Search results for: human concept learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17876

Search results for: human concept learning

16646 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 187
16645 The Wider Benefits of Negotiations: Austrian Perspective on Educational Leadership as a ‘Power Game’ for Trade Unions

Authors: Rudolf Egger

Abstract:

This paper explores the relationships between the basic learning processes of leading trade union workers and their methods for coping with the changes in the life-courses of societies today. It will discuss the fragile discourse on lifelong learning in trade unions and the “production of self-techniques” to get in touch with the new economic forms. On the basis of an empirical project, different processes of the socialization of leading trade union workers will be analysed to discover the consequences of the lifelong learning discourse. The results show what competences they need to develop for the “wider benefits of negotiations”. The main challenge remains to make visible how deeply intertwined trade union learning and education are with development in an ongoing dynamic economic process, rather than a quick-fix injection of skills and information. There is a complex relationship existing between the three ‘partners’, work, learning and society forming. The author suggests that contemporary trade unions could be trendsetters who make their own learning agendas by drawing less on formal education and more on informal and non-formal learning contexts. This is in parallel with growing political and scientific consciousness of the need to arrive at new educational/vocational policies and practices.

Keywords: trade union workers, educational leadership, learning societies, social acting

Procedia PDF Downloads 222
16644 Beyond Taguchi’s Concept of the Quality Loss Function

Authors: Atul Dev, Pankaj Jha

Abstract:

Dr. Genichi Taguchi looked at quality in a broader term and gave an excellent definition of quality in terms of loss to society. However the scope of this definition is limited to the losses imparted by a poor quality product to the customer only and are considered during the useful life of the product and further in a certain situation this loss can even be zero. In this paper, it has been proposed that the scope of quality of a product shall be further enhanced by considering the losses imparted by a poor quality product to society at large, due to associated environmental and safety related factors, over the complete life cycle of the product. Moreover, though these losses can be further minimized with the use of techno-safety interventions, the net losses to society however can never be made zero. This paper proposes an entirely new approach towards defining product quality and is based on Taguchi’s definition of quality.

Keywords: existing concept, goal post philosophy, life cycle, proposed concept, quality loss function

Procedia PDF Downloads 315
16643 A Collective Intelligence Approach to Safe Artificial General Intelligence

Authors: Craig A. Kaplan

Abstract:

If AGI proves to be a “winner-take-all” scenario where the first company or country to develop AGI dominates, then the first AGI must also be the safest. The safest, and fastest, path to Artificial General Intelligence (AGI) may be to harness the collective intelligence of multiple AI and human agents in an AGI network. This approach has roots in seminal ideas from four of the scientists who founded the field of Artificial Intelligence: Allen Newell, Marvin Minsky, Claude Shannon, and Herbert Simon. Extrapolating key insights from these founders of AI, and combining them with the work of modern researchers, results in a fast and safe path to AGI. The seminal ideas discussed are: 1) Society of Mind (Minsky), 2) Information Theory (Shannon), 3) Problem Solving Theory (Newell & Simon), and 4) Bounded Rationality (Simon). Society of Mind describes a collective intelligence approach that can be used with AI and human agents to create an AGI network. Information theory helps address the critical issue of how an AGI system will increase its intelligence over time. Problem Solving Theory provides a universal framework that AI and human agents can use to communicate efficiently, effectively, and safely. Bounded Rationality helps us better understand not only the capabilities of SuperIntelligent AGI but also how humans can remain relevant in a world where the intelligence of AGI vastly exceeds that of its human creators. Each key idea can be combined with recent work in the fields of Artificial Intelligence, Machine Learning, and Large Language Models to accelerate the development of a working, safe, AGI system.

Keywords: AI Agents, Collective Intelligence, Minsky, Newell, Shannon, Simon, AGI, AGI Safety

Procedia PDF Downloads 92
16642 Strategies to Improve Learning and Teaching of Software Packages Among Undergraduate Students

Authors: Sara Moridpour

Abstract:

Engineering students need to learn different software packages to meet the emerging industry needs. Face-to-face lectures provide an interactive environment for learning software packages. However, COVID changed expectations of face-to-face learning and teaching. It is essential to enhance the interaction among students and teachers in online and virtual learning and teaching of software packages. The proposed study introduces strategies for teaching engineering software packages in online and hybrid environments and evaluates students’ skills by an authentic assignment.

