Search results for: green infrastructure network
7173 Advancing Power Network Maintenance: The Development and Implementation of a Robotic Cable Splicing Machine
Authors: Ali Asmari, Alex Symington, Htaik Than, Austin Caradonna, John Senft
Abstract:
This paper presents the collaborative effort between ULC Technologies and Con Edison in developing a groundbreaking robotic cable splicing machine. The focus is on the machine's design, which integrates advanced robotics and automation to enhance safety and efficiency in power network maintenance. The paper details the operational steps of the machine, including cable grounding, cutting, and removal of different insulation layers, and discusses its novel technological approach. The significant benefits over traditional methods, such as improved worker safety and reduced outage times, are highlighted based on the field data collected during the validation phase of the project. The paper also explores the future potential and scalability of this technology, emphasizing its role in transforming the landscape of power network maintenance.Keywords: cable splicing machine, power network maintenance, electric distribution, electric transmission, medium voltage cable
Procedia PDF Downloads 667172 Simulation of Human Heart Activation Based on Diffusion Tensor Imaging
Authors: Ihab Elaff
Abstract:
Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature.Keywords: diffusion tensor, DTI, heart, conduction network, excitation propagation
Procedia PDF Downloads 2667171 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults
Authors: Ioannis Binas, Marios Moschakis
Abstract:
Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation
Procedia PDF Downloads 1407170 Greening of the Hotel Industry in Malawi: An Examination of the Governance and Policing Tools
Authors: Lameck Zetu Khonje, Mulala Danny Simatele
Abstract:
Malawi’s economy is agriculture based. Recently the government earmarked the tourism sector as an important economic sector which could support the agriculture sector to bring about sustainable economic development and help socioeconomic wellbeing of the local people. Greening of the hotel industry is one of the proven ideal ways of creating a sustainable tourism industry which brings about sustainable economic development in a country like Malawi. This study uses qualitative methodology to examine the efficacy of the governance and policing tools that Malawi uses to guide the development and general practices of the hotel sector to ascertain whether these tools are for greening or not. Grounded Theory method is used whereby semi-structured interviews and field visits were conducted to collect data for the study. The results of the study show that there are loopholes in the governance system in Malawi. The results also reveal gaps within the policing tools such that the hotel industry is not properly guided on green issues. Furthermore, the results show that there is a lack of collaboration for the enforcement of the green practices in the hotel industry. It is also revealed that there is a lack of knowledge of green issues within the governance structures. Awareness campaigns and capacity building would improve greening of the hotel industry in Malawi.Keywords: governance, greening, Grounded Theory, Malawi
Procedia PDF Downloads 1947169 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia PDF Downloads 5287168 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 3547167 Social Economical Aspect of the City of Kigali Road Network Functionality
Authors: David Nkurunziza, Rahman Tafahomi
Abstract:
The population growth rate of the city of Kigali is increasing annually. In 1960 the population was six thousand, in 1990 it became two hundred thousand and is supposed to be 4 to 5 million incoming twenty years. With the increase in the residents living in the city of Kigali, there is also a need for an increase in social and economic infrastructures connected by the road networks to serve the residents effectively. A road network is a route that connects people to their needs and has to facilitate people to reach the social and economic facilities easily. This research analyzed the social and economic aspects of three selected roads networks passing through all three districts of the city of Kigali, whose center is the city center roundabout, thorough evaluation of the proximity of the social and economic facilities to the road network. These road networks are the city center to nyabugogo to karuruma, city center to kanogo to Rwanda to kicukiro center to Nyanza taxi park, and city center to Yamaha to kinamba to gakinjiro to kagugu health center road network. This research used a methodology of identifying and quantifying the social and economic facilities within a limited distance of 300 meters along each side of the road networks. Social facilities evaluated are the health facilities, education facilities, institution facilities, and worship facilities, while the economic facilities accessed are the commercial zones, industries, banks, and hotels. These facilities were evaluated and graded based on their distance from the road and their value. The total scores of each road network per kilometer were calculated and finally, the road networks were ranked based on their percentage score per one kilometer—this research was based on field surveys and interviews to collect data with forms and questionnaires. The analysis of the data collected declared that the road network from the city center to Yamaha to kinamba to gakinjiro to the kagugu health center is the best performer, the second is the road network from the city center to nyabugogo to karuruma, while the third is the road network from the city center to kanogo to rwandex to kicukiro center to nyaza taxi park.Keywords: social economical aspect, road network functionality, urban road network, economic and social facilities
