Search results for: structural time series model (STSM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34454

Search results for: structural time series model (STSM)

33104 Achieving Supply Chain Competitiveness through Successful Buyer-Supplier Relationships

Authors: Kamran Rashid, Tashfeen M. Azhar, Asad-ur-Rahman Wahla

Abstract:

Current research aims to understand the role of successful buyer-supplier relationship in achieving supply chain competitiveness in a developing country perspective. Five hypotheses are developed to test structural model. Survey data is collected from the manufacturing sector of Pakistan. Analysis is conducted using Partial Least Squares (PLS) Structural Equation Modeling (SEM) through Smart PLS version 2.0 M3. Results demonstrate positive impact of effective supplier selection, buyer-supplier engagement, and information sharing capability on success of buyer supplier relationship. This successful buyer supplier relationship drives the supply chain firm financial and market performance. Additional analyses with large sample sizes are required in other developing countries to cross validate the results. Current study provides empirical evidence of the role of successful buyer supplier relationship in achieving supply chain competitiveness.

Keywords: supply chain management, successful buyer-supplier relationship, supply chain competitiveness, developing country

Procedia PDF Downloads 658
33103 EcoLife and Greed Index Measurement: An Alternative Tool to Promote Sustainable Communities and Eco-Justice

Authors: Louk Aourelien Andrianos, Edward Dommen, Athena Peralta

Abstract:

Greed, as epitomized by overconsumption of natural resources, is at the root of ecological destruction and unsustainability of modern societies. Presently economies rely on unrestricted structural greed which fuels unlimited economic growth, overconsumption, and individualistic competitive behavior. Structural greed undermines the life support system on earth and threatens ecological integrity, social justice and peace. The World Council of Churches (WCC) has developed a program on ecological and economic justice (EEJ) with the aim to promote an economy of life where the economy is embedded in society and society in ecology. This paper aims at analyzing and assessing the economy of life (EcoLife) by offering an empirical tool to measure and monitor the root causes and effects of unsustainability resulting from human greed on global, national, institutional and individual levels. This holistic approach is based on the integrity of ecology and economy in a society founded on justice. The paper will discuss critical questions such as ‘what is an economy of life’ and ‘how to measure and control it from the effect of greed’. A model called GLIMS, which stands for Greed Lines and Indices Measurement System is used to clarify the concept of greed and help measuring the economy of life index by fuzzy logic reasoning. The inputs of the model are from statistical indicators of natural resources consumption, financial realities, economic performance, social welfare and ethical and political facts. The outputs are concrete measures of three primary indices of ecological, economic and socio-political greed (ECOL-GI, ECON-GI, SOCI-GI) and one overall multidimensional economy of life index (EcoLife-I). EcoLife measurement aims to build awareness of an economy life and to address the effects of greed in systemic and structural aspects. It is a tool for ethical diagnosis and policy making.

Keywords: greed line, sustainability indicators, fuzzy logic, eco-justice, World Council of Churches (WCC)

Procedia PDF Downloads 319
33102 The Collapse of a Crane on Site: A Case Study

Authors: T. Teruzzi, S. Antonietti, C. Mosca, C. Paglia

Abstract:

This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints.

Keywords: failure, metals, weld, microstructure

Procedia PDF Downloads 125
33101 A Series Solution of Fuzzy Integro-Differential Equation

Authors: Maryam Mosleh, Mahmood Otadi

Abstract:

The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.

Keywords: Fuzzy number, parametric form of a fuzzy number, fuzzy integrodifferential equation, homotopy analysis method

Procedia PDF Downloads 556
33100 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 541
33099 Comparison of Dynamic Characteristics of Railway Bridge Spans to Know the Health of Elastomeric Bearings Using Tri Axial Accelerometer Sensors

Authors: Narayanakumar Somasundaram, Venkat Nihit Chirivella, Venkata Dilip Kumar Pasupuleti

Abstract:

Ajakool, India, has a multi-span bridge that is constructed for rail transport with a maximum operating speed of 100 km/hr. It is a standard RDSO design of a PSC box girder carrying a single railway track. The Structural Health Monitoring System (SHM) is designed and installed to compare and analyze the vibrations and displacements on the bridge due to different live loads from moving trains. The study is conducted for three different spans of the same bridge to understand the health of the elastomeric bearings. Also, to validate the same, a three-dimensional finite element model is developed, and modal analysis is carried out. The proposed methodology can help in detecting deteriorated elastomeric bearings using only wireless tri-accelerometer sensors. Detailed analysis and results are presented in terms of mode shapes, accelerations, displacements, and their importance to each other. This can be implemented with a lot of ease and can be more accurate.

