Search results for: deep wells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2486

Search results for: deep wells

1166 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 340
1165 A Study on the Factors Effecting Store Format Selection between SBOand MBOs for Sportswear and Sports Accessories in the Fashion Capital of India-Shillong, Tier III Indian City

Authors: Arnab Banerjee, Deep Sagar Verma

Abstract:

Tier 3 cities of India is home to one of the fastest growing socio-economic powers in the world and hence is the focus of a lot of business activity as it is almost a blue ocean giving the first mover a huge strategic advantage. Among the various sectors, the retailing is perhaps one of the most promising sectors. The study caries out 129 successfully structured mall-intercept interviews in the town of Shillong, Meghalaya in an attempt to understand the SBO and MBO shoppers. Demographic variables itself does not show any store format preference although discounts do attract the lower income group more while clear difference is observed among genders when it comes to importance of ambience, and it is more pronounced for SBO patrons. SBO patrons are more focused while MBO patrons are more into leisure shopping. Price is the most important predictor of satisfaction especially for MBO shoppers. The market shows three basic segments i.e experiential, relationship and value shoppers.

Keywords: demographic variables, degree of importance, degree of satisfaction, SBO and MBO

Procedia PDF Downloads 290
1164 Clothes Identification Using Inception ResNet V2 and MobileNet V2

Authors: Subodh Chandra Shakya, Badal Shrestha, Suni Thapa, Ashutosh Chauhan, Saugat Adhikari

Abstract:

To tackle our problem of clothes identification, we used different architectures of Convolutional Neural Networks. Among different architectures, the outcome from Inception ResNet V2 and MobileNet V2 seemed promising. On comparison of the metrices, we observed that the Inception ResNet V2 slightly outperforms MobileNet V2 for this purpose. So this paper of ours proposes the cloth identifier using Inception ResNet V2 and also contains the comparison between the outcome of ResNet V2 and MobileNet V2. The document here contains the results and findings of the research that we performed on the DeepFashion Dataset. To improve the dataset, we used different image preprocessing techniques like image shearing, image rotation, and denoising. The whole experiment was conducted with the intention of testing the efficiency of convolutional neural networks on cloth identification so that we could develop a reliable system that is good enough in identifying the clothes worn by the users. The whole system can be integrated with some kind of recommendation system.

Keywords: inception ResNet, convolutional neural net, deep learning, confusion matrix, data augmentation, data preprocessing

Procedia PDF Downloads 188
1163 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning

Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj

Abstract:

Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.

Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net

Procedia PDF Downloads 156
1162 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance

Authors: George Zhou, Yunchan Chen, Candace Chien

Abstract:

Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.

Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning

Procedia PDF Downloads 89
1161 Contribution to the Hydrogeochemical Investigations on the Wajid Aquifer System, Southwestern Part of Saudi Arabia

Authors: Mohamed Ahmed, Ezat Korany, Abdelaziz Al Basam, Osama Kasem

Abstract:

The arid climate, low rate of precipitations and population reflect the increasing of groundwater uses as the main source of water in Saudi Arabia. The Wajid Aquifer System represents a regional groundwater aquifer system along the edge of the crystalline Arabian Shield near the southwestern tip of the Arabian Peninsula. The aquifer extends across the border of Saudi Arabia and Yemen from the Asir –Yemen Highlands to the Rub al Khali Depression and possibly to the Gulf coast (at the southwestern tip). The present work is representing a hydrogeochemical investigation on the Wajid Aquifer System. The studied area is being classified into three zones. The 1st zone is West of Wadi Ad Dawasir (Northern part of the studied area), the 2nd is Najran-Asir Zone (southern part of the studied area), and the 3rd zone is the intermediate -central zone (occupying the central area between the last two zones). The groundwater samples were collected and chemically analyzed for physicochemical properties such as pH, electrical conductivity, total hardness (TH), alkalinity (pH), total dissolved solids (TDS), major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42- and Cl-), and trace elements. Some parameters such as sodium adsorption ratio (SAR), soluble sodium percentage (Na%), potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio, hydrochemical coefficients, hydrochemical formula, ion dominance, salt combinations and water types were also calculated in order to evaluate the quality of the groundwater resources in the selected areas for different purposes. The distribution of the chemical constituents and their interrelationships are illustrated by different hydrochemical graphs. Groundwater depths and the depth to water were measured to study the effect of discharge on both the water level and the salinity of the studied groundwater wells. A detailed comparison between the three studied zones according to the variations shown by the chemical and field investigations are discussed in detailed within the work.

