Search results for: field optimization
10015 Viability of On-Demand Transportation (ODT) in Oran Wilaya: Geomatics Study
Authors: Nadjet Brahmia
Abstract:
The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transportation (ODT) are very efficient; they rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible of the advance reservation, planning and organization, and studying the different ODT criteria (organizational, technical, geographical, etc.). As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This communication presents the study of an ODT implementation in the west of Algeria, by developing the Geomatics side of the study. This part requires the use of specific systems (such as GIS, RDBMS…), so we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.Keywords: ODT, geomatics, GIS, transport systems
Procedia PDF Downloads 55610014 Cu Voids Detection of Electron Beam Inspection at the 5nm Node
Authors: Byungsik Moon
Abstract:
Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage.Keywords: electron beam inspection, EBI, landing energy, Cu metal voids, bright field inspection
Procedia PDF Downloads 7410013 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 3710012 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction
Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop
Abstract:
A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.Keywords: exponentially shrinking sheet, magnetic field, mixed convection, suction
Procedia PDF Downloads 32810011 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data
Authors: Michelangelo Sofo, Giuseppe Labianca
Abstract:
In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm
Procedia PDF Downloads 2210010 Comparison of the Effects of Rod Types of Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis
Authors: Bokku Kang, Changsoo Chon, Han Sung Kim
Abstract:
We developed new design of rod of pedicle screw system that is beneficial in maintaining the spacing between the vertebrae and assessed the performance of the posterior fixation screw systems by numerical analysis according to the range of motion (flexion, extension, lateral bending, and axial rotation) of the vertebral column after inserting the pedicle screws. The simulation results showed that the conventional rod was the most low equivalent stress value among implant units in the case of flexion, extension and lateral bending of the vertebrae. In all cases except the torsional rotation, the results showed that the stress level of the single and double rounded rod exceeded about 30% to 70% compare to the conventional rod. Therefore, this product is not suitable for actual application in the field yet and it seems that product design optimization is necessary. Acknowledgement: This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region.Keywords: lumber spine, internal fixation device, finite element method, biomechanics
Procedia PDF Downloads 37610009 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor
Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang
Abstract:
This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design
Procedia PDF Downloads 41410008 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods
Authors: Alok Madan, Arshad K. Hashmi
Abstract:
Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.Keywords: masonry infilled frame, energy methods, near-fault ground motions, pushover analysis, nonlinear dynamic analysis, seismic demand
Procedia PDF Downloads 29110007 The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples
Authors: Jeremy Attard, Jordan François, Serge Lazzarini, Thierry Masson
Abstract:
Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories.Keywords: BEHGHK (Higgs) mechanism, conformal gravity, gauge theory, spontaneous symmetry breaking, symmetry reduction, twistors and tractors
Procedia PDF Downloads 23710006 Financial Portfolio Optimization in Electricity Markets: Evaluation via Sharpe Ratio
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity plays an indispensable role in human life and the economy. It is a unique product or service that must be balanced instantaneously, as electricity is not stored, generation and consumption should be proportional. Effective and efficient use of electricity is very important not only for society, but also for the environment. A competitive electricity market is one of the best ways to provide a suitable platform for effective and efficient use of electricity. On the other hand, it carries some risks that should be carefully managed by the market players. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Markowitz’s Mean-variance, Down-side and Semi-variance methods for a case study. Performance of optimal electricity sale solutions are measured and evaluated via Sharpe-Ratio, and the optimal portfolio solutions are improved. Two years of historical weekdays’ price data of the Turkish Day Ahead Market are used to demonstrate the approach.Keywords: electricity market, portfolio optimization, risk management in electricity market, sharpe ratio