Keywords: teaching software packages, authentic assessment., engineering, undergraduate students

Procedia PDF Downloads 143
16641 Students’ Awareness of the Use of Poster, Power Point and Animated Video Presentations: A Case Study of Third Year Students of the Department of English of Batna University

Authors: Bahloul Amel

Abstract:

The present study debates students’ perceptions of the use of technology in learning English as a Foreign Language. Its aim is to explore and understand students’ preparation and presentation of Posters, PowerPoint and Animated Videos by drawing attention to visual and oral elements. The data is collected through observations and semi-structured interviews and analyzed through phenomenological data analysis steps. The themes emerged from the data, visual learning satisfaction in using information and communication technology, providing structure to oral presentation, learning from peers’ presentations, draw attention to using Posters, PowerPoint and Animated Videos as each supports visual learning and organization of thoughts in oral presentations.

Keywords: EFL, posters, PowerPoint presentations, Animated Videos, visual learning

Procedia PDF Downloads 446
16640 The Applicability of International Humanitarian Law to Non-State Actors

Authors: Yin Cheung Lam

Abstract:

In 1949, the ratification of the Geneva Conventions heralded the international community’s adoption of a new universal and non-discriminatory approach to human rights in situations of conflict. However, with the proliferation of international terrorism after the 9/11 attacks on the United States (U.S.), the international community’s uneven and contradictory implementations of international humanitarian law (IHL) questioned its agenda of universal human rights. Specifically, the derogation from IHL has never been so pronounced in the U.S. led ‘War on Terror’. While an extensive literature has ‘assessed the impact’ of the implementation of the Geneva Conventions, limited attention has been paid to interrogating the ways in which the Geneva Conventions and its resulting implementation have functioned to discursively reproduce certain understandings of human rights between states and non-state actors. Through a discursive analysis of the Geneva Conventions and the conceptualization of human rights in relation to terrorism, this thesis problematises the way in which the U.S. has understood and reproduced understandings of human rights. Using the U.S. ‘War on Terror’ as an example, it seeks to extend previous analyses of the U.S.’ practice of IHL through a qualitative discursive analysis of the human rights content that appears in the Geneva Conventions in addition to the speeches and policy documents on the ‘War on Terror’.

Keywords: discursive analysis, human rights, non-state actors, war on terror

Procedia PDF Downloads 608
16639 Explaining E-Learning Systems Usage in Higher Education Institutions: UTAUT Model

Authors: Muneer Abbad

Abstract:

This research explains the e-learning usage in a university in Jordan. Unified theory of acceptance and use of technology (UTAUT) model has been used as a base model to explain the usage. UTAUT is a model of individual acceptance that is compiled mainly from different models of technology acceptance. This research is the initial part from full explanations of the users' acceptance model that use Structural Equation Modelling (SEM) method to explain the users' acceptance of the e-learning systems based on UTAUT model. In this part data has been collected and prepared for further analysis. The main factors of UTAUT model has been tested as different factors using exploratory factor analysis (EFA). The second phase will be confirmatory factor analysis (CFA) and SEM to explain the users' acceptance of e-learning systems.

Keywords: e-learning, moodle, adoption, Unified Theory of Acceptance and Use of Technology (UTAUT)

Procedia PDF Downloads 409
16638 A Study to Explore the Views of Students regarding E-Learning as an Instructional Tool at University Level

Authors: Zafar Iqbal

Abstract:

