Search results for: cut redundant information in image
11 Human Behaviour During an Earthquake: Descriptive Analysis on Indoor Video Recordings
Authors: Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan
Abstract:
The earthquake research literature generally examines emotional, cognitive, and behavioral responses after an earthquake. Studies concerning the behavioral responses to earthquakes reveal that after the earthquake, people either flee in a panic or do not act according to the stereotype that they act irrationally and anti-socially and sometimes give rational and adaptive reactions. However, the rareness of research dealing with human behavior experiencing the earthquake moment makes it necessary to pay particular attention to these behavior patterns. In this direction, this study aims to examine human behavior indoors in case of rising earthquake intensity. In Turkey, located on geography in the earthquake zone, devastating earthquakes took place, such as in "Istanbul" with a magnitude of 7.4 in 1999 and in "Elazığ" with a magnitude of 6.8 in 2020. Occurred recently, the "Kahramanmaraş" earthquake affected 11 provinces, with a magnitude of 7.7 and 7.6 in 2023. In addition, there is expected to be a devastating earthquake in Istanbul, experts warn. For this reason, it is essential to understand human behavior for disaster risk. Management and pre-disaster preparedness to be effective and efficient and to take realistic measures to protect human life. Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan. In this study, which is currently part of a project supported by The Scientific and Technological Council of Turkey (TUBITAK), the indoor recordings during the earthquakes in Elazig on January 24, 2020, and in İzmir on October 30, 2020, are examined, and the people's behavior during the earthquake is analyzed. In this direction, video recordings taken from the YouTube archives of İzmir and Elazığ Disaster and Emergency Management Presidency (AFAD) Directorates and metropolitan municipalities are examined. The researchers have created an observation form in line with the information in the relevant literature to classify people's behavior during an earthquake. It is intended to determine the behavioral patterns by classifying according to the form and video analysis of the people heading toward the door, remaining stable, taking protective measures, turning to people, and engaging in "other" behaviors outside of these behaviors during the earthquake. A total of 60 video analyzes are carried out from Elazığ and İzmir. The descriptive statistic has been used with the SPSS 23.0 package program in the data analysis. It is found that in the event of an increase in the severity of the earthquake, unlike Elazığ, in İzmir, protective action is preferred to the act of remaining stable. In addition, it is observed that with the increase in the earthquake's intensity, women attempt to take more protective action while men head toward the door. In contrast, a rise is observed in the behavior of young people heading toward the door and taking protective actions, while there is a decrease in their behavior directing to people. These findings, unlike the literature, reveal that human behavior during earthquakes cannot be reduced to a single behavior pattern, such as drop-cover-hold-on. The results show that it is necessary to understand the behaviors of individuals during the earthquake and to develop practical policy proposals for combating earthquakes by considering sociocultural, geographical, and demographic variables.Keywords: descriptive analysis, earthquake, human behaviour, disaster policy.
Procedia PDF Downloads 10310 Teacher Collaboration Impact on Bilingual Students’ Oral Communication Skills in Inclusive Contexts
Authors: Diana González, Marta Gràcia, Ana Luisa Adam-Alcocer
Abstract:
Incorporating digital tools into educational practices represents a valuable approach for enriching the quality of teachers' educational practices in oral competence and fostering improvements in student learning outcomes. This study aims to promote a collaborative and culturally sensitive approach to professional development between teachers and a speech therapist to enhance their self-awareness and reflection on high-quality educational practices that integrate school components to strengthen children’s oral communication and pragmatic skills. The study involved five bilingual teachers fluent in both English and Spanish, with three specializing in special education and two in general education. It focused on Spanish-English bilingual students, aged 3-6, who were experiencing speech delays or disorders in a New York City public school, with the collaboration of a speech therapist. Using EVALOE-DSS (Assessment Scale of Oral Language Teaching in the School Context - Decision Support System), teachers conducted self-assessments of their teaching practices, reflect and make-decisions throughout six classes from March to June, focusing on students' communicative competence across various activities. Concurrently, the speech therapist observed and evaluated six classes per teacher using EVALOE-DSS during the same period. Additionally, professional development meetings were held monthly between the speech therapist and teachers, centering on discussing classroom interactions, instructional strategies, and the progress of both teachers and students in their classes. Findings highlight the digital tool EVALOE-DSS's value in analyzing communication patterns and trends among bilingual children in inclusive settings. It helps in identifying improvement areas through