Keywords: dynamic effects, vibration analysis, accelerometer sensors, finite element analysis, structural health monitoring, elastomeric bearing

Procedia PDF Downloads 134
33098 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window

Authors: Emin Z. Mahmud

Abstract:

Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz.

Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening

Procedia PDF Downloads 116
33097 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 333
33096 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 107
33095 A Model for Operating Rooms Scheduling

Authors: Jose Francisco Ferreira Ribeiro, Alexandre Bevilacqua Leoneti, Andre Lucirton Costa

Abstract:

This paper presents a mathematical model in binary variables 0/1 to make the assignment of surgical procedures to the operating rooms in a hospital. The proposed mathematical model is based on the generalized assignment problem, which maximizes the sum of preferences for the use of the operating rooms by doctors, respecting the time available in each room. The corresponding program was written in Visual Basic of Microsoft Excel, and tested to schedule surgeries at St. Lydia Hospital in Ribeirao Preto, Brazil.

Keywords: generalized assignment problem, logistics, optimization, scheduling

Procedia PDF Downloads 291
33094 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 128
33093 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli

Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu

Abstract:

This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.

Keywords: FSI, two-way particle coupling, alveoli, CDF

Procedia PDF Downloads 257
33092 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 206
33091 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics

Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García

Abstract:

Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.

Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics

Procedia PDF Downloads 298
33090 Fitness Action Recognition Based on MediaPipe

Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin

Abstract:

MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize the human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.

Keywords: computer vision, MediaPipe, adaptive boosting, fast dynamic time warping

Procedia PDF Downloads 116
33089 Consumer Over-Indebtedness in Germany: An Investigation of Key Determinants

Authors: Xiaojing Wang, Ann-Marie Ward, Tony Wall

Abstract:

The problem of over-indebtedness has increased since deregulation of the banking industry in the 1980s, and now it has become a major problem for most countries in Europe, including Germany. Consumer debt issues have attracted not only the attention of academics but also government and debt counselling institutions. Overall, this research aims to contribute to the knowledge gap regarding the causes of consumer over-indebtedness in Germany and to develop predictive models for assessing consumer over-indebtedness risk at consumer level. The situation of consumer over-indebtedness is serious in Germany. The relatively high level of social welfare support in Germany suggests that consumer debt problems are caused by other factors, other than just over-spending and income volatility. Prior literature suggests that the overall stability of the economy and level of welfare support for individuals from the structural environment contributes to consumers’ debt problems. In terms of cultural influence, the conspicuous consumption theory in consumer behaviour suggests that consumers would spend more than their means to be seen as similar profiles to consumers in a higher socio-economic class. This results in consumers taking on more debt than they can afford, and eventually becoming over-indebted. Studies have also shown that financial literacy is negatively related to consumer over-indebtedness risk. Whilst prior literature has examined structural and cultural influences respectively, no study has taken a collective approach. To address this gap, a model is developed to investigate the association between consumer over-indebtedness and proxies for influences from the structural and cultural environment based on the above theories. The model also controls for consumer demographic characteristics identified as being of influence in prior literature, such as gender and age, and adverse shocks, such as divorce or bereavement in the household. Benefiting from SOEP regional data, this study is able to conduct quantitative empirical analysis to test both structural and cultural influences at a localised level. Using German Socio-Economic Panel (SOEP) study data from 2006 to 2016, this study finds that social benefits, financial literacy and the existence of conspicuous consumption all contribute to being over-indebted. Generally speaking, the risk of becoming over-indebted is high when consumers are in a low-welfare community, have little awareness of their own financial situation and always over-spend. In order to tackle the problem of over-indebtedness, countermeasures can be taken, for example, increasing consumers’ financial awareness, and the level of welfare support. By analysing causes of consumer over-indebtedness in Germany, this study also provides new insights on the nature and underlying causes of consumer debt issues in Europe.