This study involved students of 6th semester enrolled in a Bachelor of Computer Science Program at university level. In this era of science and technology, e-learning can be helpful for grassroots in providing them access to education tenant in less developed areas. It is a potential substitute of face-to-face teaching being used in different countries. The purpose of the study was to explore the views of students about e-learning (Facebook) as an instructional tool. By using purposive sampling technique an intact class of 30 students included both male and female were selected where e-learning was used as an instructional tool. The views of students were explored through qualitative approach by using focus group interviews. The approach was helpful to develop comprehensive understanding of students’ views towards e- learning. In addition, probing questions were also asked and recorded. Data was transcribed, generated nodes and then coded text against these nodes. For this purpose and further analysis, NVivo 10 software was used. Themes were generated and tangibly presented through cluster analysis. Findings were interesting and provide sufficient evidence that face book is a subsequent e-learning source for students of higher education. Students acknowledged it as best source of learning and it was aligned with their academic and social behavior. It was not time specific and therefore, feasible for students who work day time and can get on line access to the material when they got free time. There were some distracters (time wasters) reported by the students but can be minimized by little effort. In short, e-learning is need of the day and potential learning source for every individual who have access to internet living at any part of the globe.

Keywords: e-learning, facebook, instructional tool, higher education

Procedia PDF Downloads 376
16637 3D Reconstruction of Human Body Based on Gender Classification

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo

Abstract:

SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.

Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction

Procedia PDF Downloads 70
16636 Auditory and Visual Perceptual Category Learning in Adults with ADHD: Implications for Learning Systems and Domain-General Factors

Authors: Yafit Gabay

Abstract:

Attention deficit hyperactivity disorder (ADHD) has been associated with both suboptimal functioning in the striatum and prefrontal cortex. Such abnormalities may impede the acquisition of perceptual categories, which are important for fundamental abilities such as object recognition and speech perception. Indeed, prior research has supported this possibility, demonstrating that children with ADHD have similar visual category learning performance as their neurotypical peers but use suboptimal learning strategies. However, much less is known about category learning processes in the auditory domain or among adults with ADHD in which prefrontal functions are more mature compared to children. Here, we investigated auditory and visual perceptual category learning in adults with ADHD and neurotypical individuals. Specifically, we examined learning of rule-based categories – presumed to be optimally learned by a frontal cortex-mediated hypothesis testing – and information-integration categories – hypothesized to be optimally learned by a striatally-mediated reinforcement learning system. Consistent with striatal and prefrontal cortical impairments observed in ADHD, our results show that across sensory modalities, both rule-based and information-integration category learning is impaired in adults with ADHD. Computational modeling analyses revealed that individuals with ADHD were slower to shift to optimal strategies than neurotypicals, regardless of category type or modality. Taken together, these results suggest that both explicit, frontally mediated and implicit, striatally mediated category learning are impaired in ADHD. These results suggest impairments across multiple learning systems in young adults with ADHD that extend across sensory modalities and likely arise from domain-general mechanisms.

Keywords: ADHD, category learning, modality, computational modeling

Procedia PDF Downloads 51
16635 Evaluating the Role of Multisensory Elements in Foreign Language Acquisition

Authors: Sari Myréen

Abstract:

The aim of this study was to evaluate the role of multisensory elements in enhancing and facilitating foreign language acquisition among adult students in a language classroom. The use of multisensory elements enables the creation of a student-centered classroom, where the focus is on individual learner’s language learning process, perceptions and motivation. Multisensory language learning is a pedagogical approach where the language learner uses all the senses more effectively than in a traditional in-class environment. Language learning is facilitated due to multisensory stimuli which increase the number of cognitive connections in the learner and take into consideration different types of learners. A living lab called Multisensory Space creates a relaxed and receptive state in the learners through various multisensory stimuli, and thus promotes their natural foreign language acquisition. Qualitative and quantitative data were collected in two questionnaire inquiries among the Finnish students of a higher education institute at the end of their basic French courses in December 2014 and 2016. The inquiries discussed the effects of multisensory elements on the students’ motivation to study French as well as their learning outcomes. The results show that the French classes in the Multisensory Space provide the students with an encouraging and pleasant learning environment, which has a positive impact on their motivation to study the foreign language as well as their language learning outcomes.