teacher and speech therapist collaboration. After self-reflection meetings, teachers demonstrated increased awareness of student needs in oral language and pragmatic skills. They also exhibited enhanced utilization of strategies outlined in EVALOE-DSS, such as actively guiding and orienting students during oral language activities, promoting student-initiated communicative interactions, teaching students how to seek and provide information, and managing turn-taking to ensure inclusive participation. Teachers participating in the professional development program have shown positive progress in assessing their classes across all dimensions of the training tool, including instructional design, teacher conversation management, pupil conversation management, communicative functions, teacher strategies, and pupil communication functions. This includes aspects related to both teacher actions and child actions, particularly in child language development. This progress underscores the effectiveness of individual reflection (conducted weekly or biweekly using EVALOE-DSS) as well as collaborative reflection among teachers and the speech therapist during meetings. The EVALOE-SSD has proven effective in supporting teachers' self-reflection, decision-making, and classroom changes, leading to improved development of students' oral language and pragmatic skills. It has facilitated culturally sensitive evaluations of communication among bilingual children, cultivating collaboration between teachers and speech therapist to identify areas of growth. Participants in the professional development program demonstrated substantial progress across all dimensions assessed by EVALOE-DSS. This included improved management of pupil communication functions, implementation of effective teaching strategies, and better classroom dynamics. Regular reflection sessions using EVALOE-SSD supported continuous improvement in instructional practices, highlighting its role in fostering reflective teaching and enriching student learning experiences. Overall, EVALOE-DSS has proven invaluable for enhancing teaching effectiveness and promoting meaningful student interactions in diverse educational settings.Keywords: bilingual students, collaboration, culturally sensitive, oral communication skills, self-reflection
Procedia PDF Downloads 349 Effect of Varied Climate, Landuse and Human Activities on the Termite (Isoptera: Insecta) Diversity in Three Different Habitats of Shivamogga District, Karnataka, India
Authors: C. M. Kalleshwaraswamy, G. S. Sathisha, A. S. Vidyashree, H. B. Pavithra
Abstract:
Isoptera are an interesting group of social insects with different castes and division of labour. They are primarily wood-feeders, but also feed on a variety of other organic substrates, such as living trees, leaf litter, soil, lichens and animal faeces. The number of species and their biomass are especially large in tropics. In natural ecosystems, they perform a beneficial role in nutrient cycles by accelerating decomposition. The magnitude and dimension of ecological role played by termites is a function of their diversity, population density, and biomass. Termite assemblage composition has a strong response to habitat disturbance and may be indicative of quantitative changes in the decomposition process. Many previous studies in Western Ghat region of India suggest increased anthropogenic activities that adversely affect the soil macrofauna and diversity. Shivamogga district provides a good opportunity to study the effect of topography, cropping pattern, human disturbance on the termite fauna, thereby acquiring accurate baseline information for conservation decision making. The district has 3 distinct agro-ecological areas such as maidan area, semi-malnad and Western Ghat region. Thus, the district provides a unique opportunity to study the effect of varied climate and anthropogenic disturbance on the termite diversity. The standard protocol of belt transects method developed by Eggleton et al. (1997) was used for sampling termites. Sampling was done at monthly interval from September-2014 to August-2015 in Western Ghats, semi-malnad and maidan habitats. The transect was 100m long and 2m wide and divided into 20 contiguous sections, each 5 x 2m in each habitat. Within each section, all the probable microhabitats of termites were searched, which include dead logs, fallen tree, branch, sticks, leaf litter, vegetation etc.,. All the castes collected were labelled, preserved in 80% alcohol, counted and identified to species level. The number of encounters of a species in the transect was used as an indicator of relative abundance of species. The species diversity, species richness, density were compared in three different habitats such as Western Ghats, semi-malnad and maidan region. The study indicated differences in the species composition in the three different habitats. A total of 15 species were recorded which belonging to four sub family and five genera in three habitats. Eleven species viz., Odontotermes obesus, O. feae, O. anamallensis, O. bellahunisensis, O. adampurensis, O. boveni, Microcerotermes fletcheri, M. pakistanicus, Nasutitermes anamalaiensis, N. indicola, N. krishna were recorded in Western Ghat region. Similarly, 11 species viz., Odontotermes obesus, O. feae, O. anamallensis, O. bellahunisensis, O. hornii, O. bhagwathi, Microtermes obesi, Microcerotermes fletcheri, M. pakistanicus, Nasutitermes indicola and Pericapritermes sp. were recorded in semi-malnad habitat. However, only four species viz., O. obesus, O. feae, Microtemes obesi and Pericapritermes sp. species were recorded in