Keywords: Najran-Asir, Wadi Ad Dawasir, Wajid Aquifer System, effect of discharge

Procedia PDF Downloads 137
1160 Evaluation of Surface Water and Groundwater Quality in Parts of Umunneochi Southeast, Nigeria

Authors: Joshua Chima Chizoba, Wisdom Izuchukwu Uzoma, Elizabeth Ifeyiwa Okoyeh

Abstract:

Water cannot be optimally used and sustained unless the quality is periodically assessed. The study area Umunneochi and environs are located in south eastern part of Nigeria. It stretches geographically from latitudes 50501N to 60000N and longitudes 70201E to 70301. The major geologic formations in the area include the Asu River group, Nkporo Shale, and Ajali Sandstone. The aim of this study is to evaluate the hydrochemical characteristics of surface and ground water sources in parts of Umunneochi and environs in order to establish portability of the water sources for drinking, domestic and irrigation purposes. A total of 15 samples were collected randomly from streams, springs and wells. The samples were analyzed for physicochemical parameters and heavy metals using handheld digital kits, photometer, titration method and Atomic Absorption Spectrophotometer (AAS) following acceptable standards. The obtained analytical data were interpreted, and results were compared with World Health Organization (WHO) standard. The concentration of pH, SO42-and Cl- range from 5.81 mg/l – 6.07 mg/l, 41.93 mg/l – 142.95 mg/l and 20.00 mg/l – 111 mg/l respectively, while Pb and Zn revealed a relative low mean concentration of 0.14 mg/l and 0.40 mg/l, which are all within (WHO) permissible limits except pH. About 27% of the samples are moderately hard. This is attributed to the mining activities in the areas. The abundance of cations and anions in the area are in the order of K+>Na+>Mg2+>Ca2+ and SO4->Cl->HCO3->NO3-, respectively. Chloride, bicarbonate, and nitrate are all within the permissible limits. 13.33% of the total samples contain Sulphate above the standard permissible limits. The values of calculated Water Quality Index (WQI) are less than 50 indicating excellent water. The predominant water-type in the study area is Na-Cl water type and mixed Ca-Mg-Cl water type based on the sample plots on the Piper diagram. The Sodium Absorption Ratio (SAR) calculations showed excellent water for consumption and also good water for irrigation purpose with low sodium and alkalinity ratio respectively. Government water projects are recommended in the area for sustainable domestic and agricultural water supply to ease the stress of water supply problems.

Keywords: groundwater, hydrochemical, physichochemical, water-type, sodium adsorption ratio

Procedia PDF Downloads 132
1159 Study for Establishing a Concept of Underground Mining in a Folded Deposit with Weathering

Authors: Chandan Pramanik, Bikramjit Chanda

Abstract:

Large metal mines operated with open-cast mining methods must transition to underground mining at the conclusion of the operation; however, this requires a period of a difficult time when production convergence due to interference between the two mining methods. A transition model with collaborative mining operations is presented and established in this work, based on the case of the South Kaliapani Underground Project, to address these technical issues of inadequate production security and other mining challenges during the transition phase and beyond. By integrating the technology of the small-scale Drift and Fill method and Highly productive Sub Level Open Stoping at deep section, this hybrid mining concept tries to eliminate major bottlenecks and offers an optimized production profile with the safe and sustainable operation. Considering every geo-mining aspect, this study offers a genuine and precise technical deliberation for the transition from open pit to underground mining.