Keywords: consumer, debt, financial literacy, socio-economic

Procedia PDF Downloads 211
33088 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 95
33087 Simulation Study on Polymer Flooding with Thermal Degradation in Elevated-Temperature Reservoirs

Authors: Lin Zhao, Hanqiao Jiang, Junjian Li

Abstract:

Polymers injected into elevated-temperature reservoirs inevitably suffer from thermal degradation, resulting in severe viscosity loss and poor flooding performance. However, for polymer flooding in such reservoirs, present simulators fail to provide accurate results for lack of description on thermal degradation. In light of this, the objectives of this paper are to provide a simulation model for polymer flooding with thermal degradation and study the effect of thermal degradation on polymer flooding in elevated-temperature reservoirs. Firstly, a thermal degradation experiment was conducted to obtain the degradation law of polymer concentration and viscosity. Different types of polymers degraded in the Thermo tank with elevated temperatures. Afterward, based on the obtained law, a streamline-assistant model was proposed to simulate the degradation process under in-situ flow conditions. Model validation was performed with field data from a well group of an offshore oilfield. Finally, the effect of thermal degradation on polymer flooding was studied using the proposed model. Experimental results showed that the polymer concentration remained unchanged, while the viscosity degraded exponentially with time after degradation. The polymer viscosity was functionally dependent on the polymer degradation time (PDT), which represented the elapsed time started from the polymer particle injection. Tracing the real flow path of polymer particle was required. Therefore, the presented simulation model was streamline-assistant. Equation of PDT vs. time of flight (TOF) along streamline was built by the law of polymer particle transport. Based on the field polymer sample and dynamic data, the new model proved its accuracy. Study of degradation effect on polymer flooding indicated: (1) the viscosity loss increased with TOF exponentially in the main body of polymer-slug and remained constant in the slug front; (2) the responding time of polymer flooding was delayed, but the effective time was prolonged; (3) the breakthrough of subsequent water was eased; (4) the capacity of polymer adjusting injection profile was diminished; (5) the incremental recovery was reduced significantly. In general, the effect of thermal degradation on polymer flooding performance was rather negative. This paper provides a more comprehensive insight into polymer thermal degradation in both the physical process and field application. The proposed simulation model offers an effective means for simulating the polymer flooding process with thermal degradation. The negative effect of thermal degradation suggests that the polymer thermal stability should be given full consideration when designing polymer flooding project in elevated-temperature reservoirs.

Keywords: polymer flooding, elevated-temperature reservoir, thermal degradation, numerical simulation

Procedia PDF Downloads 138
33086 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning

Authors: R. Abdulrahman, A. Eardley, A. Soliman

Abstract:

The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.

Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)

Procedia PDF Downloads 183
33085 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: David Koren, Vojko Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction

Procedia PDF Downloads 300
33084 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design

Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler

Abstract:

When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.

Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing

Procedia PDF Downloads 78
33083 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 14
33082 Seismic Evaluation of Connected and Disconnected Piled Raft Foundations

Authors: Ali Fallah Yeznabad, Mohammad H. Baziar, Alireza Saedi Azizkandi

Abstract:

Rafts may be used when a low bearing capacity exists underneath the foundation and may be combined by piles in some special circumstances; such as to reduce settlements or high groundwater to control buoyancy. From structural point of view, these piles could be both connected or disconnected from the raft and are to be classified as Piled Rafts (PR) or Disconnected Piled Rafts (DPR). Although the researches about the behavior of piled rafts subjected to vertical loading is really extensive, in the context of dynamic load and earthquake loading, the studies are very limited. In this study, to clarify these foundations’ performance under dynamic loading, series of Shaking Table tests have been performed. The square raft and four piles in connected and disconnected configurations were used in dry silica sand and the model was experimented using a shaking table under 1-g conditions. Moreover, numerical investigation using finite element software have been conducted to better understand the differences and advantages. Our observations demonstrates that in connected Piled Rafts piles have to bear greater amount of moment in their upper parts, however this moments are approximately 40% lower in disconnected piled rafts in the same conditions and loading. Considering the Rafts’ lateral movement which be of crucial importance in foundations performance evaluation, connected piled rafts show much better performance with about 30% less lateral movement. Further, it was observed on confirmed both through laboratory tests and numerical analysis, that adding the superstructure over the piled raft foundation the raft separates from the soil and it significantly increases rocking of the raft which was observed to be the main reason of increase in piles’ moments under superstructure interaction with the foundation.