Keywords: foreign language acquisition, pedagogical approach, multisensory learning, transcultural learning

Procedia PDF Downloads 387
16634 Optimization of Machine Learning Regression Results: An Application on Health Expenditures

Authors: Songul Cinaroglu

Abstract:

Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.

Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure

Procedia PDF Downloads 226
16633 Scoping Review of Biological Age Measurement Composed of Biomarkers

Authors: Diego Alejandro Espíndola-Fernández, Ana María Posada-Cano, Dagnóvar Aristizábal-Ocampo, Jaime Alberto Gallo-Villegas

Abstract:

Background: With the increase in life expectancy, aging has been subject of frequent research, and therefore multiple strategies have been proposed to quantify the advance of the years based on the known physiology of human senescence. For several decades, attempts have been made to characterize these changes through the concept of biological age, which aims to integrate, in a measure of time, structural or functional variation through biomarkers in comparison with simple chronological age. The objective of this scoping review is to deepen the updated concept of measuring biological age composed of biomarkers in the general population and to summarize recent evidence to identify gaps and priorities for future research. Methods: A scoping review was conducted according to the five-phase methodology developed by Arksey and O'Malley through a search of five bibliographic databases to February 2021. Original articles were included with no time or language limit that described the biological age composed of at least two biomarkers in those over 18 years of age. Results: 674 articles were identified, of which 105 were evaluated for eligibility and 65 were included with information on the measurement of biological age composed of biomarkers. Articles from 1974 of 15 nationalities were found, most observational studies, in which clinical or paraclinical biomarkers were used, and 11 different methods described for the calculation of the composite biological age were informed. The outcomes reported were the relationship with the same measured biomarkers, specified risk factors, comorbidities, physical or cognitive functionality, and mortality. Conclusions: The concept of biological age composed of biomarkers has evolved since the 1970s and multiple methods of its quantification have been described through the combination of different clinical and paraclinical variables from observational studies. Future research should consider the population characteristics, and the choice of biomarkers against the proposed outcomes to improve the understanding of aging variables to direct effective strategies for a proper approach.

Keywords: biological age, biological aging, aging, senescence, biomarker

Procedia PDF Downloads 188
16632 The Implementation of Teaching and Learning Quality Assurance System at the Chaoyang University of Technology for Academic Year 2013-2015

Authors: Ting Hsiang Chang

Abstract:

Nowadays in Taiwan, higher education, which was previously more emphasized on teaching-oriented approaches, has gradually shifted to an approach more focusing on students learning outcomes. With student employment rate as an important indicator for University Program Evaluation periodically held by the Ministry of Education, it becomes extremely critical for a university to build up a teaching and learning quality assurance system to bridge the gap between learning and practice. Teaching and Learning Quality Assurance System has been built and implemented at Chaoyang University of Technology for years and has received substantial results. By employing various forms of evaluation and performance appraisals, the effectiveness of teaching and learning can consistently be tracked as a means of ensuring teaching and learning quality. This study aims to explore the evaluation system of teaching and learning quality assurance system at the Chaoyang University of Technology by means of content analysis. The study contents the evaluation reports on the teaching and learning quality assurance at the Chaoyang University of Technology in the Academic Year 2013-2015. The quantitative results of the assessment were analyzed using the five-point Likert Scale. Quality assurance Committee meetings were further held for examining and discussions on the results. To the end, the annual evaluation report is to be produced as references used to improve approaches in both teaching and learning. The findings indicate that there is a respective relationship between the overall teaching evaluation items and the teaching goals and core competencies. In addition, graduates’ feedbacks were also collected for further analysis to examine if the current educational planning is able to achieve the university’s teaching goal and cultivation of core competencies.