Keywords: drift and fill, geo-mining aspect, sublevel open stoping, underground mining method

Procedia PDF Downloads 100
1158 Experimental Technique to Study Colloid Deposition in Porous Media

Authors: Abdelkader Djehiche, Mostefa Gafsi, Henri Bertin, Aziz Omari

Abstract:

The flows of colloidal suspensions in porous media find many applications in fields such as Petroleum, Hydraulic engineering, deep-bed filtration. For each application, the scientific problems can be summarized the flow in porous medium of a colloidal suspension whose particles having characteristic dimension is considerable in comparison with the pores dimension. In certain cases, one can observe a deposit of particles on the surface of the pores which results in a significant modification in the physical properties of the porous medium. The objective of our study is to use a non-destructive experimental method, the attenuation of g-rays, to study the influence of the number of Peclet on the deposit of latex particles in a consolidated porous medium. The first results obtained show a good agreement between local and global measurements of the deposit of the particles in porous medium. The deposit takes place in a progressive way along the porous medium and leads to a monolayer deposit of which the average thickness is of about the size diameter of the colloidal particles.

Keywords: colloid, gamma ray, Peclet number, permeability, porous medium

Procedia PDF Downloads 188
1157 Burial Findings in Prehistory Qatar: Archaeological Perspective

Authors: Sherine El-Menshawy

Abstract:

Death, funerary beliefs and customs form an essential feature of belief systems and practices in many cultures. It is evident that during the pre-historical periods, various techniques of corpses burial and funerary rituals were conducted. Occasionally, corpses were merely buried in the sand, or in a grave where the body is placed in a contracted position- with knees drawn up under the chin and hands normally lying before the face- with mounds of sand, marking the grave or the bodies were burnt. However, common practice, that was demonstrable in the archaeological record, was burial. The earliest graves were very simple consisting of a shallow circular or oval pits in the ground. The current study focuses on the material culture at Qatar during the pre-historical period, specifically their funerary architecture and burial practices. Since information about burial customs and funerary practices in Qatar prehistory is both scarce and fragmentary, the importance of such study is to answer research questions related to funerary believes and burial habits during the early stages of civilization transformations at prehistory Qatar compared with Mesopotamia, since chronologically, the earliest pottery discovered in Qatar belongs to prehistoric Ubaid culture of Mesopotamia, that was collected from the excavations. This will lead to deep understanding of life and social status in pre-historical period at Qatar. The research also explores the relationship between pre-history Qatar funerary traditions and those of neighboring cultures in the Mesopotamia and Ancient Egypt, with the aim of ascertaining the distinctive aspects of pre-history Qatar culture, the reception of classical culture and the role it played in the creation of local cultural identities in the Near East. Methodologies of this study based on published books and articles in addition to unpublished reports of the Danish excavation team that excavated in and around Doha, Qatar archaeological sites from the 50th. The study is also constructed on compared material related to burial customs found in Mesopotamia. Therefore this current research: (i) Advances knowledge of the burial customs of the ancient people who inhabited Qatar, a study which is unknown recently to scholars, the study though will apply deep understanding of the history of ancient Qatar and its culture and values with an aim to share this invaluable human heritage. (ii) The study is of special significance for the field of studies, since evidence derived from the current study has great value for the study of living conditions, social structure, religious beliefs and ritual practices. (iii) Excavations brought to light burials of different categories. The graves date to the bronze and Iron ages. Their structure varies between mounds above the ground or burials below the ground level. Evidence comes from sites such as Al-Da’asa, Ras Abruk, and Al-Khor. Painted Ubaid sherds of Mesopotamian culture have been discovered in Qatar from sites such as Al-Da’asa, Ras Abruk, and Bir Zekrit. In conclusion, there is no comprehensive study which has been done and lack of general synthesis of information about funerary practices is problematic. Therefore, the study will fill in the gaps in the area.