maidan area. Shannon’s wiener diversity index (H) showed that Western Ghats had more species dominance (1.56) followed by semi- malnad (1.36) and lowest in maidan (0.89) habitats. Highest value of simpson’s index (D) was observed in Western Ghats habitat (0.70) with more diverse species followed by semi-malnad (0.58) and lowest in maidan (0.53). Similarly, evenness was highest (0.65) in Western Ghats followed by maidan (0.64) and least in semi-malnad habitat (0.54). Menhinick’s index (Dmn) value was ranging from 0.03 to 0.06 in different habitats in the study area. Highest index was observed in Western Ghats (0.06) followed by semi-malnad (0.05) and lowest in maidan (0.03). The study conclusively demonstrated that Western Ghat had highest species diversity compared to semi-malnad and maidan habitat indicating these two habitats are continuously subjected to anthropogenic disturbances. Efforts are needed to conserve the uncommon species which otherwise may become extinct due to human activities.Keywords: anthropogenic disturbance, isoptera, termite species diversity, Western ghats
Procedia PDF Downloads 2668 Developing a Place-Name Gazetteer for Singapore by Mining Historical Planning Archives and Selective Crowd-Sourcing
Authors: Kevin F. Hsu, Alvin Chua, Sarah X. Lin
Abstract:
As a multilingual society, Singaporean names for different parts of the city have changed over time. Residents included Indigenous Malays, dialect-speakers from China, European settler-colonists, and Tamil-speakers from South India. Each group would name locations in their own languages. Today, as ancestral tongues are increasingly supplanted by English, contemporary Singaporeans’ understanding of once-common place names is disappearing. After demolition or redevelopment, some urban places will only exist in archival records or in human memory. United Nations conferences on the standardization of geographic names have called attention to how place names relate to identity, well-being, and a sense of belonging. The Singapore Place-Naming Project responds to these imperatives by capturing past and present place names through digitizing historical maps, mining archival records, and applying selective crowd-sourcing to trace the evolution of place names throughout the city. The project ensures that both formal and vernacular geographical names remain accessible to historians, city planners, and the public. The project is compiling a gazetteer, a geospatial archive of placenames, with streets, buildings, landmarks, and other points of interest (POI) appearing in the historic maps and planning documents of Singapore, currently held by the National Archives of Singapore, the National Library Board, university departments, and the Urban Redevelopment Authority. To create a spatial layer of information, the project links each place name to either a geo-referenced point, line segment, or polygon, along with the original source material in which the name appears. This record is supplemented by crowd-sourced contributions from civil service officers and heritage specialists, drawing from their collective memory to (1) define geospatial boundaries of historic places that appear in past documents, but maybe unfamiliar to users today, and (2) identify and record vernacular place names not captured in formal planning documents. An intuitive interface allows participants to demarcate feature classes, vernacular phrasings, time periods, and other knowledge related to historical or forgotten spaces. Participants are stratified into age bands and ethnicity to improve representativeness. Future iterations could allow additional public contributions. Names reveal meanings that communities assign to each place. While existing historical maps of Singapore allow users to toggle between present-day and historical raster files, this project goes a step further by adding layers of social understanding and planning documents. Tracking place names illuminates linguistic, cultural, commercial, and demographic shifts in Singapore, in the context of transformations of the urban environment. The project also demonstrates how a moderated, selectively crowd-sourced effort can solicit useful geospatial data at scale, sourced from different generations, and at higher granularity than traditional surveys, while mitigating negative impacts of unmoderated crowd-sourcing. Stakeholder agencies believe the project will achieve several objectives, including Supporting heritage conservation and public education; Safeguarding intangible cultural heritage; Providing historical context for street, place or development-renaming requests; Enhancing place-making with deeper historical knowledge; Facilitating emergency and social services by tagging legal addresses to vernacular place names; Encouraging public engagement with heritage by eliciting multi-stakeholder input.Keywords: collective memory, crowd-sourced, digital heritage, geospatial, geographical names, linguistic heritage, place-naming, Singapore, Southeast Asia
Procedia PDF Downloads 1287 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer
Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs
Abstract:
Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC
Procedia PDF Downloads 3606 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1495 Hydrocarbon Source Rocks of the Maragh Low
Authors: Elhadi Nasr, Ibrahim Ramadan
Abstract:
Biostratigraphical analyses of well sections from the Maragh Low in the Eastern Sirt Basin has allowed high resolution correlations to be undertaken. Full integration of this data with available palaeoenvironmental, lithological, gravity, seismic, aeromagnetic, igneous, radiometric and wireline log information and a geochemical analysis of source rock quality and distribution has led to a more detailed understanding of the geological and the structural history of this area. Pre Sirt Unconformity two superimposed rifting cycles have been identified. The oldest is represented by the Amal Group of sediments and is of Late Carboniferous, Kasimovian / Gzelian to Middle Triassic, Anisian age. Unconformably overlying is a younger rift cycle which is represented the Sarir Group of sediments and is of Early Cretaceous, late Neocomian to Aptian in age. Overlying the Sirt Unconformity is the marine Late Cretaceous section. An assessment of pyrolysis results and a palynofacies analysis has allowed hydrocarbon source facies and quality to be determined. There are a number of hydrocarbon source rock horizons in the Maragh Low, these are sometimes vertically stacked and they are of fair to excellent quality. The oldest identified source rock is the Triassic Shale, this unit is unconformably overlain by sandstones belonging to the Sarir Group and conformably overlies a Triassic Siltstone unit. Palynological dating of the Triassic Shale unit indicates a Middle Triassic, Anisian age. The Triassic Shale is interpreted to have been deposited in a lacustrine palaeoenvironment. This particularly is evidenced by the dark, fine grained, organic rich nature of the sediment and is supported by palynofacies analysis and by the recovery of fish fossils. Geochemical analysis of the Triassic Shale indicates total organic carbon varying between 1.37 and 3.53. S2 pyrolysate yields vary between 2.15 mg/g and 6.61 mg/g and hydrogen indices vary between 156.91 and 278.91. The source quality of the Triassic Shale varies from being of fair to very good / rich. Linked to thermal maturity it is now a very good source for light oil and gas. It was once a very good to rich oil source. The Early Barremian Shale was also deposited in a lacustrine palaeoenvironment. Recovered palynomorphs indicate an Early Cretaceous, late Neocomian to early Barremian age. The Early Barremian Shale is conformably underlain and overlain by sandstone units belonging to the Sarir Group of sediments which are also of Early Cretaceous age. Geochemical analysis of the Early Barremian Shale indicates that it is a good oil source and was originally very good. Total organic carbon varies between 3.59% and 7%. S2 varies between 6.30 mg/g and 10.39 mg/g and the hydrogen indices vary between 148.4 and 175.5. A Late Barremian Shale unit of this age has also been identified in the central Maragh Low. Geochemical analyses indicate that total organic carbon varies between 1.05 and 2.38%, S2 pyrolysate between 1.6 and 5.34 mg/g and the hydrogen index between 152.4 and 224.4. It is a good oil source rock which is now mature. In addition to the non marine hydrocarbon source rocks pre Sirt Unconformity, three formations in the overlying Late Cretaceous section also provide hydrocarbon quality source rocks. Interbedded shales within the Rachmat Formation of Late Cretaceous, early Campanian age have total organic carbon ranging between, 0.7 and 1.47%, S2 pyrolysate varying between 1.37 and 4.00 mg/g and hydrogen indices varying between 195.7 and 272.1. The indication is that this unit would provide a fair gas source to a good oil source. Geochemical analyses of the overlying Tagrifet Limestone indicate that total organic carbon varies between 0.26% and 1.01%. S2 pyrolysate varies between 1.21 and 2.16 mg/g and hydrogen indices vary between 195.7 and 465.4. For the overlying Sirt Shale Formation of Late Cretaceous, late Campanian age, total organic carbon varies between 1.04% and 1.51%, S2 pyrolysate varies between 4.65 mg/g and 6.99 mg/g and the hydrogen indices vary between 151 and 462.9. The study has proven that both the Sirt Shale Formation and the Tagrifet Limestone are good to very good and rich sources for oil in the Maragh Low. High resolution biostratigraphical interpretations have been integrated and calibrated with thermal maturity determinations (Vitrinite Reflectance (%Ro), Spore Colour Index (SCI) and Tmax (ºC) and the determined present day geothermal gradient of 25ºC / Km for the Maragh Low. Interpretation of generated basin modelling profiles allows a detailed prediction of timing of maturation development of these source horizons and leads to a determination of amounts of missing section at major unconformities. From the results the top of the oil window (0.72% Ro) is picked as high as 10,700’ and the base of the oil window (1.35% Ro) assuming a linear trend and by projection is picked as low as 18,000’ in the Maragh Low. For the Triassic Shale the early phase of oil generation was in the Late Palaeocene / Early to Middle Eocene and the main phase of oil generation was in the Middle to Late Eocene. The Early Barremian Shale reached the main phase of oil generation in the Early Oligocene with late generation being reached in the Middle Miocene. For the Rakb Group section (Rachmat Formation, Tagrifet Limestone and Sirt Shale Formation) the early phase of oil generation started in the Late Eocene with the main phase of generation being between the Early Oligocene and the Early Miocene. From studying maturity profiles and from regional considerations it can be predicted that up to 500’ of sediment may have been deposited and eroded by the Sirt Unconformity in the central Maragh Low while up to 2000’ of sediment may have been deposited and then eroded to the south of the trough.Keywords: Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.