Procedia PDF Downloads 36210005 Determination of the Axial-Vector from an Extended Linear Sigma Model
Authors: Tarek Sayed Taha Ali
Abstract:
The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models.Keywords: extended linear sigma model, nucleon properties, axial coupling constant, physic
Procedia PDF Downloads 44410004 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation
Procedia PDF Downloads 29810003 Hydrodynamic Behavior Study of Fast Mono Hull and Catamaran Vessels in Calm Waters Using Free Surface Flow Analysis
Authors: Mohammad Ali Badri, Pouya Molana, Amin Rezvanpour
Abstract:
In this paper, planning catamaran and mono-hull vessels resistance and trim in calm waters were considered. Hydrodynamic analysis of fast mono-hull planning vessel was also investigated. In order to hull form geometry optimization, numerical methods of different parameters were used for this type of vessels. Hull material was selected in carbon fiber composite. Exact architectural aspects were specified and stability calculations were performed as well. Hydrodynamic calculations to extract the resistance force using semi-analytical methods and numerical modeling were carried out. Free surface numerical analysis of vessel in designed draft using finite volume method and double phase were evaluated and verified by experimental tests.Keywords: fast vessel, hydrostatic and hydrodynamic optimization, free surface flow, computational fluid dynamics
Procedia PDF Downloads 51410002 Determination of Optimum Parameters for Thermal Stress Distribution in Composite Plate Containing a Triangular Cutout by Optimization Method
Authors: Mohammad Hossein Bayati Chaleshtari, Hadi Khoramishad
Abstract:
Minimizing the stress concentration around triangular cutout in infinite perforated plates subjected to a uniform heat flux induces thermal stresses is an important consideration in engineering design. Furthermore, understanding the effective parameters on stress concentration and proper selection of these parameters enables the designer to achieve a reliable design. In the analysis of thermal stress, the effective parameters on stress distribution around cutout include fiber angle, flux angle, bluntness and rotation angle of the cutout for orthotropic materials. This paper was tried to examine effect of these parameters on thermal stress analysis of infinite perforated plates with central triangular cutout. In order to achieve the least amount of thermal stress around a triangular cutout using a novel swarm intelligence optimization technique called dragonfly optimizer that inspired by the life method and hunting behavior of dragonfly in nature. In this study, using the two-dimensional thermoelastic theory and based on the Likhnitskiiʼ complex variable technique, the stress analysis of orthotropic infinite plate with a circular cutout under a uniform heat flux was developed to the plate containing a quasi-triangular cutout in thermal steady state condition. To achieve this goal, a conformal mapping function was used to map an infinite plate containing a quasi- triangular cutout into the outside of a unit circle. The plate is under uniform heat flux at infinity and Neumann boundary conditions and thermal-insulated condition at the edge of the cutout were considered.Keywords: infinite perforated plate, complex variable method, thermal stress, optimization method
Procedia PDF Downloads 14710001 Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles
Authors: Alexander Mikkelsen, Khobaib Khobaib, Zbigniew Rozynek
Abstract:
Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics.Keywords: drop deformation, electric field induced stress, electrohydrodynamic flows, particle structuring at drop interfaces
Procedia PDF Downloads 20310000 Development of 420 mm Diameter Silicon Crystal Growth Using Continuous Czochralski Process
Authors: Ilsun Pang, Kwanghun Kim, Sungsun Baik
Abstract:
Large diameter Si wafer is used as semiconductor substrate. Large diameter Si crystal ingot should be needed in order to increase wafer size. To make convection of large silicon melt stable, magnetic field is normally applied, but magnetic field is expensive and it is not proper to stabilize the large Si melt. To solve the problem, we propose a continuous Czochralski process which can be applied to small melt without magnetic field. We used granule poly, which has size distribution of 1~3 mm and is easily supplied in double crucible during silicon ingot growth. As the result, we produced 420 mm diameter ingot. In this paper, we describe an experimental study on crystal growth of large diameter silicon by Continuous Czochralski process.Keywords: Czochralski, ingot, silicon crystal, wafer
Procedia PDF Downloads 4489999 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 4169998 Reduction of Wear via Hardfacing of Rotavator Blades