Keywords: archaeological, burial, findings, prehistory, Qatar

Procedia PDF Downloads 151
1156 Ground Water Pollution Investigation around Çorum Stream Basin in Turkey

Authors: Halil Bas, Unal Demiray, Sukru Dursun

Abstract:

Water and ground water pollution at the most of the countries is important problem. Investigation of water pollution source must be carried out to save fresh water. Because fresh water sources are very limited and recent sources are not enough for increasing population of world. In this study, investigation was carried out on pollution factors effecting the quality of the groundwater in Çorum Stream Basin in Turkey. Effect of geological structure of the region and the interaction between the stream and groundwater was researched. For the investigation, stream and groundwater sampling were performed at rainy and dry seasons to see if there is a change on quality parameters. The results were evaluated by the computer programs and then graphics, distribution maps were prepared. Thus, degree of the quality and pollution were tried to understand. According to analysis results, because the results of streams and the ground waters are not so close to each other we can say that there is no interaction between the stream and the groundwater. As the irrigation water, the stream waters are generally in the range between C3S1 region and the ground waters are generally in the range between C3S1 and C4S2 regions according to US Salinity Laboratory Diagram. According to Wilcox diagram stream waters are generally good-permissible and ground waters are generally good permissible, doubtful to unsuitable and unsuitable type. Especially ground waters are doubtful to unsuitable and unsuitable types in dry season. It may be assumed that as the result of relative increase in concentration of salt minerals. Especially samples from groundwater wells bored close to gypsium bearing units have high hardness, electrical conductivity and salinity values. Thus for drinking and irrigation these waters are determined as unsuitable. As a result of these studies, it is understood that the groundwater especially was effected by the lithological contamination rather than the anthropogenic or the other types of pollution. Because the alluvium is covered by the silt and clay lithology it is not affected by the anthropogenic and the other foreign factors. The results of solid waste disposal site leachate indicate that this site would have a risk potential for pollution in the future. Although the parameters did not exceed the maximum dangerous values it does not mean that they will not be dangerous in the future, and this case must be taken into account.

Keywords: Çorum, environment, groundwater, hydrogeology, geology, pollution, quality, stream

Procedia PDF Downloads 502
1155 Study and Design of Solar Inverter System

Authors: Khaled A. Madi, Abdulalhakim O. Naji, Hassouna A. Aalaoh, Elmahdi Eldeeb

Abstract:

Solar energy is one of the cleanest energy sources with no environmental impact. Due to rapid increase in industrial as well as domestic needs, solar energy becomes a good candidate for safe and easy to handle energy source, especially after it becomes available due to reduction of manufacturing price. The main part of the solar inverter system is the inverter where the DC is inverted to AC, where we try to minimize the loss of power to the minimum possible level by the use of microcontroller. In this work, a deep investigation is made experimentally as well as theoretically for a microcontroller based variable frequency power inverter. The microcontroller will provide the variable frequency Pulse Width Modulation (PWM) signal that will control the switching of the gate of the Insulating Gate Bipolar Transistor (IGBT) with less harmonics at the output of power inverter which can be fed to the public grid at high quality. The proposed work for single phase as well as three phases is also simulated using Matlab/Simulink where we found a good agreement between the simulated and the practical results, even though the experimental work were done in the laboratory of the academy.

Keywords: solar, inverter, PV, solar inverter system

Procedia PDF Downloads 463
1154 Public and Private Domains: Contradictions and Covenants in Evolution of Game Policy

Authors: Mingzhu Lyu, Runlei Ren, Xinyu Dai, Jiaxuan Pi, Kanghua Li

Abstract:

The study of video game policy in China has been divided into two branches: "pedagogy" and "game industry". The binary perspective of policy reveals the "contradictory" side of policy performance. Based on this suspicion, this paper constructs a three-dimensional sequence of time, content and institutions of game policy, and establishes the "contradictory" aspects of policy performance between 1949 and 2019. A central-level database of game policies, clarifying that our game policies follow a shift from reactive response to proactive guidance, stigmatization and de-stigmatization, the evolutionary logic. The study found that the central government has always maintained a strict requirement and prudent guidance for game policy, and the deep contradictions in game policy stem from the essential conflict between the natural amusement of games and the seriousness of the educational system, and the Chinese government's use of the understanding of the public and private domains and the Managing of the conflict.