Procedia PDF Downloads 1627166 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks
Authors: Waleed Basuliman
Abstract:
Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.Keywords: artificial neural network, anthropometric measurements, back-propagation
Procedia PDF Downloads 4887165 Capitalizing on Differential Network Ties: Unpacking Individual Creativity from Social Capital Perspective
Authors: Yuanyuan Wang, Chun Hui
Abstract:
Drawing on social capital theory, this article discusses how individuals may utilize network ties to come up with creativity. Social capital theory elaborates how network ties enhances individual creativity from three dimensions: structural access, and relational and cognitive mechanisms. We categorize network ties into strong and weak in terms of tie strength. With less structural constraints, weak ties allow diverse and heterogeneous knowledge to prosper, further facilitating individuals to build up connections among diverse even distant ideas. On the other hand, strong ties with the relational mechanism of cooperation and trust may benefit the accumulation of psychological capital, ultimately to motivate and sustain creativity. We suggest that differential ties play different roles for individual creativity: Weak ties deliver informational benefit directly rifling individual creativity from informational resource aspect; strong ties offer solidarity benefits to reinforce psychological capital, which further inspires individual creativity engagement from a psychological viewpoint. Social capital embedded in network ties influence individuals’ informational acquisition, motivation, as well as cognitive ability to be creative. Besides, we also consider the moderating effects constraining the relatedness between network ties and creativity, such as knowledge articulability. We hypothesize that when the extent of knowledge articulability is low, that is, with low knowledge codifiability, and high dependency and ambiguity, weak ties previous serving as knowledge reservoir will not become ineffective on individual creativity. Two-wave survey will be employed in Mainland China to empirically test mentioned propositions.Keywords: network ties, social capital, psychological capital, knowledge articulability, individual creativity
Procedia PDF Downloads 4067164 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation
Authors: Y. N. Reddy
Abstract:
The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.Keywords: difference equations, differential equations, singular perturbations, boundary layer
Procedia PDF Downloads 2007163 Neural Network Analysis Applied to Risk Prediction of Early Neonatal Death
Authors: Amanda R. R. Oliveira, Caio F. F. C. Cunha, Juan C. L. Junior, Amorim H. P. Junior
Abstract:
Children deaths are traumatic events that most often can be prevented. The technology of prevention and intervention in cases of infant deaths is available at low cost and with solid evidence and favorable results, however, with low access cover. Weight is one of the main factors related to death in the neonatal period, so the newborns of low birth weight are a population at high risk of death in the neonatal period, especially early neonatal period. This paper describes the development of a model based in neural network analysis to predict the mortality risk rating in the early neonatal period for newborns of low birth weight to identify the individuals of this population with increased risk of death. The neural network applied was trained with a set of newborns data obtained from Brazilian health system. The resulting network presented great success rate in identifying newborns with high chances of death, which demonstrates the potential for using this tool in an integrated manner to the health system, in order to direct specific actions for improving prognosis of newborns.Keywords: low birth weight, neonatal death risk, neural network, newborn
Procedia PDF Downloads 4487162 Exploring the Connectedness of Ad Hoc Mesh Networks in Rural Areas
Authors: Ibrahim Obeidat
Abstract:
Reaching a fully-connected network of mobile nodes in rural areas got a great attention between network researchers. This attention rose due to the complexity and high costs while setting up the needed infrastructures for these networks, in addition to the low transmission range these nodes has. Terranet technology, as an example, employs ad-hoc mesh network where each node has a transmission range not exceed one kilometer, this means that every two nodes are able to communicate with each other if they are just one kilometer far from each other, otherwise a third-party will play the role of the “relay”. In Terranet, and as an idea to reduce network setup cost, every node in the network will be considered as a router that is responsible of forwarding data between other nodes which result in a decentralized collaborative environment. Most researches on Terranet presents the idea of how to encourage mobile nodes to become more cooperative by letting their devices in “ON” state as long as possible while accepting to play the role of relay (router). This research presents the issue of finding the