Keywords: core competencies, teaching and learning quality assurance system, teaching goals, university program evaluation

Procedia PDF Downloads 293
16631 Spatial Practice Towards Urban Identity: The Shift, Limitation and Contemporary Value of Christopher

Authors: Botao Zhao, Hong Jiang

Abstract:

Christopher Alexander's urban design theory challenges the technical rationality of the empiricism that prevailsin the first half of the 20th century. Alexander emphasizes the wholeness of the city through progressive design, conceptual-based participation, shaping of centrality, and other principles. Based on Christopher Alexander’s comprehensive book “a new theory of urban design” and by combining with other major works, this paper puts Alexander into the history of the post-modern shift of architecture and urban planning in the middle and late 20th century and analyzes the uniqueness of Alexander’s systematization of spatial context. Despite the overemphasis on the initiative of design, Alexander's attempt to discover the “objectivity” of good space -the ability to generate people's urban identity-through an expanded concept of space, and a systematic approach to design restructures the visceral connection between urban space and human. The concept of urban identity is then decomposed into the identity of the physical setting, identity of process, and identity of meaning. Professionals need to learn from the reality and history of urban space to construct spatial“vocabulary libraries” and create the wholeness of the city, and in which process strengthen the subjectivity of the discipline simultaneously, to generate living structures in which urban identity could be ultimately cultivated.

Keywords: christopher alexander, a new theory of urban design, Urban identity, pattern language, urban design

Procedia PDF Downloads 153
16630 Impression Evaluation by Design Change of Anthropomorphic Agent

Authors: Kazuko Sakamoto

Abstract:

Anthropomorphic agents have been successful in areas where there are many human interactions, such as education and medical care. The persuasive effect is also expected in e-shopping sites on the web. This indicates that customer service is not necessarily human but can play that role. However, the 'humanity' in anthropomorphism sometimes has a risk of working negatively. In general, as the appearance of anthropomorphic agents approaches humans, it is thought that their affinity with humans increases. However, when the degree of similarity reaches a certain level, it gives the user a weird feeling. This is the 'eerie valley' phenomenon. This is a concept used in the world of robotics, but it seems to be applicable to anthropomorphic agents such as characters. Then what kind of design can you accept as an anthropomorphic agent that gives you a feeling of friendliness or good feeling without causing discomfort or fear to people? This study focused on this point and examined what design and characteristics would be effective for marketing communication. As a result of the investigation, it was found that there is no need for gaze and blinking, the size of the eyes is normal or large, and the impression evaluation is higher when the structure is as simple as possible. Conversely, agents with high eye-gaze and white-eye ratios had low evaluations, and the negative impact on eye-gaze was particularly large.

Keywords: anthropomorphicgents, design evaluation, marketing communication, customer service

Procedia PDF Downloads 114
16629 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education

Procedia PDF Downloads 293
16628 Impact of Team-Based Learning Approach in English Language Learning Process: A Case Study of Universidad Federico Santa Maria

Authors: Yessica A. Aguilera

Abstract:

English is currently the only foreign language included in the national educational curriculum in Chile. The English curriculum establishes that once completed secondary education, students are expected to reach B1 level according to the Common European Reference Framework (CEFR) scale. However, the objective has not been achieved, and to the author’s best knowledge, there is still a severe lack of English language skills among students who have completed their secondary education studies. In order to deal with the fact that students do not manage English as expected, team-based learning (TBL) was introduced in English language lessons at the Universidad Federico Santa María (USM). TBL is a collaborative teaching-learning method which enhances active learning by combining individual and team work. This approach seeks to help students achieve course objectives while learning how to function in teams. The purpose of the research was to assess the implementation and effectiveness of TBL in English language classes at USM technical training education. Quantitative and qualitative data were collected from teachers and students about their experience through TBL. Research findings show that both teachers and students are satisfied with the method and that students’ engagement and participation in class is higher. Additionally, students score higher on examinations improving academic outcomes. The findings of the research have the potential to guide how TBL could be included in future English language courses.