Keywords: game industry, gaming policy, public domain, private domain

Procedia PDF Downloads 149
1153 Finite State Markov Chain Model of Pollutants from Service Stations

Authors: Amina Boukelkoul, Rahil Boukelkoul, Leila Maachia

Abstract:

The cumulative vapors emitted from the service stations may represent a hazard to the environment and the population. Besides fuel spill and their penetration into deep soil layers are the main contributors to soil and ground-water contamination in the vicinity of the petrol stations. The amount of the effluents from the service stations depends on strategy of maintenance and the policy adopted by the management to reduce the pollution. One key of the proposed approach is the idea of managing the effluents from the service stations which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating a probabilistic percentage of the amount of emitted pollutants is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the amount according to various options of operation.

Keywords: environment, markov modeling, pollution, service station

Procedia PDF Downloads 472
1152 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 178
1151 An Anatomic Approach to the Lingual Artery in the Carotid Triangle in South Indian Population

Authors: Ashwin Rai, Rajalakshmi Rai, Rajanigandha Vadgoankar

Abstract:

Lingual artery is the chief artery of the tongue and the neighboring structures pertaining to the oral cavity. At the carotid triangle, this artery arises from the external carotid artery opposite to the tip of greater cornua of hyoid bone, undergoes a tortuous course with its first part being crossed by the hypoglossal nerve and runs beneath the digastric muscle. Then it continues to supply the tongue as the deep lingual artery. The aim of this study is to draw surgeon's attention to the course of lingual artery in this area since it can be accidentally lesioned causing an extensive hemorrhage in certain surgical or dental procedures. The study was conducted on 44 formalin fixed head and neck specimens focusing on the anatomic relations of lingual artery. In this study, we found that the lingual artery is located inferior to the digastric muscle and the hypoglossal nerve contradictory to the classical description. This data would be useful during ligation of lingual artery to avoid injury to the hypoglossal nerve in surgeries related to the anterior triangle of neck.

Keywords: anterior triangle, digastric muscle, hypoglossal nerve, lingual artery

Procedia PDF Downloads 179
1150 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository

Procedia PDF Downloads 275
1149 Leadership Dynamics and Teacher Engagement in Greek Education

Authors: Vasileios Floros

Abstract:

This article delves into the intricate interplay between leadership styles and teacher satisfaction within the Greek educational framework, underscoring the pivotal role of school leadership in shaping educational success and fostering a conducive school culture. Through a comprehensive analysis, the study explores various leadership theories, the psychological contract between teachers and leaders, and the impact of leadership on teacher job satisfaction and group dynamics within educational institutions. It highlights how leadership efficacy can significantly influence the organizational climate, teacher motivation, and, ultimately, educational outcomes. The findings suggest that effective leadership, characterized by a deep understanding of teacher psychology, thoughtful engagement with the school culture, and strategic application of leadership styles, can lead to heightened teacher satisfaction and enhanced educational performance. This research offers valuable insights for educational policymakers, school leaders, and the broader academic community interested in optimizing leadership practices to foster an enriching educational environment in Greece.

Keywords: educational leadership, teacher satisfaction, school culture, leadership styles, Greek education

Procedia PDF Downloads 53
1148 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence

Procedia PDF Downloads 144
1147 The Liminal Performances of Female-Led (Sufi) Rituals: An Anthropological in Pakistan

Authors: Sana Iqbal

Abstract:

The female voice in Sufi poetry has been studied as a symbol of humility and devotion. Throughout the centuries, the Sufi shrines have also sheltered women and have served as a source of emotional strength in times of difficulty. Although women have been central to Sufi Islam, female-led rituals and performances (of veneration) are rarely studied as acts of empowerment and symbols of healing. This is especially true for rituals performed in informal spaces, which require going beyond the shrine practices. The rituals and meanings associated with Khizr Khwaja (or Sindhi Hindu god Jhelelal) among women in Punjab can serve as a useful case study to unpack some of these meanings. The paper aims to shed light on female-led rituals among women from Punjab associated with the folkloric traditions associated with Khizar Khwaja, Zinda Pir, Jhulelal or river god in the South Asian region to protect mariners from possible risks (since trade was primarily dependent on water channels) or for inducing timely rain date back to the 10th century in Sindh. However, these meanings and associations have evolved and the paper thus aims to establish a relationship between this figure and the women in Punjab by analysing the findings from an ethnographic study. It traces the historical meanings and significance attached to the divine figure and the wells (informal spaces) associated with him since the rituals performed by women is now infused solely with seeking fertility or to be blessed with a successful pregnancy, as opposed to him being celebrated for other reasons in older times. These associations beg the question of what women gain out of these rituals and making offerings to the mysterious figure of Khizr. Anecdotal evidence in the form of interviews conducted in Bhakar and Talwandi (Punjab) during the summer of 2015 helped to explore the stories related to this legend while also allowing us to witness some of the female-led ritual practices. It can be said that the symbols adopted in the ritual practices invoke liminality for women, which is a blend of opposites. The paper argues that this liminality/journey has been used as a vehicle to transcend all worldly structures of power and it symbolically emphasises the richness of feminine love/devotion and grants healing to female devotees.