Authors: Gurjinder Singh Randhawa, Jonny Garg, Sukhraj Singh, Gurmeet Singh Cheema
Abstract:
A major problem related to the use of rotavator is wear of rotavator blades due to abrasion by soil hard particles, as it seriously affects tillage quality and agricultural production economy. The objective of this study was to increase the wear resistance by covering the rotavator blades with two different hard facing electrodes. These blades are generally produced from low carbon or low alloy steel. During the field work i.e. preparing land for the cultivation these blades are subjected to severe wear conditions. Comparative wear tests on a regular rotavator blade and two kinds of hardfacing with electrodes were conducted in the field. These two different hardfacing electrodes, which are designated HARD ALLOY-400 and HARD ALLOY-650, were used for hardfacing. The wear rate in the field tests was found to be significantly different statistically. When the cost is taken into consideration; HARD ALLOY-650 and HARD ALLOY-400 have been found to be the best hardfacing electrodes.Keywords: hardfacing, rotavator blades, hard alloy-400, abrasive wear
Procedia PDF Downloads 4239997 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture
Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi
Abstract:
Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection
Procedia PDF Downloads 619996 Finite Element and Split Bregman Methods for Solving a Family of Optimal Control Problem with Partial Differential Equation Constraint
Authors: Mahmoud Lot
Abstract:
In this article, we will discuss the solution of elliptic optimal control problem. First, by using the nite element method, we obtain the discrete form of the problem. The obtained discrete problem is actually a large scale constrained optimization problem. Solving this optimization problem with traditional methods is difficult and requires a lot of CPU time and memory. But split Bergman method converts the constrained problem to an unconstrained, and hence it saves time and memory requirement. Then we use the split Bregman method for solving this problem, and examples show the speed and accuracy of split Bregman methods for solving these types of problems. We also use the SQP method for solving the examples and compare with the split Bregman method.Keywords: Split Bregman Method, optimal control with elliptic partial differential equation constraint, finite element method
Procedia PDF Downloads 1509995 Quantitative Risk Analysis for Major Subsystems and Project Success of a Highthrouput Satellite
Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Babadoko Dantala Mohammed, Moshood Kareem Olawole
Abstract:
This paper dwells on the risk management required for High throughput Satellite (HTS) project, and major subsystems that pertains to the improved performance and reliability of the spacecraft. The paper gives a clear picture of high‐throughput satellites (HTS) and the associated technologies with performances as they align and differ with the traditional geostationary orbit or Geosynchronous Equatorial Orbit (GEO) Communication Satellites. The paper also highlights critical subsystems and processes in project conceptualization and execution. The paper discusses the configuration of the payload. The need for optimization of resources for the HTS project and successful integration of critical subsystems for spacecraft requires implementation of risk analysis and mitigation from the preliminary design stage; Assembly, Integration and Test (AIT); Launch and in-orbit- Management stage.Keywords: AIT, HTS, in-orbit management, optimization
Procedia PDF Downloads 1019994 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes
Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft
Abstract:
Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization
Procedia PDF Downloads 1609993 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery
Authors: Roghieh A. Biroon, Zoleikha Abdollahi
Abstract:
The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.Keywords: ancillary services, battery, distribution system and optimization
Procedia PDF Downloads 1309992 Understanding Profit Shifting by Multinationals in the Context of Cross-Border M&A: A Methodological Exploration
Authors: Michal Friedrich
Abstract:
Cross-border investment has never been easier than in today’s global economy. Despite recent initiatives tightening the international tax landscape, profit shifting and tax optimization by multinational entities (MNEs) in the context of cross-border M&A remain persistent and complex phenomena that warrant in-depth exploration. By synthesizing the outcomes of existing research, this study aims to first provide a methodological framework for identifying MNEs’ profit-shifting behavior and quantifying its fiscal impacts via various macroeconomic and microeconomic approaches. The study also proposes additional methods and qualitative/quantitative measures for extracting insight into the profit shifting behavior of MNEs in the context of their M&A activities at industry and entity levels. To develop the proposed methods, this study applies the knowledge of international tax laws and known profit shifting conduits (incl. dividends, interest, and royalties) on several model cases/types of cross-border acquisitions and post-acquisition integration activities by MNEs and highlights important factors that encourage or discourage tax optimization. Follow-up research is envisaged to apply the methods outlined in this study on published data on real-world M&A transactions to gain practical country-by-country, industry and entity-level insights. In conclusion, this study seeks to contribute to the ongoing discourse on profit shifting by providing a methodological toolkit for exploring profit shifting tendencies MNEs in connection with their M&A activities and to serve as a backbone for further research. The study is expected to provide valuable insight to policymakers, tax authorities, and tax professionals alike.Keywords: BEPS, cross-border M&A, international taxation, profit shifting, tax optimization
Procedia PDF Downloads 689991 Field Efficacy Evaluation and Synergistic Effect of Two Rodenticides Zinc Phosphide and Brodifacoum against Field Rats of the Pothwar Region, Pakistan
Authors: Nadeem Munawar, David Galbraith, Tariq Mahmood
Abstract:
Rodenticides are often included as part of an integrated pest management approach for managing rodent species since they are relatively quick and inexpensive to apply. The current field study was conducted to evaluate the effectiveness of formulated baits of zinc phosphide (2%) and the second generation anticoagulant brodifacoum (0.005%) against field rats inhabiting a wheat-groundnut cropping system. Burrow baiting was initiated at the early flowering stages of the respective crops, and continued through three growth stages (tillering / peg formation, flowering, and maturity). Three treatments were done at equal time intervals, with the final baiting being about 2 weeks before harvest. Treatment efficacy of the trials was assessed through counts of active rodent burrows before and after treatments at the three growth stages of these crops. The results indicated variable degrees of reduction in burrow activities following the three bait applications. The reductions in rodent activity in wheat were: 88.8% (at tillering), 92%, (at flowering/grain formation), and 95.5% (at maturity). In groundnut, the rodent activities were reduced by 91.8%, 93.5% and 95.8% at sowing, peg formation, and maturity stages, respectively. The estimated mortality at all three growth stages of both wheat and groundnut ranged between 60-85%. We recommend that a field efficacy study should be conducted with zinc phosphide and brodifacoum bait formulations to determine their field performance in the reduction of agricultural damage by rodent pest species. It is a promising alternative approach for use of the most potent second-generation anticoagulant (brodifacoum) in resistance management, particularly with respect to reducing environmental risks and secondary poisoning.Keywords: brodifacoum, burrow baiting, second-generation anticoagulant, synergistic effect
Procedia PDF Downloads 1219990 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit
Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira
Abstract:
Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing
Procedia PDF Downloads 1439989 Evaluation of Entomopathogenic Fungi Strains for Field Persistence and Its Relationship to in Vitro Heat Tolerance
Authors: Mulue Girmay Gebreslasie
Abstract:
Entomopathogenic fungi are naturally safe and eco-friendly biological agents. Their potential of host specificity and ease handling made them appealing options to substitute synthetic pesticides in pest control programs. However, they are highly delicate and unstable under field conditions. Therefore, the current experiment was held to search out persistent fungal strains by defining the relationship between invitro heat tolerance and field persistence. Current results on leaf and soil persistence assay revealed that strains of Metarhizium species, M. pingshaense (F2685), M. pingshaense (MS2) and M. brunneum (F709) exhibit maximum cumulative CFUs count, relative survival rate and least percent of CFUs reductions showed significant difference at 7 days and 28 days post inoculations (dpi) in hot seasons from sampled soils and leaves and in cold season from soil samples. Whereas relative survival of B. brongniartii (TNO6) found significantly higher in cold weather leaf treatment application as compared to hot season and found as persistent as other fungal strains, while higher deterioration of fungal conidia seen with M. pingshaense (MS2). In the current study, strains of Beauveria brongniartii (TNO6) and Cordyceps javanica (Czy-LP) were relatively vulnerable in field condition with utmost colony forming units (CFUs) reduction and least survival rates. Further, the relationship of the two parameters (heat tolerance and field persistence) was seen with strong linear positive correlations elucidated that heat test could be used in selection of field persistent fungal strains for hot season applications.Keywords: integrated pest management, biopesticides, Insect pathology and microbial control, entomology
