Search results for: stock movement prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4696

Search results for: stock movement prediction

3406 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries

Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li

Abstract:

Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net

Procedia PDF Downloads 154
3405 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: road safety, prediction, accident, model, Qatar

Procedia PDF Downloads 258
3404 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 168
3403 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention

Authors: Chia-Jung Li, Kuan-Hao Tsui

Abstract:

As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.

Keywords: multi-omics, nutrients, ferroptosis, ovarian aging

Procedia PDF Downloads 103
3402 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy

Procedia PDF Downloads 377
3401 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province

Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).

Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR

Procedia PDF Downloads 199
3400 Fatigue Life Evaluation of Al6061/Al2O3 and Al6061/SiC Composites under Uniaxial and Multiaxial Loading Conditions

Authors: C. E. Sutton, A. Varvani-Farahani

Abstract:

Fatigue damage and life prediction of particle metal matrix composites (PMMCs) under uniaxial and multiaxial loading conditions were investigated. Three PMM composite materials of Al6061/Al2O3/20p-T6, Al6061/Al2O3/22p-T6 and Al6061/SiC/17w-T6 tested under tensile, torsion, and combined tension-torsion fatigue cycling were evaluated with various fatigue damage models. The fatigue damage models of Smith-Watson-Topper (S. W. T.), Ellyin, Brown-Miller, Fatemi-Socie, and Varvani were compared for their capability to assess the fatigue damage of materials undergoing various loading conditions. Fatigue life predication results were then evaluated by implementing material-dependent coefficients that factored in the effects of the particle reinforcement in the earlier developed Varvani model. The critical plane-energy approach incorporated the critical plane as the plane of crack initiation and early stage of crack growth. The strain energy density was calculated on the critical plane incorporating stress and strain components acting on the plane. This approach successfully evaluated fatigue damage values versus fatigue lives within a narrower band for both uniaxial and multiaxial loading conditions as compared with other damage approaches studied in this paper.

Keywords: fatigue damage, life prediction, critical plane approach, energy approach, PMM composites

Procedia PDF Downloads 403
3399 Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait

Authors: Ahmed M. AlHasem

Abstract:

The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions.

Keywords: astronomy, cultural heritage, statistical analysis, weather prediction

Procedia PDF Downloads 123
3398 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection

Procedia PDF Downloads 198
3397 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
3396 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 410
3395 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 429
3394 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 351
3393 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV

Authors: Maria Pavlova

Abstract:

In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.

Keywords: camera, object recognition, OpenCV, Raspberry

Procedia PDF Downloads 218
3392 Effects of GRF on CMJ in Different Wooden Surface Systems

Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen

Abstract:

Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.

Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad

Procedia PDF Downloads 446
3391 Superiority of High Frequency Based Volatility Models: Empirical Evidence from an Emerging Market

Authors: Sibel Celik, Hüseyin Ergin

Abstract:

The paper aims to find the best volatility forecasting model for stock markets in Turkey. For this purpose, we compare performance of different volatility models-both traditional GARCH model and high frequency based volatility models- and conclude that both in pre-crisis and crisis period, the performance of high frequency based volatility models are better than traditional GARCH model. The findings of paper are important for policy makers, financial institutions and investors.

Keywords: volatility, GARCH model, realized volatility, high frequency data

Procedia PDF Downloads 486
3390 Assessing the Impact of Additional Information during Motor Preparation in Lane Change Task

Authors: Nikita Rajendra Sharma, Jai Prakash Kushvah, Gerhard Rinkenauer

Abstract:

Driving a car is a discrete aiming movement in which drivers aim at successful extraction of relevant information and elimination of potentially distracting one. It is the motor preparation which enables one to react to certain stimuli onsite by allowing perceptual process for optimal adjustment. Drivers prepare their responses according to the available resources of advanced and ongoing information to drive efficiently. It requires constant programming and reprogramming of the motor system. The reaction time (RT) is shorter when a response signal is preceded by a warning signal. The reason behind this reduced time in responding to targets is that the warning signal causes the participant to prepare for the upcoming response by updating the motor program before the execution. While performing the primary task of changing lanes while driving, the simultaneous occurrence of additional information during the presentation of cues (congruent or incongruent with respect to target cue) might impact the motor preparation and execution. The presence of additional information (other than warning or response signal) between warning signal and imperative stimulus influences human motor preparation to a reasonable extent. The present study was aimed to assess the impact of congruent and incongruent additional information (with respect to imperative stimulus) on driving performance (reaction time, steering wheel amplitude, and steering wheel duration) during a lane change task. implementing movement pre-cueing paradigm. 22 young valid car-drivers (Mage = 24.1+/- 3.21 years, M = 10, F = 12, age-range 21-33 years) participated in the study. The study revealed that additional information influenced the overall driving performance as potential distractors and relevant information. Findings suggest that the events of additional information relatively influenced the reaction time and steering wheel angle as potential distractor or irrelevant information. Participants took longer to respond, and higher steering wheel angles were reported for targets coupled with additional information in comparison with warning signs preceded by potential distractors and the participants' response time was more for a higher number of lanes (2 Lanes > 1 Lane). The same additional information appearing interchangeably at warning signals and targets worked as relevant information facilitating the motor programming in the trails where they were congruent with the direction of lane change direction.

Keywords: additional information, lane change task, motor preparation, movement pre-cueing, reaction time, steering wheel amplitude

Procedia PDF Downloads 191
3389 Moving beyond Medical Tourism: An Analysis of Intra-Regional Medical Mobility in the Global South

Authors: Tyler D. Cesarone, Tatiana M. Wugalter

Abstract:

The movement of patients from the Global North to the Global South in pursuit of inexpensive healthcare and touristic experiences dominates the academic discourse on international medical travel (IMT). However, medical travel exists in higher numbers between Global South countries as patients who lack trust in, and feel disenfranchised by, their national healthcare systems seek treatment in nearby countries. Through a review of the existing literature, this paper examines patterns of IMT in the Middle East, Southeast Asia, and Southern Africa, distinguishing North-South medical tourism from South-South intra-regional medical mobility (IRMM). Evidence from these case studies demonstrates that notions of medical distrust and disenfranchisement, rooted in low-resourced and poor quality healthcare systems, are key drivers of IRMM in the Global South. The movement of patients from lower income to proximate higher income countries not only reveals tensions between patients and their healthcare systems but widens gaps in the quality of healthcare between departing and destination countries. In analyzing these cross-regional similarities, the paper moves beyond the current literature’s focus on singular case studies to expose global patterns of South-South IRMM. This presents a shift from the traditional focus on North-South medical tourism, demonstrating how disparities in healthcare systems both influence and are influenced by IRMM.

Keywords: global South, healthcare quality, international medical travel (IMT), intra-regional medical mobility (IRMM), medical disenfranchisement, medical distrust, medical tourism

Procedia PDF Downloads 399
3388 A Psychosocial Approach to Community Development, Lessons from the Transition Town Movement in Italy

Authors: Anna Zoli

Abstract:

In recent years, we have been witnessing a surge of locally-sustained communities committed to promoting new ethical economies while fostering the full participation of socially excluded groups and individuals into the labor market. This article explores the practices of a particular community development model, Transition Towns, as implemented in Monteveglio, Italy. Data were gathered throughout two years long ethnography, using multiple qualitative techniques, namely participant observation, document analysis, and semi-structured interviews. Data were analyzed triangulating from multiple sources of evidence and using hybrid thematic analysis. Major findings show that Transition Town movement works on two main axes, vertical and horizontal. Vertical transition involves interactions with an overreaching political, economic, and social structure which is not transitioning, and therefore poses structural resistances to the transformative social change fostered by the TT. Conversely, horizontal transition involves intragroup dynamics within the communal relational and geographical spaces and therefore poses process resistances between 'self and others' to the interpersonal communication between TT members. The study concludes that a psychosocial approach to community development is essential in order to conflate macro-social dynamics and psychological processes that may obstacle grassroots social movements to thrive. Skills from psychosocial disciplines are a unique set that could facilitate communication and relational processes for community development, and ultimately enabling social change.