Keywords: transgression, gender, liminality, ritual

Procedia PDF Downloads 127
1146 Design and Analysis of Shielding Magnetic Field for Active Space Radiation Protection

Authors: Chaoyan Huang, Hongxia Zheng

Abstract:

For deep space exploration and long duration interplanetary manned missions, protection of astronauts from cosmic radiation is an unavoidable problem. However, passive shielding can be little effective for protecting particles which energies are greater than 1GeV/nucleon. In this study, active magnetic protection method is adopted. Taking into account the structure and size of the end-cap, eight shielding magnetic field configurations are designed based on the Hoffman configuration. The shielding effect of shielding magnetic field structure, intensity B and thickness L on H particles with 2GeV energy is compared by test particle simulation. The result shows that the shielding effect is better with the linear type magnetic field structure in the end-cap region. Furthermore, two magnetic field configurations with better shielding effect are investigated through H and He galactic cosmic spectra. And the shielding effect of the linear type configuration adopted in the barrel and end-cap regions is best.

Keywords: galactic cosmic rays, active protection, shielding magnetic field configuration, shielding effect

Procedia PDF Downloads 145
1145 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 176
1144 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 146
1143 Exhaustive Study of Essential Constraint Satisfaction Problem Techniques Based on N-Queens Problem

Authors: Md. Ahsan Ayub, Kazi A. Kalpoma, Humaira Tasnim Proma, Syed Mehrab Kabir, Rakib Ibna Hamid Chowdhury

Abstract:

Constraint Satisfaction Problem (CSP) is observed in various applications, i.e., scheduling problems, timetabling problems, assignment problems, etc. Researchers adopt a CSP technique to tackle a certain problem; however, each technique follows different approaches and ways to solve a problem network. In our exhaustive study, it has been possible to visualize the processes of essential CSP algorithms from a very concrete constraint satisfaction example, NQueens Problem, in order to possess a deep understanding about how a particular constraint satisfaction problem will be dealt with by our studied and implemented techniques. Besides, benchmark results - time vs. value of N in N-Queens - have been generated from our implemented approaches, which help understand at what factor each algorithm produces solutions; especially, in N-Queens puzzle. Thus, extended decisions can be made to instantiate a real life problem within CSP’s framework.

Keywords: arc consistency (AC), backjumping algorithm (BJ), backtracking algorithm (BT), constraint satisfaction problem (CSP), forward checking (FC), least constrained values (LCV), maintaining arc consistency (MAC), minimum remaining values (MRV), N-Queens problem

Procedia PDF Downloads 365
1142 Studying the Schema of Afghan Immigrants about Iranians; A Case Study of Immigrants in Tehran Province

Authors: Mohammad Ayobi

Abstract:

Afghans have been immigrating to Iran for many years; The re-establishment of the Taliban in Afghanistan caused a flood of Afghan immigrants to Iran. One of the important issues related to the arrival of Afghan immigrants is the view that Afghan immigrants have toward Iranians. In this research, we seek to identify the schema of Afghan immigrants living in Iran about Iranians. A schema is a set of data or generalized knowledge that is formed in connection with a particular group or a particular person, or even a particular nationality to identify a person with pre-determined judgments about certain matters. The schemata between certain nationalities have a direct impact on the formation of interactions between them and can be effective in establishing or not establishing proper communication between the Afghan immigrant nationality and Iranians. For the scientific understanding of research, we use the theory of “schemata.” The method of this study is qualitative, and its data will be collected through semi-structured deep interviews, and data will be analyzed by thematic analysis. The expected findings in this study are that the schemata of Afghan immigrants are more negative than Iranians because Iranians are self-centered and fanatical about Afghans, and Afghans are only workers to them.

