Search results for: minimum data set
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26553

Search results for: minimum data set

25293 Accurate HLA Typing at High-Digit Resolution from NGS Data

Authors: Yazhi Huang, Jing Yang, Dingge Ying, Yan Zhang, Vorasuk Shotelersuk, Nattiya Hirankarn, Pak Chung Sham, Yu Lung Lau, Wanling Yang

Abstract:

Human leukocyte antigen (HLA) typing from next generation sequencing (NGS) data has the potential for applications in clinical laboratories and population genetic studies. Here we introduce a novel technique for HLA typing from NGS data based on read-mapping using a comprehensive reference panel containing all known HLA alleles and de novo assembly of the gene-specific short reads. An accurate HLA typing at high-digit resolution was achieved when it was tested on publicly available NGS data, outperforming other newly-developed tools such as HLAminer and PHLAT.

Keywords: human leukocyte antigens, next generation sequencing, whole exome sequencing, HLA typing

Procedia PDF Downloads 664
25292 Early Childhood Education: Teachers Ability to Assess

Authors: Ade Dwi Utami

Abstract:

Pedagogic competence is the basic competence of teachers to perform their tasks as educators. The ability to assess has become one of the demands in teachers pedagogic competence. Teachers ability to assess is related to curriculum instructions and applications. This research is aimed at obtaining data concerning teachers ability to assess that comprises of understanding assessment, determining assessment type, tools and procedure, conducting assessment process, and using assessment result information. It uses mixed method of explanatory technique in which qualitative data is used to verify the quantitative data obtained through a survey. The technique of quantitative data collection is by test whereas the qualitative data collection is by observation, interview and documentation. Then, the analyzed data is processed through a proportion study technique to be categorized into high, medium and low. The result of the research shows that teachers ability to assess can be grouped into 3 namely, 2% of high, 4% of medium and 94% of low. The data shows that teachers ability to assess is still relatively low. Teachers are lack of knowledge and comprehension in assessment application. The statement is verified by the qualitative data showing that teachers did not state which aspect was assessed in learning, record children’s behavior, and use the data result as a consideration to design a program. Teachers have assessment documents yet they only serve as means of completing teachers administration for the certification program. Thus, assessment documents were not used with the basis of acquired knowledge. The condition should become a consideration of the education institution of educators and the government to improve teachers pedagogic competence, including the ability to assess.

Keywords: assessment, early childhood education, pedagogic competence, teachers

Procedia PDF Downloads 246
25291 Supercritical CO2 Extraction of Cymbopogon martini Essential Oil and Comparison of Its Composition with Traditionally Extracted Oils

Authors: Aarti Singh, Anees Ahmad

Abstract:

Essential oil was extracted from lemon grass (Cymbopogon martini) with supercritical carbondioxide (SC-CO2) at pressure of 140 bar and temperature of 55 °C and CO2 flow rate of 8 gmin-1, and its composition and yield were compared with other conventional extraction methods of oil, HD (Hydrodistillation), SE (Solvent Extraction), UAE (Ultrasound Assisted Extraction). SC-CO2 extraction is a green and sustainable extraction technique. Each oil was analysed by GC-MS, the major constituents were neral (44%), Z-citral (43%), geranial (27%), caryophyllene (4.6%) and linalool (1%). The essential oil of lemon grass is valued for its neral and citral concentration. The oil obtained by supercritical carbon-dioxide extraction contained maximum concentration of neral (55.05%) whereas ultrasonication extracted oil contained minimum content (5.24%) and it was absent in solvent extracted oil. The antioxidant properties have been assessed by DPPH and superoxide scavenging methods.