Keywords: community development, grassroots social movements, psychosocial approaches, Transition Towns

Procedia PDF Downloads 120
3387 Seismic Evaluation of Connected and Disconnected Piled Raft Foundations

Authors: Ali Fallah Yeznabad, Mohammad H. Baziar, Alireza Saedi Azizkandi

Abstract:

Rafts may be used when a low bearing capacity exists underneath the foundation and may be combined by piles in some special circumstances; such as to reduce settlements or high groundwater to control buoyancy. From structural point of view, these piles could be both connected or disconnected from the raft and are to be classified as Piled Rafts (PR) or Disconnected Piled Rafts (DPR). Although the researches about the behavior of piled rafts subjected to vertical loading is really extensive, in the context of dynamic load and earthquake loading, the studies are very limited. In this study, to clarify these foundations’ performance under dynamic loading, series of Shaking Table tests have been performed. The square raft and four piles in connected and disconnected configurations were used in dry silica sand and the model was experimented using a shaking table under 1-g conditions. Moreover, numerical investigation using finite element software have been conducted to better understand the differences and advantages. Our observations demonstrates that in connected Piled Rafts piles have to bear greater amount of moment in their upper parts, however this moments are approximately 40% lower in disconnected piled rafts in the same conditions and loading. Considering the Rafts’ lateral movement which be of crucial importance in foundations performance evaluation, connected piled rafts show much better performance with about 30% less lateral movement. Further, it was observed on confirmed both through laboratory tests and numerical analysis, that adding the superstructure over the piled raft foundation the raft separates from the soil and it significantly increases rocking of the raft which was observed to be the main reason of increase in piles’ moments under superstructure interaction with the foundation.

Keywords: Piled Rafts (PR), Disconnected Piled Rafts (DPR), dynamic loading, shaking table, seismic performance

Procedia PDF Downloads 431
3386 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India

Authors: Ajai Singh

Abstract:

Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.

Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation

Procedia PDF Downloads 370
3385 Examining Awareness, Foresight and Expectations about Fatih Project Increasing the Occasions and Normalizing the Technology Movement

Authors: Agah Tugrul Korucu, Mustafa Mucahit Gundogdu, Tarık Gencturk, Ahmet Yucel

Abstract:

Countries are developing big projects and supplying financial resource for developing technological substructure and integrating technology into the education. In Turkey, the Ministry of Education, with the aim of integrating ICT into learning and teaching processes, created a project named increasing occasions and normalizing the technology movement. FATIH Project with this project, the aim is to create teaching environments which are enriched with technology. In orientating people with the technology and integrating technology into the education, teacher and teacher candidates have a big responsibility. While teachers are using technology in lesson, the devices in class and the methods developed are important factors. The aim of this research is to examine awareness, and foresight about FATIH Project in different aspects. This study was conducted during the practice period of the second semester in the 2014-2015 academic years. The working group of the research was created from 209 teacher candidates which are from different teaching departments in the Ahmet Kelesoglu Education Faculty of Necmettin Erbakan University. Scanning model was used in this research. In research, as a getting data tool evaluation of “opinion about FATIH Project: awareness, foresight and expectation scale” which was developed by Karal et. al.; personal information form which was developed by researchers were used. Cronbach coefficient which is the reliability of the scale is 0.91. In analyzing the data, statistical package program average, standard deviation, percentage, correlation, t-test and variance analysis test were used.

Keywords: Fatih Project, information and communication technologies, information technology integration, views on the Fatih Project, technology integration in education

Procedia PDF Downloads 466
3384 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneuver modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in ground track as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions.