Keywords: schema study, Afghan immigrants, Iranians, in-depth interview

Procedia PDF Downloads 87
1141 Fine Grained Action Recognition of Skateboarding Tricks

Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli

Abstract:

In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.

Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling

Procedia PDF Downloads 231
1140 A PHREEQC Reactive Transport Simulation for Simply Determining Scaling during Desalination

Authors: Andrew Freiburger, Sergi Molins

Abstract:

Freshwater is a vital resource; yet, the supply of clean freshwater is diminishing as the consequence of melting snow and ice from global warming, pollution from industry, and an increasing demand from human population growth. The unsustainable trajectory of diminishing water resources is projected to jeopardize water security for billions of people in the 21st century. Membrane desalination technologies may resolve the growing discrepancy between supply and demand by filtering arbitrary feed water into a fraction of renewable, clean water and a fraction of highly concentrated brine. The leading hindrance of membrane desalination is fouling, whereby the highly concentrated brine solution encourages micro-organismal colonization and/or the precipitation of occlusive minerals (i.e. scale) upon the membrane surface. Thus, an understanding of brine formation is necessary to mitigate membrane fouling and to develop efficacious desalination technologies that can bolster the supply of available freshwater. This study presents a reactive transport simulation of brine formation and scale deposition during reverse osmosis (RO) desalination. The simulation conceptually represents the RO module as a one-dimensional domain, where feed water directionally enters the domain with a prescribed fluid velocity and is iteratively concentrated in the immobile layer of a dual porosity model. Geochemical PHREEQC code numerically evaluated the conceptual model with parameters for the BW30-400 RO module and for real water feed sources – e.g. the Red and Mediterranean seas, and produced waters from American oil-wells, based upon peer-review data. The presented simulation is computationally simpler, and hence less resource intensive, than the existent and more rigorous simulations of desalination phenomena, like TOUGHREACT. The end-user may readily prepare input files and execute simulations on a personal computer with open source software. The graphical results of fouling-potential and brine characteristics may therefore be particularly useful as the initial tool for screening candidate feed water sources and/or informing the selection of an RO module.

Keywords: desalination, PHREEQC, reactive transport, scaling

Procedia PDF Downloads 136
1139 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 164
1138 The Rehabilitation Solutions for the Hydraulic Jump Sweepout: A Case Study from India

Authors: Ali Heidari, Hany Saleem

Abstract:

The tailwater requirements are important criteria in the design of the stilling basins as energy dissipation of the spillways. The adequate tailwater level that ensures the hydraulic jump inside the basin should be fulfilled by the river's natural water level and the apron depth downstream of the chute. The requirements of the hydraulic jump should mainly be checked for the design flood, however, the drawn jump condition should not be critical in the discharges lesser than the design flood. The tailwater requirement is not met in Almatti dam, built in 2005 in India, and the jump sweep out from the basin, resulting in significant scour in the apron and end sill of the basin. This paper discusses different hydraulic solutions as sustainable solutions for the rehabilitation program. The deep apron alternative is proposed for the fewer bays of the spillway as the most cost-effective, sustainable solution. The apron level of 15 gates out of 26 gates should decrease by 5.4 m compared to the existing design to ensure a safe hydraulic jump up to the discharge of 10,000 m3/s i.e. 30% of the updated PMF.

Keywords: dam, spillway, stilling basin, Almatti

Procedia PDF Downloads 59
1137 Variation of Quality of Roller-Compacted Concrete Based on Consistency

Authors: C. Chhorn, S. H. Han, S. W. Lee

Abstract:

Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.

Keywords: compacted depth, consistency, international roughness index (IRI), pavement, roller-compacted concrete (RCC), skid resistance, strength

Procedia PDF Downloads 243