Keywords: collaborative learning, college education, English language learning, team-based learning

Procedia PDF Downloads 190
16627 The Impact of Gamification on Self-Assessment for English Language Learners in Saudi Arabia

Authors: Wala A. Bagunaid, Maram Meccawy, Arwa Allinjawi, Zilal Meccawy

Abstract:

Continuous self-assessment becomes crucial in self-paced online learning environments. Students often depend on themselves to assess their progress; which is considered an essential requirement for any successful learning process. Today’s education institutions face major problems around student motivation and engagement. Thus, personalized e-learning systems aim to help and guide the students. Gamification provides an opportunity to help students for self-assessment and social comparison with other students through attempting to harness the motivational power of games and apply it to the learning environment. Furthermore, Open Social Student Modeling (OSSM) as considered as the latest user modeling technologies is believed to improve students’ self-assessment and to allow them to social comparison with other students. This research integrates OSSM approach and gamification concepts in order to provide self-assessment for English language learners at King Abdulaziz University (KAU). This is achieved through an interactive visual representation of their learning progress.

Keywords: e-learning system, gamification, motivation, social comparison, visualization

Procedia PDF Downloads 154
16626 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 129
16625 Locket Application

Authors: Farah Al-Fityani, Aljohara Alsowail, Shatha Bindawood, Heba Balrbeah

Abstract:

Locket is a popular app that lets users share spontaneous photos with a close circle of friends. The app offers a unique way to stay connected with loved ones by allowing users to see glimpses of their day through photos displayed on a widget on their home screen. This summary outlines the process of developing an app like Locket, highlighting the importance of user privacy and security. It also details the findings of a study on user engagement with the Locket app, revealing positive sentiment towards its features and concept but also identifying areas for improvement. Overall, the summary portrays Locket as a successful app that is changing the way people connect on social media.

Keywords: locket, app, machine learning, connect

Procedia PDF Downloads 48
16624 Market Index Trend Prediction using Deep Learning and Risk Analysis

Authors: Shervin Alaei, Reza Moradi

Abstract:

Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.

Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks

Procedia PDF Downloads 157
16623 Engaging the World Bank: Good Governance and Human Rights-Based Approaches

Authors: Lottie Lane

Abstract:

It is habitually assumed and stated that the World Bank should engage and comply with international human rights standards. However, the basis for holding the Bank to such standards is unclear. Most advocates of the idea invoke aspects of international law to argue that the Bank has existing obligations to act in compliance with human rights standards. The Bank itself, however, does not appear to accept such arguments, despite having endorsed the importance of human rights for a considerable length of time. A substantial challenge is that under the current international human rights law framework, the World Bank is considered a non-state actor, and as such, has no direct human rights obligations. In the absence of clear legal duties for the Bank, it is necessary to look at the tools available beyond the international human rights framework to encourage the Bank to comply with human rights standards. This article critically examines several bases for arguing that the Bank should comply and engage with human rights through its policies and practices. Drawing on the Bank’s own ‘good governance’ approach as well as the United Nations’ ‘human rights-based-approach’ to development, a new basis is suggested. First, the relationship between the World Bank and human rights is examined. Three perspectives are considered: (1) the legal position – what the status of the World Bank is under international human rights law, and whether it can be said to have existing legal human rights obligations; (2) the Bank’s own official position – how the Bank envisages its relationship with and role in the protection of human rights; and (3) the relationship between the Bank’s policies and practices and human rights (including how its attitudes are reflected in its policies and how the Bank’s operations impact human rights enjoyment in practice). Here, the article focuses on two examples – the (revised) 2016 Environmental and Social Safeguard Policies and the 2012 case-study regarding Gambella, Ethiopia. Both examples are widely considered missed opportunities for the Bank to actively engage with human rights. The analysis shows that however much pressure is placed on the Bank to improve its human rights footprint, it is extremely reluctant to do so explicitly, and the legal bases available are insufficient for requiring concrete, ex ante action by the Bank. Instead, the Bank’s own ‘good governance’ approach to development – which it has been advocating since the 1990s – can be relied upon. ‘Good governance’ has been used and applied by many actors in many contexts, receiving numerous different definitions. This article argues that human rights protection can now be considered a crucial component of good governance, at least in the context of development. In doing so, the article explains the relationship and interdependence between the two concepts, and provides three rationales for the Bank to take a ‘human rights-based approach’ to good governance. Ultimately, this article seeks to look beyond international human rights law and take a governance approach to provide a convincing basis upon which to argue that the World Bank should comply with human rights standards.