Keywords: flight dynamics system, orbit propagation, satellite ephemeris, Thailand’s Earth Observation Satellite

Procedia PDF Downloads 377
3383 Central Line Stock and Use Audit in Adult Patients: A Quality Improvement Project on Central Venous Catheter Standardisation Across Hospital Departments

Authors: Gregor Moncrieff, Ursula Bahlmann

Abstract:

A number of incident reports were filed from the intensive care unit with regards to adult patients admitted following operations who had a central venous catheter inserted of the incorrect length for the relevant anatomical site and catheters not compatible with pressurised injection inserted whilst in theatre. Incorrect catheter length can lead to a variety of complications and pressurised injection is a requirement for contrast enhanced computerised tomography scans. This led to several patients having a repeat procedure to insert a catheter of the correct length and also compatible with pressurised injection. This project aimed to identify the types of central venous catheters used in theatres and ensure the correct equipment would be stocked and used in future cases in accordance the existing Association of Anaesthetics of Great Britain and Northern Ireland guidelines. A questionnaire was sent out to all of the anaesthetic department in our hospital aiming to determine what types of central venous catheters were preferably used by anaesthetists and why these had been chosen. We also explored any concerns regarding introduction of standardised, pressure injectable central venous catheters to the theatre department which were already in use in other parts of the hospital and in keeping with national guidance. A total of 56 responses were collected. 64% of respondents routinely used a central venous catheter which was significantly shorter than the national recommended guidance with a further 4 different types of central venous catheters used which were different to other areas of the hospital and not pressure injectable. 75% of respondents were in agreement to standardised introduction of the pressure injectable catheters of the recommended length in accordance with national guidance. Reasons why 25% respondents were opposed to introduction of these catheters were explored and discussed. We were successfully able to introduce the standardised central catheters to the theatre department following presentation at the local anaesthetic quality and safety meeting. Reasons against introduction of the catheters were discussed and a compromise was reached that the existing catheters would continue to be stocked but would only be available on request, with a focus on encouraging use of the standardised catheters. Additional changes achieved included removing redundant catheters from the theatre stock. Ongoing data is being collected to analyse positive and negative feedback from use of the introduced catheters.

Keywords: central venous catheter, medical equipment, medical safety, quality improvement

Procedia PDF Downloads 117
3382 Parametric Study on the Development of Earth Pressures Behind Integral Bridge Abutments Under Cyclic Translational Movements

Authors: Lila D. Sigdel, Chin J. Leo, Samanthika Liyanapathirana, Pan Hu, Minghao Lu

Abstract:

Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. Integral bridges are economical alternatives to conventional jointed bridges with lower maintenance costs and greater durability, thereby improving social and economic stability for the community. Integral bridges have also been proven to be effective in lowering the overall construction cost compared to the conventional type of bridges. However, there is significant uncertainty related to the design and analysis of integral bridges in response to cyclic thermal movements induced due to deck expansion and contraction. The cyclic thermal movements of the abutments increase the lateral earth pressures on the abutment and its foundation, leading to soil settlement and heaving of the backfill soil. Thus, the primary objective of this paper is to investigate the soil-abutment interaction under the cyclic translational movement of the abutment. Results from five experiments conducted to simulate different magnitudes of cyclic translational movements of abutments induced by thermal changes are presented, focusing on lateral earth pressure development at the abutment-soil interface. Test results show that the cycle number and magnitude of cyclic translational movements have significant effects on the escalation of lateral earth pressures. Experimentally observed earth pressure distributions behind the integral abutment were compared with the current design approaches, which shows that the most of the practices has under predicted the lateral earth pressure.

Keywords: integral bridge, cyclic thermal movement, lateral earth pressure, soil-structure interaction

Procedia PDF Downloads 114
3381 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project

Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende

Abstract:

Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.

Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport

Procedia PDF Downloads 21
3380 Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study

Authors: Anurag Tripathi, Sanad Khandelwal

Abstract:

Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction.

Keywords: forensic, dental age, pulp volume, cone beam computed tomography

Procedia PDF Downloads 99
3379 Deprivation of Visual Information Affects Differently the Gait Cycle in Children with Different Level of Motor Competence

Authors: Miriam Palomo-Nieto, Adrian Agricola, Rudolf Psotta, Reza Abdollahipour, Ludvik Valtr

Abstract:

The importance of vision and the visual control of movement have been labeled in the literature related to motor control and many studies have demonstrated that children with low motor competence may rely more heavily on vision to perform movements than their typically developing peers. The aim of the study was to highlight the effects of different visual conditions on motor performance during walking in children with different levels of motor coordination. Participants (n = 32, mean age = 8.5 years sd. ± 0.5) were divided into two groups: typical development (TD) and low motor coordination (LMC) based on the scores of the Movement Assessment Battery for Children (MABC-2). They were asked to walk along a 10 meters walkway where the Optojump-Next instrument was installed in a portable laboratory (15 x 3 m), which allows that all participants had the same visual information. They walked in self-selected speed under four visual conditions: full vision (FV), limited vision 100 ms (LV-100), limited vision 150 ms (LV-150) and non-vision (NV). For visual occlusion participants were equipped with Plato Goggles that shut for 100 and 150 ms, respectively, within each 2 sec. Data were analyzed in a two-way mixed-effect ANOVA including 2 (TD vs. LMC) x 4 (FV, LV-100, LV-150 & NV) with repeated-measures on the last factor (p ≤.05). Results indicated that TD children walked faster and with longer normalized steps length and strides than LMC children. For TD children the percentage of the single support and swing time were higher than for low motor competence children. However, the percentage of load response and pre swing was higher in the low motor competence children rather than the TD children. These findings indicated that through walking we could be able to identify different levels of motor coordination in children. Likewise, LMC children showed shorter percentages in those parameters regarding only one leg support, supporting the idea of balance problems.

Keywords: visual information, motor performance, walking pattern, optojump

Procedia PDF Downloads 574
3378 Combustion Variability and Uniqueness in Cylinders of a Radial Aircraft Piston Engine

Authors: Michal Geca, Grzegorz Baranski, Ksenia Siadkowska

Abstract:

The work is a part of the project which aims at developing innovative power and control systems for the high power aircraft piston engine ASz62IR. Developed electronically controlled ignition system will reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. The tested unit is an air-cooled four-stroke gasoline engine of 9 cylinders in a radial setup, mechanically charged by a radial compressor powered by the engine crankshaft. The total engine cubic capac-ity is 29.87 dm3, and the compression ratio is 6.4:1. The maximum take-off power is 1000 HP at 2200 rpm. The maximum fuel consumption is 280 kg/h. Engine powers aircrafts: An-2, M-18 „Dromader”, DHC-3 „OTTER”, DC-3 „Dakota”, GAF-125 „HAWK” i Y5. The main problems of the engine includes the imbalanced work of cylinders. The non-uniformity value in each cylinder results in non-uniformity of their work. In radial engine cylinders arrangement causes that the mixture movement that takes place in accordance (lower cylinder) or the opposite (upper cylinders) to the direction of gravity. Preliminary tests confirmed the presence of uneven workflow of individual cylinders. The phenomenon is most intense at low speed. The non-uniformity is visible on the waveform of cylinder pressure. Therefore two studies were conducted to determine the impact of this phenomenon on the engine performance: simulation and real tests. Simplified simulation was conducted on the element of the intake system coated with fuel film. The study shows that there is an effect of gravity on the movement of the fuel film inside the radial engine intake channels. Both in the lower and the upper inlet channels the film flows downwards. It follows from the fact that gravity assists the movement of the film in the lower cylinder channels and prevents the movement in the upper cylinder channels. Real tests on aircraft engine ASz62IR was conducted in transients condition (rapid change of the excess air in each cylinder were performed. Calculations were conducted for mass of fuel reaching the cylinders theoretically and really and on this basis, the factors of fuel evaporation “x” were determined. Therefore a simplified model of the fuel supply to cylinder was adopted. Model includes time constant of the fuel film τ, the number of engine transport cycles of non-evaporating fuel along the intake pipe γ and time between next cycles Δt. The calculation results of identification of the model parameters are presented in the form of radar graphs. The figures shows the averages declines and increases of the injection time and the average values for both types of stroke. These studies shown, that the change of the position of the cylinder will cause changes in the formation of fuel-air mixture and thus changes in the combustion process. Based on the results of the work of simulation and experiments was possible to develop individual algorithms for ignition control. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: radial engine, ignition system, non-uniformity, combustion process

Procedia PDF Downloads 366
3377 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction

Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat

Abstract:

Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.

Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference

Procedia PDF Downloads 152