Keywords: cymbopogon martini, essential oil, FT-IR, GC-MS, HPTLC, SC-CO2

Procedia PDF Downloads 462
25290 Assessment of Breast, Lung and Liver Effective Doses in Heart Imaging by CT-Scan 128 Dual Sources with Use of TLD-100 in RANDO Phantom

Authors: Seyedeh Sepideh Amini, Navideh Aghaei Amirkhizi, Seyedeh Paniz Amini, Seyed Soheil Sayyahi, Mohammad Reza Davar Panah

Abstract:

CT-Scan is one of the lateral and sectional imaging methods that produce 3D-images with use of rotational x-ray tube around central axis. This study is about evaluation and calculation of effective doses around heart organs such as breast, lung and liver with CT-Scan 128 dual sources with TLD_100 and RANDO Phantom by spiral, flash and conventional protocols. In results, it is showed that in spiral protocol organs have maximum effective dose and minimum in flash protocol. Thus flash protocol advised for children and risk persons.

Keywords: X-ray computed tomography, dosimetry, TLD-100, RANDO, phantom

Procedia PDF Downloads 475
25289 Prevalence of the Musculoskeletal Disorder amongst School Teachers

Authors: Nirav Vaghela, Sanket Parekh

Abstract:

Objective: Musculoskeletal disorders (MSD) represent one of the most common and important occupational health problems in working populations, being responsible for a substantial impact on quality of life and incurring a major economic burden in compensation cost and lost wages. School teachers represent an occupational group among which there appears to be a high prevalence of MSD. Design: Three hundred and fourteen teachers were enrolled in this study. Teachers were interview with the Modified Nordic Questionnaire. Result: In current study total 314 participants have been recruited in that minimum age of participants is 22 and maximum age is 59 with mean 40.5± 9.88. Total prevalence of the MSD is 71.95% among the teachers. In that Female were more affected with 72% than the males with 28%. Conclusion: The teachers here in reported a high prevalence of musculoskeletal pain in the shoulder, knee and back.

Keywords: repetitive stress injury, pain, occupational hazards, disability, abneetism, physical health, quality of life

Procedia PDF Downloads 291
25288 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.

Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit

Procedia PDF Downloads 544
25287 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piece-wise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left-free. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: trigonometric splines, monotone data, shape preserving, C1 monotone interpolant

Procedia PDF Downloads 271
25286 Synthesis of Ethoxylated Amide as Bactericide to Enhance the Storage Period of Diesel Fuel Nanoemulsions

Authors: S. M. Abd-Altwab, M. R. Noor El-Din

Abstract:

This paper aims to the synthesis of new ethoxylated amide as bactericides to prevent the growth of Gram +ve and –ve bacteria of water-in-diesel fuel nanoemulsions over a long period of time as three months. To realize it, eight kinetically stable water-in-diesel fuel nanoemulsions differing in surfactant concentrations and water contents ranging from 4 to 8 and 5 to 8 wt.,wt.,% of total weight of the nanoemulsions, respectively were formed at a temperature of 20 °C. The performance of this ethoxylated amide as bactericides agents against two strains of Gram-negative bacteria, namely, Pseudomonas aeruginosa and Escherichia coli, and two strains of Gram-positive bacteria namely, Staphylococcus aureus and Bacillus subtilis, were evaluated as antimicrobial agents. The maximum and minimum antimicrobial activities were 85 and 71 % against S. aureus and E. coli, respectively, at a concentration of 5 mg/l, pH 7, and 37 °C.

Keywords: nanoemulsion, bacteriocide, diesel fuel, emulsifier

Procedia PDF Downloads 363
25285 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels

Authors: Joshua Buli, David Pietrowski, Samuel Britton

Abstract:

Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.

Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization

Procedia PDF Downloads 86
25284 Integration of Knowledge and Metadata for Complex Data Warehouses and Big Data

Authors: Jean Christian Ralaivao, Fabrice Razafindraibe, Hasina Rakotonirainy

Abstract:

This document constitutes a resumption of work carried out in the field of complex data warehouses (DW) relating to the management and formalization of knowledge and metadata. It offers a methodological approach for integrating two concepts, knowledge and metadata, within the framework of a complex DW architecture. The objective of the work considers the use of the technique of knowledge representation by description logics and the extension of Common Warehouse Metamodel (CWM) specifications. This will lead to a fallout in terms of the performance of a complex DW. Three essential aspects of this work are expected, including the representation of knowledge in description logics and the declination of this knowledge into consistent UML diagrams while respecting or extending the CWM specifications and using XML as pivot. The field of application is large but will be adapted to systems with heteroge-neous, complex and unstructured content and moreover requiring a great (re)use of knowledge such as medical data warehouses.

