In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.

Keywords: ANFIS, fault diagnosis, power system, smart meter

Procedia PDF Downloads 135
325 Analysis of a Coupled Hydro-Sedimentological Numerical Model for the Western Tombolo of Giens

Authors: Yves Lacroix, Van Van Than, Didier Léandri, Pierre Liardet

Abstract:

The western Tombolo of the Giens peninsula in southern France, known as Almanarre beach, is subject to coastal erosion. We are trying to use computer simulation in order to propose solutions to stop this erosion. Our aim was first to determine the main factors for this erosion and successfully apply a coupled hydro-sedimentological numerical model based on observations and measurements that have been performed on the site for decades. We have gathered all available information and data about waves, winds, currents, tides, bathymetry, coastal line, and sediments concerning the site. These have been divided into two sets: one devoted to calibrating a numerical model using Mike 21 software, the other to serve as a reference in order to numerically compare the present situation to what it could be if we implemented different types of underwater constructions. This paper presents the first part of the study: selecting and melting different sources into a coherent data basis, identifying the main erosion factors, and calibrating the coupled software model against the selected reference period. Our results bring calibration of the numerical model with good fitting coefficients. They also show that the winter South-Western storm events conjugated to depressive weather conditions constitute a major factor of erosion, mainly due to wave impact in the northern part of the Almanarre beach. Together, current and wind impact is shown negligible.

Keywords: Almanarre beach, coastal erosion, hydro-sedimentological, numerical model

Procedia PDF Downloads 375