Search results for: shaft output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2221

Search results for: shaft output

931 Second Order Cone Optimization Approach to Two-stage Network DEA

Authors: K. Asanimoghadam, M. Salahi, A. Jamalian

Abstract:

Data envelopment analysis is an approach to measure the efficiency of decision making units with multiple inputs and outputs. The structure of many decision making units also has decision-making subunits that are not considered in most data envelopment analysis models. Also, the inputs and outputs of the decision-making units usually are considered desirable, while in some real-world problems, the nature of some inputs or outputs are undesirable. In this thesis, we study the evaluation of the efficiency of two stage decision-making units, where some outputs are undesirable using two non-radial models, the SBM and the ASBM models. We formulate the nonlinear ASBM model as a second order cone optimization problem. Finally, we compare two models for both external and internal evaluation approaches for two real world example in the presence of undesirable outputs. The results show that, in both external and internal evaluations, the overall efficiency of ASBM model is greater than or equal to the overall efficiency value of the SBM model, and in internal evaluation, the ASBM model is more flexible than the SBM model.

Keywords: network DEA, conic optimization, undesirable output, SBM

Procedia PDF Downloads 193
930 Modeling, Analysis, and Optimization of Process Parameters of Metal Spinning

Authors: B. Ravi Kumar, S. Gajanana, K. Hemachandra Reddy, K. Udayani

Abstract:

Physically into various derived shapes and sizes under the effect of externally applied forces. The spinning process is an advanced plastic working technology and is frequently used for manufacturing axisymmetric shapes. Over the last few decades, Sheet metal spinning has developed significantly and spun products have widely used in various industries. Nowadays the process has been expanded to new horizons in industries, since tendency to use minimum tool and equipment costs and also using lower forces with the output of excellent surface quality and good mechanical properties. The automation of the process is of greater importance, due to its wider applications like decorative household goods, rocket nose cones, gas cylinders, etc. This paper aims to gain insight into the conventional spinning process by employing experimental and numerical methods. The present work proposes an approach for optimizing process parameters are mandrel speed (rpm), roller nose radius (mm), thickness of the sheet (mm). Forming force, surface roughness and strain are the responses.in spinning of Aluminum (2024-T3) using DOE-Response Surface Methodology (RSM) and Analysis of variance (ANOVA). The FEA software is used for modeling and analysis. The process parameters considered in the experimentation.

Keywords: FEA, RSM, process parameters, sheet metal spinning

Procedia PDF Downloads 318
929 Economic Meltdown and Inflation and Its Effect on Organization Performance: A Study of Nigerian Manufacturing Companies

Authors: Cynthia Oluchi Akagha

Abstract:

This paper highlights the increase in production cost and the corresponding outcomes in Nigeria using six major manufacturing companies as a case study. During an inflationary period, the cost-of-living increases, which reduces the purchasing power of money. Inflation has become a severe issue in many countries recently. To examine how inflation affects the success of businesses in Nigeria, a quantitative approach and a focus on causality were utilized to examine six (6) functional Nigerian manufacturing enterprises. The correlation between business production cost, cost of items supplied, and gross profit from 2021-2022 was analyzed. The analysis recorded that the cost of production increased in 2022 compared to 2021. The expansion varied between the six companies by 77.1%. Only one company out of six reported a decrease in gross profit in 2022 compared to the previous year. The other five companies' profits increased between 6.5% and 87%. Companies like these have thrived despite the rising cost of living because they have adjusted by increasing their product pricing. Since this change has the most significant influence on consumers, the best long-term reaction for a corporation to inflationary effects is often an improvement in cost efficiency, output, or both.

Keywords: economic meltdown, inflation, organization, performance

Procedia PDF Downloads 79
928 Enhancing of Biogas Production from Slaughterhouse and Dairy Farm Waste with Pasteurization

Authors: Mahmoud Hassan Onsa, Saadelnour Abdueljabbar Adam

Abstract:

Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents solution of organic waste from cow dairy farms and slaughterhouse the anaerobic digestion and biogas production. The paper presents the findings of experimental investigation of biogas production with and without pasteurization using cow manure, blood and rumen content were mixed at two proportions, 72.3% manure, 21.7%, rumen content and 6% blood for bio digester1with 62% dry matter at the beginning and without pasteurization and 72.3% manure, 21.7%, rumen content and 6% blood for bio-digester2 with 10% dry matter and pasteurization. The paper analyses the quantitative and qualitative composition of biogas: gas content, the concentration of methane. The highest biogas output 2.9 mL/g dry matter/day (from bio-digester2) together with a high quality biogas of 87.4% methane content which is useful for combustion and energy production and healthy bio-fertilizer but biodigester1 gave 1.68 mL/g dry matter/day with methane content 85% which is useful for combustion, energy production and can be considered as new technology of dryer bio-digesters.

Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content

Procedia PDF Downloads 727
927 Error Analysis of Students’ Freewriting: A Study of Adult English Learners’ Errors

Authors: Louella Nicole Gamao

Abstract:

Writing in English is accounted as a complex skill and process for foreign language learners who commit errors in writing are found as an inevitable part of language learners' writing. This study aims to explore and analyze the learners of English-as-a foreign Language (EFL) freewriting in a University in Taiwan by identifying the category of mistakes that often appear in their freewriting activity and analyzing the learners' awareness of each error. Hopefully, this present study will be able to gain further information about students' errors in their English writing that may contribute to further understanding of the benefits of freewriting activity that can be used for future purposes as a powerful tool in English writing courses for EFL classes. The present study adopted the framework of error analysis proposed by Dulay, Burt, and Krashen (1982), which consisted of a compilation of data, identification of errors, classification of error types, calculation of frequency of each error, and error interpretation. Survey questionnaires regarding students' awareness of errors were also analyzed and discussed. Using quantitative and qualitative approaches, this study provides a detailed description of the errors found in the students'freewriting output, explores the similarities and differences of the students' errors in both academic writing and freewriting, and lastly, analyzes the students' perception of their errors.

Keywords: error, EFL, freewriting, taiwan, english

Procedia PDF Downloads 107
926 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly

Procedia PDF Downloads 226
925 Algorithmic Generation of Carbon Nanochimneys

Authors: Sorin Muraru

Abstract:

Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.

Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures

Procedia PDF Downloads 168
924 High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard

Authors: Ghania Zerari, Abderrezak Guessoum, Rachid Beguenane

Abstract:

This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation.

Keywords: low-density parity-check (LDPC) decoder, stochastic decoding, field programmable gate array (FPGA), IEEE 802.3an standard

Procedia PDF Downloads 295
923 Gas Lift Optimization to Improve Well Performance

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie

Abstract:

Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.

Keywords: optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure

Procedia PDF Downloads 411
922 An Integer Nonlinear Program Proposal for Intermodal Transportation Service Network Design

Authors: Laaziz El Hassan

Abstract:

The Service Network Design Problem (SNDP) is a tactical issue in freight transportation firms. The existing formulations of the problem for intermodal rail-road transportation were not always adapted to the intermodality in terms of full asset utilization and modal shift reinforcement. The objective of the article is to propose a model having a more compliant formulation with intermodality, including constraints highlighting the imperatives of asset management, reinforcing modal shift from road to rail and reducing, by the way, road mode CO2 emissions. The model is a fixed charged, path based integer nonlinear program. Its objective is to minimize services total cost while ensuring full assets utilization to satisfy freight demand forecast. The model's main feature is that it gives as output both the train sizes and the services frequencies for a planning period. We solved the program using a commercial solver and discussed the numerical results.

Keywords: intermodal transport network, service network design, model, nonlinear integer program, path-based, service frequencies, modal shift

Procedia PDF Downloads 118
921 Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment

Authors: Fares Laouacheria, Said Kechida, Moncef Chabi

Abstract:

The objective of the study was based on the hydrological routing modelling for the continuous monitoring of the hydrological situation in the Moudjar river catchment, especially during floods with Hydrologic Engineering Center–Hydrologic Modelling Systems (HEC-HMS). The HEC-GeoHMS was used to transform data from geographic information system (GIS) to HEC-HMS for delineating and modelling the catchment river in order to estimate the runoff volume, which is used as inputs to the hydrological routing model. Two hydrological routing models were used, namely Muskingum and Muskingum routing models, for conducting this study. In this study, a comparison between the parameters of the Muskingum and Muskingum-Cunge routing models in HEC-HMS was used for modelling flood routing in the Moudjar river catchment and determining the relationship between these parameters and the physical characteristics of the river. The results indicate that the effects of input parameters such as the weighting factor "X" and travel time "K" on the output results are more significant, where the Muskingum routing model was more sensitive to input parameters than the Muskingum-Cunge routing model. This study can contribute to understand and improve the knowledge of the mechanisms of river floods, especially in ungauged river catchments.

Keywords: HEC-HMS, hydrological modelling, Muskingum routing model, Muskingum-Cunge routing model

Procedia PDF Downloads 275
920 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices

Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara

Abstract:

Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.