Keywords: data warehouse, description logics, integration, knowledge, metadata

Procedia PDF Downloads 138
25283 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 364
25282 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data

Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.

Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query

Procedia PDF Downloads 162
25281 The Extent of Big Data Analysis by the External Auditors

Authors: Iyad Ismail, Fathilatul Abdul Hamid

Abstract:

This research was mainly investigated to recognize the extent of big data analysis by external auditors. This paper adopts grounded theory as a framework for conducting a series of semi-structured interviews with eighteen external auditors. The research findings comprised the availability extent of big data and big data analysis usage by the external auditors in Palestine, Gaza Strip. Considering the study's outcomes leads to a series of auditing procedures in order to improve the external auditing techniques, which leads to high-quality audit process. Also, this research is crucial for auditing firms by giving an insight into the mechanisms of auditing firms to identify the most important strategies that help in achieving competitive audit quality. These results are aims to instruct the auditing academic and professional institutions in developing techniques for external auditors in order to the big data analysis. This paper provides appropriate information for the decision-making process and a source of future information which affects technological auditing.

Keywords: big data analysis, external auditors, audit reliance, internal audit function

Procedia PDF Downloads 70
25280 The Transcutaneous Auricular Vagus Nerve Stimulation in Treatment of Depression and Anxiety Disorders in Recovery Patient with Feeding and Eating Disorders

Authors: Y. Melis, E. Apicella, E. Dozio, L. Mendolicchio

Abstract:

Introduction: Feeding and Eating Disorders (FED) represent the psychiatric pathology with the highest mortality rate and one of the major disorders with the highest psychiatric and clinical comorbidity. The vagus nerve represents one of the main components of the sympathetic and parasympathetic nervous system and is involved in important neurophysiological functions. In FED, there is a spectrum of symptoms which with TaVNS (Transcutaneous Auricular Vagus Nerve Stimulation) therapy, is possible to have a therapeutic efficacy. Materials and Methods: Sample subjects are composed of 15 female subjects aged > 18 ± 51. Admitted to a psychiatry community having been diagnosed according to DSM-5: anorexia nervosa (AN) (N= 9), bulimia nervosa (BN) (N= 5), binge eating disorder (BED) (N= 1). The protocol included 9 weeks of Ta-VNS stimulation at a frequency of 1.5-3.5 mA for 4 hours per day. The variables detected are the following: Heart Rate Variability (HRV), Hamilton Depression Rating Scale (HAMD-HDRS-17), Body Mass Index (BMI), Beck Anxiety Index (BAI). Results: Data analysis showed statistically significant differences between recording times (p > 0.05) in HAM-D (t0 = 18.28 ± 5.31; t4 = 9.14 ± 7.15), in BAI (t0 = 24.7 ± 10.99; t4 = 13.8 ± 7.0). The reported values show how during (T0-T4) the treatment there is a decay of the degree in the depressive state, in the state of anxiety, and an improvement in the value of BMI. In particular, the BMI in the AN-BN sub-sample had a minimum gain of 5% and a maximum of 11%. The analysis of HRV did not show a clear change among subjects, thus confirming the discordance of the activity of the sympathetic and parasympathetic nervous system in FED. Conclusions: Although the sample does not possess a relevant value to determine long-term efficacy of Ta-VNS or on a larger population, this study reports how the application of neuro-stimulation in FED may become a further approach therapeutic. Indeed, substantial improvements are highlighted in the results and confirmed hypotheses proposed by the study.