Procedia PDF Downloads 979988 Approximation of Convex Set by Compactly Semidefinite Representable Set
Authors: Anusuya Ghosh, Vishnu Narayanan
Abstract:
The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation
Procedia PDF Downloads 3849987 Susceptibility of Spodoptera littoralis, Field Populations in Egypt to Chlorantraniliprole and the Role of Detoxification Enzymes
Authors: Mohamed H. Khalifa, Fikry I. El-Shahawi, Nabil A. Mansour
Abstract:
The cotton leafworm, Spodoptera littoralis (Boisduval) is a major insect pest of vegetables and cotton crops in Egypt, and exhibits different levels of tolerance to certain insecticides. Chlorantraniliprole has been registered recently in Egypt for control this insect. The susceptibilities of three S. littoralis populations collected from El Behaira governorate, north Egypt to chlorantraniliprole were determined by leaf-dipping technique on 4th instar larvae. Obvious variation of toxicity was observed among the laboratory susceptible, and three field populations with LC50 values ranged between 1.53 µg/ml and 6.22 µg/ml. However, all the three field populations were less susceptible to chlorantraniliprole than a laboratory susceptible population. The most tolerant populations were sampled from El Delengat (ED) Province where S. littoralis had been frequently challenged by insecticides. Certain enzyme activity assays were carried out to be correlated with the mechanism of the observed field population tolerance. All field populations showed significantly enhanced activities of detoxification enzymes compared with the susceptible strain. The regression analysis between chlorantraniliprole toxicities and enzyme activities revealed that the highest correlation is between α-esterase or β-esterase (α-β-EST) activity and collected field strains susceptibility, otherwise this correlation is not significant (P > 0.05). Synergism assays showed the ED and susceptible strains could be synergized by known detoxification inhibitors such as piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl-maleate (DEM) at different levels (1.01-8.76-fold and 1.09-2.94 fold, respectively), TPP showed the maximum synergism in both strains. The results show that there is a correlation between the enzyme activity and tolerance, and carboxylic-esterase (Car-EST) is likely the main detoxification mechanism responsible for tolerance of S. littoralis to chlorantraniliprole.Keywords: chlorantraniliprole, detoxification enzymes, Egypt, Spodoptera littoralis
Procedia PDF Downloads 2749986 Production Sharing Contracts Transparency Simulation
Authors: Chariton Christou, David Cornwell
Abstract:
Production Sharing Contract (PSC) is the type of contract that is being used widely in our time. The financial crisis made the governments tightfisted and they do not have the resources to participate in a development of a field. Therefore, more and more countries introduce the PSC. The companies have the power and the money to develop the field with their own way. The main problem is the transparency of oil and gas companies especially in the PSC and how this can be achieved. Many discussions have been made especially in the U.K. What we are suggesting is a dynamic financial simulation with the help of a flow meter. The flow meter will count the production of each field every day (it will be installed in a pipeline). The production will be the basic input of the simulation. It will count the profit, the costs and more according to the information of the flow meter. In addition it will include the terms of the contract and the costs that have been paid. By all these parameters the simulation will be able to present in real time the information of a field (taxes, employees, R-factor). By this simulation the company will share some information with the government but not all of them. The government will know the taxes that should be paid and what is the sharing percentage of it. All of the other information could be confidential for the company. Furthermore, oil company could control the R-factor by changing the production each day to maximize its sharing percentages and as a result of this the profit. This idea aims to change the way that governments 'control' oil companies and bring a transparency evolution in the industry. With the help of a simulation every country could be next to the company and have a better collaboration.Keywords: production sharing contracts, transparency, simulation
Procedia PDF Downloads 373