Procedia PDF Downloads 4064 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)
Authors: Stephan Treuke
Abstract:
The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.Keywords: economic mobility, neighborhood effects, Salvador, segregation
Procedia PDF Downloads 2783 Modeling the Human Harbor: An Equity Project in New York City, New York USA
Authors: Lauren B. Birney
Abstract:
The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.Keywords: computer science, data science, equity, diversity and inclusion, STEM education
Procedia PDF Downloads 582 A Comprehensive Study of Spread Models of Wildland Fires
Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling
Procedia PDF Downloads 811 The Impact of the Macro-Level: Organizational Communication in Undergraduate Medical Education
Authors: Julie M. Novak, Simone K. Brennan, Lacey Brim
Abstract:
Undergraduate medical education (UME) curriculum notably addresses micro-level communications (e.g., patient-provider, intercultural, inter-professional), yet frequently under-examines the role and impact of organizational communication, a more macro-level. Organizational communication, however, functions as foundation and through systemic structures of an organization and thereby serves as hidden curriculum and influences learning experiences and outcomes. Yet, little available research exists fully examining how students experience organizational communication while in medical school. Extant literature and best practices provide insufficient guidance for UME programs, in particular. The purpose of this study was to map and examine current organizational communication systems and processes in a UME program. Employing a phenomenology-grounded and participatory approach, this study sought to understand the organizational communication system from medical students' perspective. The research team consisted of a core team and 13 medical student co-investigators. This research employed multiple methods, including focus groups, individual interviews, and two surveys (one reflective of focus group questions, the other requesting students to submit ‘examples’ of communications). To provide context for student responses, nonstudent participants (faculty, administrators, and staff) were sampled, as they too express concerns about communication. Over 400 students across all cohorts and 17 nonstudents participated. Data were iteratively analyzed and checked for triangulation. Findings reveal the complex nature of organizational communication and student-oriented communications. They reveal program-impactful strengths, weaknesses, gaps, and tensions and speak to the role of organizational communication practices influencing both climate and culture. With regard to communications, students receive multiple, simultaneous communications from multiple sources/channels, both formal (e.g., official email) and informal (e.g., social media). Students identified organizational strengths including the desire to improve student voice, and message frequency. They also identified weaknesses related to over-reliance on emails, numerous platforms with inconsistent utilization, incorrect information, insufficient transparency, assessment/input fatigue, tacit expectations, scheduling/deadlines, responsiveness, and mental health confidentiality concerns. Moreover, they noted gaps related to lack of coordination/organization, ambiguous point-persons, student ‘voice-only’, open communication loops, lack of core centralization and consistency, and mental health bridges. Findings also revealed organizational identity and cultural characteristics as impactful on the medical school experience. Cultural characteristics included program size, diversity, urban setting, student organizations, community-engagement, crisis framing, learning for exams, inefficient bureaucracy, and professionalism. Moreover, they identified system structures that do not always leverage cultural strengths or reduce cultural problematics. Based on the results, opportunities for productive change are identified. These include leadership visibly supporting and enacting overall organizational narratives, making greater efforts in consistently ‘closing the loop’, regularly sharing how student input effects change, employing strategies of crisis communication more often, strengthening communication infrastructure, ensuring structures facilitate effective operations and change efforts, and highlighting change efforts in informational communication. Organizational communication and communications are not soft-skills, or of secondary concern within organizations, rather they are foundational in nature and serve to educate/inform all stakeholders. As primary stakeholders, students and their success directly affect the accomplishment of organizational goals. This study demonstrates how inquiries about how students navigate their educational experience extends research-based knowledge and provides actionable knowledge for the improvement of organizational operations in UME.Keywords: medical education programs, organizational communication, participatory research, qualitative mixed methods
Procedia PDF Downloads 112