Keywords: feeding and eating disorders, neurostimulation, anxiety disorders, depression

Procedia PDF Downloads 145
25279 A Model of Teacher Leadership in History Instruction

Authors: Poramatdha Chutimant

Abstract:

The objective of the research was to propose a model of teacher leadership in history instruction for utilization. Everett M. Rogers’ Diffusion of Innovations Theory is applied as theoretical framework. Qualitative method is to be used in the study, and the interview protocol used as an instrument to collect primary data from best practices who awarded by Office of National Education Commission (ONEC). Open-end questions will be used in interview protocol in order to gather the various data. Then, information according to international context of history instruction is the secondary data used to support in the summarizing process (Content Analysis). Dendrogram is a key to interpret and synthesize the primary data. Thus, secondary data comes as the supportive issue in explanation and elaboration. In-depth interview is to be used to collected information from seven experts in educational field. The focal point is to validate a draft model in term of future utilization finally.

Keywords: history study, nationalism, patriotism, responsible citizenship, teacher leadership

Procedia PDF Downloads 280
25278 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.

Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model

Procedia PDF Downloads 68
25277 Multiple Intelligences to Improve Pronunciation

Authors: Jean Pierre Ribeiro Daquila

Abstract:

This paper aims to analyze the use of the Theory of Multiple Intelligences as a tool to facilitate students’ learning. This theory, proposed by the American psychologist and educator Howard Gardner, was first established in 1983 and advocates that human beings possess eight intelligence and not only one, as defended by psychologists prior to his theory. These intelligence are bodily-kinesthetic intelligence, musical, linguistic, logical-mathematical, spatial, interpersonal, intrapersonal, and naturalist. This paper will focus on bodily-kinesthetic intelligence. Spatial and bodily-kinesthetic intelligences are sensed by athletes, dancers, and others who use their bodies in ways that exceed normal abilities. These are intelligences that are closely related. A quarterback or a ballet dancer needs to have both an awareness of body motions and abilities as well as a sense of the space involved in the action. Nevertheless, there are many reasons which make classical ballet dance more integrated with other intelligences. Ballet dancers make it look effortless as they move across the stage, from the lifts to the toe points; therefore, there is acting both in the performance of the repertoire and in hiding the pain or physical stress. The ballet dancer has to have great mathematical intelligence to perform a fast allegro; for instance, each movement has to be executed in a specific millisecond. Flamenco dancers need to rely as well on their mathematic abilities, as the footwork requires the ability to make half, two, three, four or even six movements in just one beat. However, the precision of the arm movements is freer than in ballet dance; for this reason, ballet dancers need to be more holistically aware of their movements; therefore, our experiment will test whether this greater attention required by ballet dancers makes them acquire better results in the training sessions when compared to flamenco dancers. An experiment will be carried out in this study by training ballet dancers through dance (four years of experience dancing minimum – experimental group 1); a group of flamenco dancers (four years of experience dancing minimum – experimental group 2). Both experimental groups will be trained in two different domains – phonetics and chemistry – to examine whether there is a significant improvement in these areas compared to the control group (a group of regular students who will receive the same training through a traditional method). However, this paper will focus on phonetic training. Experimental group 1 will be trained with the aid of classical music plus bodily work. Experimental group 2 will be trained with flamenco rhythm and kinesthetic work. We would like to highlight that this study takes dance as an example of a possible area of strength; nonetheless, other types of arts can and should be used to support students, such as drama, creative writing, music and others. The main aim of this work is to suggest that other intelligences, in the case of this study, bodily-kinesthetic, can be used to help improve pronunciation.

Keywords: multiple intelligences, pronunciation, effective pronunciation trainings, short drills, musical intelligence, bodily-kinesthetic intelligence

Procedia PDF Downloads 96
25276 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO

Procedia PDF Downloads 442
25275 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data

Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.

Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter

Procedia PDF Downloads 150
25274 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 353
25273 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework

Authors: Abbas Raza Ali

Abstract:

Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.

Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation

Procedia PDF Downloads 175
25272 Programming with Grammars

Authors: Peter M. Maurer Maurer

Abstract:

DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.

Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation

Procedia PDF Downloads 147
25271 A Model Architecture Transformation with Approach by Modeling: From UML to Multidimensional Schemas of Data Warehouses

Authors: Ouzayr Rabhi, Ibtissam Arrassen

Abstract:

To provide a complete analysis of the organization and to help decision-making, leaders need to have relevant data; Data Warehouses (DW) are designed to meet such needs. However, designing DW is not trivial and there is no formal method to derive a multidimensional schema from heterogeneous databases. In this article, we present a Model-Driven based approach concerning the design of data warehouses. We describe a multidimensional meta-model and also specify a set of transformations starting from a Unified Modeling Language (UML) metamodel. In this approach, the UML metamodel and the multidimensional one are both considered as a platform-independent model (PIM). The first meta-model is mapped into the second one through transformation rules carried out by the Query View Transformation (QVT) language. This proposal is validated through the application of our approach to generating a multidimensional schema of a Balanced Scorecard (BSC) DW. We are interested in the BSC perspectives, which are highly linked to the vision and the strategies of an organization.

Keywords: data warehouse, meta-model, model-driven architecture, transformation, UML

Procedia PDF Downloads 160
25270 Secured Embedding of Patient’s Confidential Data in Electrocardiogram Using Chaotic Maps

Authors: Butta Singh

Abstract:

This paper presents a chaotic map based approach for secured embedding of patient’s confidential data in electrocardiogram (ECG) signal. The chaotic map generates predefined locations through the use of selective control parameters. The sample value difference method effectually hides the confidential data in ECG sample pairs at these predefined locations. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evident through various statistical and clinical performance measures. Statistical metrics comprise of Percentage Root Mean Square Difference (PRD) and Peak Signal to Noise Ratio (PSNR). Further, a comparative analysis between proposed method and existing approaches was also performed. The results clearly demonstrated the superiority of proposed method.

Keywords: chaotic maps, ECG steganography, data embedding, electrocardiogram

Procedia PDF Downloads 196
25269 Chilean Social Work Students and Their Options to Access to College Financial Aid: Policy Implications on Equity and Professional Training

Authors: Oscar E. Cariceo

Abstract:

In Chile, social workers´ professional training is developed in the undergraduate level, mainly. Despite the fact that several schools have been launched Master of Social Work programs, the Bachelor in Social Work is the minimum qualification to start a professional career. In the current Chilean higher education system, there exist different financial aid options in order to guarantee equal access to higher education. These policies, which are student loans and scholarships, basically, are applied and distributed by Government agencies. They are linked to academic performance and socio-economic needs, in terms of standardized test scores and social vulnerability criteria. In addition, institutions that enroll students with high scores, also receive direct financial support. In other words, social work students must compete for the resources to pay for college tuitions and fees with other students from different programs and knowledge fields and, as a consequence, they can indirectly enhance schools´ money income. This work aims to describe the reality of social work students to access to financial aid in Chile. The analysis presents the results of the University Selection Test of students, who were accepted in social work undergraduate programs during 2014 related to their qualifications to apply to three main financial aid programs, and their contribution to attracting resources to their schools. In general, data show that social work students participate in a low proportion in the distribution of financial aid, both student loans and scholarships. Few of them reach enough scores to guarantee direct financial resources to their institutions. Therefore, this situation has deep implications on equal access to higher education for vulnerable students and affects equal access to training options for young social workers, due to the highly competitive financial aid system.