Keywords: turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system

Procedia PDF Downloads 192
919 System Identification and Quantitative Feedback Theory Design of a Lathe Spindle

Authors: M. Khairudin

Abstract:

This paper investigates the system identification and design quantitative feedback theory (QFT) for the robust control of a lathe spindle. The dynamic of the lathe spindle is uncertain and time variation due to the deepness variation on cutting process. System identification was used to obtain the dynamics model of the lathe spindle. In this work, real time system identification is used to construct a linear model of the system from the nonlinear system. These linear models and its uncertainty bound can then be used for controller synthesis. The real time nonlinear system identification process to obtain a set of linear models of the lathe spindle that represents the operating ranges of the dynamic system. With a selected input signal, the data of output and response is acquired and nonlinear system identification is performed using Matlab to obtain a linear model of the system. Practical design steps are presented in which the QFT-based conditions are formulated to obtain a compensator and pre-filter to control the lathe spindle. The performances of the proposed controller are evaluated in terms of velocity responses of the the lathe machine spindle in corporating deepness on cutting process.

Keywords: lathe spindle, QFT, robust control, system identification

Procedia PDF Downloads 542
918 Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hon-Yi Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, check valve, micropump, piezoelectric

Procedia PDF Downloads 454
917 Evalution of Antiurolithiatic Potentials from Cucumis sativus Fruits

Authors: H. J. Pramod, S. Pethkar

Abstract:

The evaluation of antiurolithiatic potentials from the extracts of Cucumis sativus fruits at different doses and cystone (standard formulation) at a dose of 750 mg/kg were measured for both preventive and curative regimen in wistar rats by adding 0.75% v/v ethylene glycol (EG) to drinking water for 28 days, except normal rats. After the completion of the experimental period, (28th day) urinary parameters like (urine volume, routine urine analysis, levels of calcium, phosphate, oxalate, magnesium, sodium) serum biomarkers like (creatinine, BUN, uric acid, ALP, ALT, AST) kidney homogenate analysis for (levels of calcium, oxalate and phosphate) were analysed. The treated groups shows increased in the urine output significantly compared to the normal. The extract shows significantly decreased in the urinary excretion of the calcium, phosphate, magnesium, sodium and oxalate. The both preventive and curative treatment of extracts showed decrease in the stone forming constituents in the kidneys of urolithiatic rats further the kidneys of all the groups were excised and sectioned for histopathological examination which further claims to posses antiurolithiatic activity.

Keywords: Cucumis sativus, urolithiasis, ethylene glycol, cystone

Procedia PDF Downloads 547
916 Installing Photovoltaic Panels to Generate Optimal Energy in SPAV Hostel, Vijayawada

Authors: J. Jayasuriya

Abstract:

In this research paper, a procedure for installing and assessment of a solar PV plant to generate optimal solar energy SPAV hostel at Vijayawada city was analyzed. The hostel was experiencing power disruption and had a need for an unceasing energy source. The solar panel is one of the best solutions to obtain uninterrupted clean renewable energy for an institutional building as it neither makes din nor pollutes the atmosphere. The electricity usage per month was initially measured to discriminate the energy change. The solar array was installed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for the feasibility and efficiency of PV plant near this site i.e., the orientation of the site, the size and shape of the terrace, the sun path were considered while installing panels. Various precautions were taken to intercept the factors which cause interference in energy generation, with respect to temperature, overshadowing, the wiring of panels, pollution etc. The solar panels were frequently installed, monitored and maintained properly to procure optimal energy output. Result obtained with the assessment of the proposed plant and deflation in the electric bill will show the maximal energy that can be generated in a month on that particular site.

Keywords: solar efficiency, building sustainability, PV panel, solar energy

Procedia PDF Downloads 134
915 Temporal Trends in the Urban Metabolism of Riyadh, Saudi Arabia

Authors: Naif Albelwi, Alan Kwan, Yacine Rezgui

Abstract:

Cities with rapid growth face tremendous challenges not only to provide services to meet this growth but also to assure that this growth occurs in a sustainable way. The consumption of material, energy, and water resources is inextricably linked to population growth with a unique impact in urban areas, especially in light of significant investments in infrastructure to support urban development. Urban Metabolism (UM) is becoming popular as it provides a framework accounting the mass and energy flows through a city. The objective of this study is to determine the energy and material flows of Riyadh, Saudi Arabia using locally generated data from 1996 and 2012 and analyzing the temporal trends of energy and material flows. Preliminary results show that while the population of Riyadh grew 90% since 1996, the input and output flows have increased at higher rate. Results also show increasing in energy mobile consumption from 61k TJ in 1996 to 157k TJ in 2012 which points to Riyadh’s inefficient urban form. The study findings highlight the importance to develop effective policies for improving the use of resources.