Keywords: Piled Rafts (PR), Disconnected Piled Rafts (DPR), dynamic loading, shaking table, seismic performance

Procedia PDF Downloads 428
33081 The Rapid Industrialization Model

Authors: Fredrick Etyang

Abstract:

This paper presents a Rapid Industrialization Model (RIM) designed to support existing industrialization policies, strategies and industrial development plans at National, Regional and Constituent level in Africa. The model will reinforce efforts to attainment of inclusive and sustainable industrialization of Africa by state and non-state actors. The overall objective of this model is to serve as a framework for rapid industrialization in developing economies and the specific objectives range from supporting rapid industrialization development to promoting a structural change in the economy, a balanced regional industrial growth, achievement of local, regional and international competitiveness in areas of clear comparative advantage in industrial exports and ultimately, the RIM will serve as a step-by-step guideline for the industrialization of African Economies. This model is a product of a scientific research process underpinned by desk research through the review of African countries development plans, strategies, datasets, industrialization efforts and consultation with key informants. The rigorous research process unearthed multi-directional and renewed efforts towards industrialization of Africa premised on collective commitment of individual states, regional economic communities and the African union commission among other strategic stakeholders. It was further, established that the inputs into industrialization of Africa outshine the levels of industrial development on the continent. The RIM comes in handy to serve as step-by-step framework for African countries to follow in their industrial development efforts of transforming inputs into tangible outputs and outcomes in the short, intermediate and long-run. This model postulates three stages of industrialization and three phases toward rapid industrialization of African economies, the model is simple to understand, easily implementable and contextualizable with high return on investment for each unit invested into industrialization supported by the model. Therefore, effective implementation of the model will result into inclusive and sustainable rapid industrialization of Africa.

Keywords: economic development, industrialization, economic efficiency, exports and imports

Procedia PDF Downloads 80
33080 West Meets Islam in Contemporary World, Leadership Perspective

Authors: Muhamad Rosdi Senam, Khairuddin Abdul Rashid, Azila Ahmad Sarkawi, Rapiah Mohd Zaini

Abstract:

Islam is a way of life than merely a religion that covers all facets of Muslim affairs and lifes. It provides the most comprehensive values, principles and guidance that are based on divine sources to all mankind in all spheres including leadership. Islamic leadership is all encompassing and holistic model of leadership that offers the tauhidic paradigm, spiritual and ethical (akhlaq) dimensions that are absent in the modern conventional leadership theories. Islamic leadership has a glorious history of great success from the era of the Prophet S.A.W. and the following caliphs that had conquered almost one third of the world territory during that time, as their leadership was paragon of excellence that followed to the spirits and teachings of the Qur’an and the Sunnah. As the modern civilisation designed by the West takes place, the modern leadership theories has been dominating the world and literature including those in the Muslim countries. However, it is clear that values and principles derived from Islam and the West are distinct, as the Islamic ones are based on divine, the non-Islamics are not indeed as there are based on human rational and judgement. Recent development in business organisations and literature have seen the tendency towards moral, ethical, even spiritual and positive form of leadership such as servant leadership, ethical leadership, authentic leadership and spiritual leadership that found its root in the Islamic model of leadership.This development has surfaced after series of serious ethical dilemma, corporate scandals and leadership crisis in the West. This paper aims to draw a comparative discussions and analysis between the modern conventional leadership theories with the Islamic leadership by highlighting the key dimensions that distinguish the two. It is suggested in this paper that the core dimensions of Islamic leadership are spiritual dimension, moral and ethical dimension and physical dimension which is also paralleled with the roles of khalifah of Allah on earth; relationship with Allah, relationship with human beings and relationship with the environment respectively. Islam is a way of life than merely a religion that covers all facets of Muslim affairs and lifes. It provides the most comprehensive values, principles and guidance that are based on divine sources to all mankind in all spheres including leadership. Islamic leadership is all encompassing and holistic model of leadership that offers the tauhidic paradigm, spiritual and ethical (akhlaq) dimensions that are absent in the modern conventional leadership theories. Islamic leadership has a glorious history of great success from the era of the Prophet S.A.W. and the following caliphs that had conquered almost one third of the world territory during that time, as their leadership was paragon of excellence that followed to the spirits and teachings of the Qur’an and the Sunnah. As the modern civilisation designed by the West takes place, the modern leadership theories has been dominating the world and literature including those in the Muslim countries. However, it is clear that values and principles derived from Islam and the West are distinct, as the Islamic ones are based on divine, the non-Islamics are not indeed as there are based on human rational and judgement. Recent development in business organisations and literature have seen the tendency towards moral, ethical, even spiritual and positive form of leadership such as servant leadership, ethical leadership, authentic leadership and spiritual leadership that found its root in the Islamic model of leadership.This development has surfaced after series of serious ethical dilemma, corporate scandals and leadership crisis in the West. This paper aims to draw a comparative discussions and analysis between the modern conventional leadership theories with the Islamic leadership by highlighting the key dimensions that distinguish the two. It is suggested in this paper that the core dimensions of Islamic leadership are spiritual dimension, moral and ethical dimension and physical dimension which is also paralleled with the roles of khalifah of Allah on earth; relationship with Allah, relationship with human beings and relationship with the environment respectively.