Keywords: social work, professional training, higher education, financial aid, equity

Procedia PDF Downloads 294
25268 Channel Estimation for LTE Downlink

Authors: Rashi Jain

Abstract:

The LTE systems employ Orthogonal Frequency Division Multiplexing (OFDM) as the multiple access technology for the Downlink channels. For enhanced performance, accurate channel estimation is required. Various algorithms such as Least Squares (LS), Minimum Mean Square Error (MMSE) and Recursive Least Squares (RLS) can be employed for the purpose. The paper proposes channel estimation algorithm based on Kalman Filter for LTE-Downlink system. Using the frequency domain pilots, the initial channel response is obtained using the LS criterion. Then Kalman Filter is employed to track the channel variations in time-domain. To suppress the noise within a symbol, threshold processing is employed. The paper draws comparison between the LS, MMSE, RLS and Kalman filter for channel estimation. The parameters for evaluation are Bit Error Rate (BER), Mean Square Error (MSE) and run-time.

Keywords: LTE, channel estimation, OFDM, RLS, Kalman filter, threshold

Procedia PDF Downloads 356
25267 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios

Procedia PDF Downloads 324
25266 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes

Authors: Hyun-Woo Cho

Abstract:

The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.

Keywords: process data, data mining, process operation, real-time monitoring

Procedia PDF Downloads 640
25265 Glacier Dynamics and Mass Fluctuations in Western Himalayas: A Comparative Analysis of Pir-Panjal and Greater Himalayan Ranges in Jhelum Basin, India

Authors: Syed Towseef Ahmad, Fatima Amin, Pritha Acharya, Anil K. Gupta, Pervez Ahmad

Abstract:

Glaciers being the sentinels of climate change, are the most visible evidence of global warming. Given the unavailability of observed field-based data, this study has focussed on the use of geospatial techniques to obtain information about the glaciers of Pir-Panjal (PPJ) and the Great Himalayan Regions of Jhelum Basin (GHR). These glaciers need to be monitored in line with the variations in climatic conditions because they significantly contribute to various sectors in the region. The main aim of this study is to map the glaciers in the two adjacent regions (PPJ and GHR) in the north-western Himalayas with different topographies and compare the changes in various glacial attributes during two different time periods (1990-2020). During the last three decades, both PPJ as well as GHR regions have observed deglaciation of around 36 and 26 percent, respectively. The mean elevation of GHR glaciers has increased from 4312 to 4390 masl, while the same for PPJ glaciers has increased from 4085 to 4124 masl during the observation period. Using accumulation area ratio (AAR) method, mean mass balance of -34.52 and -37.6 cm.w.e was recorded for the glaciers of GHR and PPJ, respectively. The difference in areal and mass loss of glaciers in these regions may be due to (i) the smaller size of PPJ glaciers which are all smaller than 1 km² and are thus more responsive to climate change (ii) Higher mean elevation of GHR glaciers (iii) local variations in climatic variables in these glaciated regions. Time series analysis of climate variables indicates that both the mean maximum and minimum temperatures of Qazigund station (Tmax= 19.2, Tmin= 6.4) are comparatively higher than the Pahalgam station (Tmax= 18.8, Tmin= 3.2). Except for precipitation in Qazigund (Slope= - 0.3 mm a⁻¹), each climatic parameter has shown an increasing trend during these three decades, and with the slope of 0.04 and 0.03°c a⁻¹, the positive trend in Tmin (pahalgam) and Tmax (qazigund) are observed to be statistically significant (p≤0.05).

Keywords: glaciers, climate change, Pir-Panjal, greater Himalayas, mass balance

Procedia PDF Downloads 88
25264 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization

Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal

Abstract:

This paper describes optimal thinning of an Elliptical Cylindrical Array (ECA) of uniformly excited isotropic antennas which can generate directive beam with minimum relative Side Lobe Level (SLL). The Particle Swarm Optimization (PSO) method, which represents a new approach for optimization problems in electromagnetic, is used in the optimization process. The PSO is used to determine the optimal set of ‘ON-OFF’ elements that provides a radiation pattern with maximum SLL reduction. Optimization is done without prefixing the value of First Null Beam Width (FNBW). The variation of SLL with element spacing of thinned array is also reported. Simulation results show that the number of array elements can be reduced by more than 50% of the total number of elements in the array with a simultaneous reduction in SLL to less than -27dB.

Keywords: thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.

Procedia PDF Downloads 443