Keywords: World Bank, international human rights law, good governance, human rights-based approach

Procedia PDF Downloads 362
16622 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 358
16621 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
16620 Evaluating the Implementation of Machine Learning Techniques in the South African Built Environment

Authors: Peter Adekunle, Clinton Aigbavboa, Matthew Ikuabe, Opeoluwa Akinradewo

Abstract:

The future of machine learning (ML) in building may seem like a distant idea that will take decades to materialize, but it is actually far closer than previously believed. In reality, the built environment has been progressively increasing interest in machine learning. Although it could appear to be a very technical, impersonal approach, it can really make things more personable. Instead of eliminating humans out of the equation, machine learning allows people do their real work more efficiently. It is therefore vital to evaluate the factors influencing the implementation and challenges of implementing machine learning techniques in the South African built environment. The study's design was one of a survey. In South Africa, construction workers and professionals were given a total of one hundred fifty (150) questionnaires, of which one hundred and twenty-four (124) were returned and deemed eligible for study. Utilizing percentage, mean item scores, standard deviation, and Kruskal-Wallis, the collected data was analyzed. The results demonstrate that the top factors influencing the adoption of machine learning are knowledge level and a lack of understanding of its potential benefits. While lack of collaboration among stakeholders and lack of tools and services are the key hurdles to the deployment of machine learning within the South African built environment. The study came to the conclusion that ML adoption should be promoted in order to increase safety, productivity, and service quality within the built environment.

Keywords: machine learning, implementation, built environment, construction stakeholders

Procedia PDF Downloads 133
16619 Open and Distance Learning (ODL) Education in Nigeria: Challenge of Academic Quality

Authors: Edu Marcelina, Sule Sheidu A., Nsor Eunice

Abstract:

As open and distance education is gradually becoming an acceptable means of solving the problem of access in higher education, quality has now become one of the main concerns among institutions and stakeholders of open and distance learning (ODL) and the education sector in general. This study assessed the challenges of academic quality in the open and distance learning (ODL) education in Nigeria using Distance Learning Institute (DLI), University of Lagos and National Open University of Nigeria as a case. In carrying out the study, a descriptive survey research design was employed. A researcher-designed and validated questionnaire was used to elicit responses that translated to the quantitative data for this study. The sample comprised 665 students of the Distance Learning Institute (DLI), and National Open University of Nigeria (NOUN), carefully selected through the method of simple random sampling. Data collected from the study were analyzed using Chi-Square (X2) at 0.05 Level of significance. The results of the analysis revealed that; the use of ICT tools is a factor in ensuring quality in the Open and Distance Learning (ODL) operations; the quality of the materials made available to ODL students will determine the quality of education that will be received by the students; and the time scheduled for students for self-study, online lecturing/interaction and face to face study and the quality of education in Open and Distance Learning Institutions has a lot of impact on the quality of education the students receive. Based on the findings, a number of recommendations were made.

Keywords: open and distance learning, quality, ICT, face-to-face interaction

Procedia PDF Downloads 378
16618 Effectiveness of a Traits Cooperative Learning on Developing Writing Achievement and Composition among Teacher Candidates

Authors: Abdelaziz Hussien

Abstract:

This article reports investigations of a study into the effectiveness of a traits cooperative learning (TCL) on teacher candidates’ writing achievement, composition, and attitudes towards traits of writing approach and small group learning. Mixed methodologies were used with the participants in a repeated measures quasi-experimental design. Forty-two class teacher candidates, enrolled in the Bahrain Teachers College, completed the pre and post author-developed measures. The results suggest that TCL has a positive effect on the participants’ writing achievement, composition, and attitudes towards traits of writing approach, but not on the attitudes towards small group learning. Further implications to teacher education are presented.

Keywords: trait-based language education, cooperative learning, writing achievement, writing composition, traits of writing, teacher education

Procedia PDF Downloads 169
16617 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University

Authors: Greg Turner, Bin Lu, Cheer-Sun Yang

Abstract:

As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.

Keywords: agile methods, mobile apps, software process model, waterfall model

Procedia PDF Downloads 409