Keywords: conventional leadership, Islamic leadership, comparative, dimensions

Procedia PDF Downloads 524
33079 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops

Procedia PDF Downloads 279
33078 Model Averaging for Poisson Regression

Authors: Zhou Jianhong

Abstract:

Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again.

Keywords: model averaging, poission regression, Kullback-Leibler distance, statistics

Procedia PDF Downloads 518
33077 A Multi-Agent System for Accelerating the Delivery Process of Clinical Diagnostic Laboratory Results Using GSM Technology

Authors: Ayman M. Mansour, Bilal Hawashin, Hesham Alsalem

Abstract:

Faster delivery of laboratory test results is one of the most noticeable signs of good laboratory service and is often used as a key performance indicator of laboratory performance. Despite the availability of technology, the delivery time of clinical laboratory test results continues to be a cause of customer dissatisfaction which makes patients feel frustrated and they became careless to get their laboratory test results. The Medical Clinical Laboratory test results are highly sensitive and could harm patients especially with the severe case if they deliver in wrong time. Such results affect the treatment done by physicians if arrived at correct time efforts should, therefore, be made to ensure faster delivery of lab test results by utilizing new trusted, Robust and fast system. In this paper, we proposed a distributed Multi-Agent System to enhance and faster the process of laboratory test results delivery using SMS. The developed system relies on SMS messages because of the wide availability of GSM network comparing to the other network. The software provides the capability of knowledge sharing between different units and different laboratory medical centers. The system was built using java programming. To implement the proposed system we had many possible techniques. One of these is to use the peer-to-peer (P2P) model, where all the peers are treated equally and the service is distributed among all the peers of the network. However, for the pure P2P model, it is difficult to maintain the coherence of the network, discover new peers and ensure security. Also, security is a quite important issue since each node is allowed to join the network without any control mechanism. We thus take the hybrid P2P model, a model between the Client/Server model and the pure P2P model using GSM technology through SMS messages. This model satisfies our need. A GUI has been developed to provide the laboratory staff with the simple and easy way to interact with the system. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: multi-agent system, delivery process, GSM technology, clinical laboratory results

Procedia PDF Downloads 248
33076 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System

Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha

Abstract:

Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.

Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time

Procedia PDF Downloads 575
33075 Exfoliation of Functionalized High Structural Integrity Graphene Nanoplatelets at Extremely Low Temperature

Authors: Mohannad N. H. Al-Malichi

Abstract:

Because of its exceptional properties, graphene has become the most promising nanomaterial for the development of a new generation of advanced materials from battery electrodes to structural composites. However, current methods to meet requirements for the mass production of high-quality graphene are limited by harsh oxidation, high temperatures, and tedious processing steps. To extend the scope of the bulk production of graphene, herein, a facile, reproducible and cost-effective approach has been developed. This involved heating a specific mixture of chemical materials at an extremely low temperature (70 C) for a short period (7 minutes) to exfoliate functionalized graphene platelets with high structural integrity. The obtained graphene platelets have an average thickness of 3.86±0.71 nm and a lateral size less than ~2 µm with a low defect intensity ID/IG ~0.06. The thin film (~2 µm thick) exhibited a low surface resistance of ~0.63 Ω/sq⁻¹, confirming its high electrical conductivity. Additionally, these nanoplatelets were decorated with polar functional groups (epoxy and carboxyl groups), thus have the potential to toughen and provide multifunctional polymer nanocomposites. Moreover, such a simple method can be further exploited for the novel exfoliation of other layered two-dimensional materials such as MXenes.

Keywords: functionalized graphene nanoplatelets, high structural integrity graphene, low temperature exfoliation of graphene, functional graphene platelets

Procedia PDF Downloads 119