Keywords: energy and water consumption, sustainability, urban development, urban metabolism

Procedia PDF Downloads 269
914 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 131
913 Organisational Effectiveness and Its Implications for Seaports

Authors: Shadi Alghaffari, Hong-Oanh Nguyen, Peggy Chen, Hossein Enshaei

Abstract:

The main purpose of this study was to explore the role of organisational effectiveness (OE) in seaports. OE is an important managerial concept, one that is necessary for leaders and directors in any organisation to understand the output of their work. OE has been applied in many organisations; however, it is a vital concept in the port business. This paper examines various approaches and applications of the OE concept to business management, and describes benefits that are important and applicable to seaport management. This research reviews and classifies articles published in relevant journals and books between 1950 and 2016; from the general literature on OE to the narrower field of OE in seaports. Based on the extensive literature review, this study identifies and discusses several issues relevant to both practices and theories of this concept. The review concludes by presenting a gap in the literature, as it found only a limited amount of research that endeavours to clarify OE in the seaport sector. As a result of this gap, seaports suffer from a lack of empirical study and are largely neglected in this subject area. The implementation of OE in this research has led to the maritime sector interfacing with different disciplines in order to acquire the advantage of enhancing managerial knowledge and competing successfully in the international marketplace.

Keywords: literature review, maritime, organisational effectiveness, seaport management

Procedia PDF Downloads 341
912 Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate

Authors: Mahfuzur Rahman

Abstract:

Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities.

Keywords: interdigitated, shading, recombination loss, incident-plane, drift-diffusion, luminous, SILVACO

Procedia PDF Downloads 145
911 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: supply chain management, green supply chain management, system dynamics, energy consumption

Procedia PDF Downloads 137
910 Parametrical Simulation of Sheet Metal Forming Process to Control the Localized Thinning

Authors: Hatem Mrad, Alban Notin, Mohamed Bouazara

Abstract:

Sheet metal forming process has a multiple successive steps starting from sheets fixation to sheets evacuation. Often after forming operation, the sheet has defects requiring additional corrections steps. For example, in the drawing process, the formed sheet may have several defects such as springback, localized thinning and bends. All these defects are directly dependent on process, geometric and material parameters. The prediction and elimination of these defects requires the control of most sensitive parameters. The present study is concerned with a reliable parametric study of deep forming process in order to control the localized thinning. The proposed approach will be based on stochastic finite element method. Especially, the polynomial Chaos development will be used to establish a reliable relationship between input (process, geometric and material parameters) and output variables (sheet thickness). The commercial software Abaqus is used to conduct numerical finite elements simulations. The automatized parametrical modification is provided by coupling a FORTRAN routine, a PYTHON script and input Abaqus files.

Keywords: sheet metal forming, reliability, localized thinning, parametric simulation

Procedia PDF Downloads 421
909 High-Frequency Full-Bridge Isolated DC-DC Converter for Fuel Cell Power Generation Systems

Authors: Nabil A. Ahmed

Abstract:

DC-DC converters are necessary to interface low-voltage fuel cell power generation systems to a higher voltage DC bus system. A system and method for generating a regulated output power from fuel cell power generation systems is proposed in this paper, this includes a soft-switching isolated DC-DC converter to reduce the idling and circulating currents. The system incorporates a high-frequency center tap transformer link DC-DC converter using secondary-side soft switching control. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS) in the primary side of the high-frequency transformer. Therefore, no extra resonant components are required for ZVS. The inherent soft-switching capability allows high power density, efficient power conversion, and compact packaging. A prototype rated at 6.5 kW is proposed and simulated. Simulation results confirmed a wide range of soft-switching operation and consequently high conversion efficiency will be achieved.

Keywords: secondary-side, phase-shift, high-frequency transformer, zero voltage, zero current, soft switching operation, switching losses

Procedia PDF Downloads 308
908 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac

Abstract:

This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: fuzzy logic, intelligent system, precision agriculture, renewable energy

Procedia PDF Downloads 127
907 Optimization of Turbocharged Diesel Engines

Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz

Abstract:

The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC(Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP(Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital®madules in concepts NREC® respectively.

Keywords: turbocharger, wastegate, diesel engine, concept NREC programs

Procedia PDF Downloads 242
906 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive

Authors: Yichao Ma, Chengsiong Chin, Wailok Woo

Abstract:

Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.

Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance

Procedia PDF Downloads 437
905 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 296
904 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy

Procedia PDF Downloads 255
903 Tuning for a Small Engine with a Supercharger

Authors: Shinji Kajiwara, Tadamasa Fukuoka

Abstract:

The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.

Keywords: engine, combustion, cooling system, numerical simulation, power, torque, mechanical super charger

Procedia PDF Downloads 298
902 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems

Authors: Ting Gao, Mingyue He

Abstract:

Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.

Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning

Procedia PDF Downloads 149