percentage of nodes in ad-hoc mesh network within rural areas that should play the role of relay at every time slot, relating to what is the actual area coverage of nodes in order to have the network reach the fully-connectivity. Far from our knowledge, till now there is no current researches discussed this issue. The research is done by making an implementation that depends on building adjacency matrix as an indicator to the connectivity between network members. This matrix is continually updated until each value in it refers to the number of hubs that should be followed to reach from one node to another. After repeating the algorithm on different area sizes, different coverage percentages for each size, and different relay percentages for several times, results extracted shows that for area coverage less than 5% we need to have 40% of the nodes to be relays, where 10% percentage is enough for areas with node coverage greater than 5%.Keywords: ad-hoc mesh networks, network connectivity, mobile ad-hoc networks, Terranet, adjacency matrix, simulator, wireless sensor networks, peer to peer networks, vehicular Ad hoc networks, relay
Procedia PDF Downloads 2857161 Reduction Behavior of Some Low-Grade Iron Ores for Application in Blast Furnace
Authors: Heba Al-Kelesh
Abstract:
Day after day, high-grade iron ores are consumed. Because of the strong global demand for iron and steel, it has necessitated the utilization of various low-grade iron ores, which are not suitable for direct exploitation in the iron industry. The low-grade ores cannot be dressed using traditional mineral processing methods because of complicated mineral compositions. The present work is aimed to investigate the reducibility of some Egyptian iron ores and concentrates by conditions emulate different blast furnace areas. Representative specimens are collected from El-Gedida–Baharia oasis, Eastern South Aswan, and Eastern desert-wadi Kareem (EDC). Some mineralogical and morphological characterizations are executed. The reactivity arrangement of green samples is Baharia>Aswan>EDC. The presence of magnetite decreased reactivity of EDC. The reducibility of the Aswan sample is lower than Baharia due to the presence of agglomerated metallic grain surrounded by semi-melted phases. Specimens are annealed at 1000ᵒC for 3 hours. After firing, the reducibility of Aswan becomes the lowest due to the formation of fayalite and calcium phosphate phases. The relative attitude for green and fired samples reduced at different conditions are studied. For thermal and top areas, the reactivity of fired samples is greater than green ones, which were confirmed by morphological examinations.Keywords: reducibility, low grade, iron industry, blast furnace
Procedia PDF Downloads 1277160 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 757159 Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design
Authors: Ghada Elshafei, Abdelazim Negm
Abstract:
Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m × 1.2m), are 81.7 mPt and - 52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered.Keywords: aluminum window, beech wood window, green building, life cycle assessment, life cycle analysis, SimaPro software, window frame
Procedia PDF Downloads 4507158 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior
Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj
Abstract:
New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.Keywords: CS pedagogy, student research, cluster computing, machine learning
Procedia PDF Downloads 1037157 Innovations for Freight Transport Systems
Authors: M. Lu
Abstract:
The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)
Procedia PDF Downloads 3187156 Cold Stunned Sea Turtle Diet Analysis In Cape Cod Bay from 2015-2020
Authors: Lucille McWilliams
Abstract:
As water temperatures drop in November, Kemp’s Ridley, Loggerhead, and Green sea turtles cold-stun in Cape Cod Bay. The foraging ecology of these sea turtles remains an understudied area of research. In this study, we aim to assess the diet of these turtles using a multi-tissue stable isotope analysis of cold-stunned kemp’s ridley, loggerhead, and green sea turtles stranded from 2015 to 2020. Stable isotope ratios of carbon and nitrogen were measured in blood, front and rear flipper, liver, muscle, skin, and scute tissue samples. We predict an elevated level of Nitrogen isotope ratios in kemp’s ridley and loggerhead turtles compared to green turtles due to the carnivorous loggerheads and kemp ridleys’ carnivorous diet and the greens herbivorous diet. We anticipate empty stomachs due to starvation while stranded, and a variety of foraging strategies, migration patterns, and trophic positions between these species. Data collected from this study will add to the knowledge of these turtles’ prey species and aid managers in the preservation of these species as a mitigation strategy for these turtles' extinction.Keywords: sea turtles, kemp's ridleys, greens, loggerheads, cold-stunning, diet analysis, stable isotope analysis, environmental science, marine biology
Procedia PDF Downloads 1197155 Context-Aware Point-Of-Interests Recommender Systems Using Integrated Sentiment and Network Analysis
Authors: Ho Yeon Park, Kyoung-Jae Kim
Abstract:
Recently, user’s interests for location-based social network service increases according to the advances of social web and location-based technologies. It may be easy to recommend preferred items if we can use user’s preference, context and social network information simultaneously. In this study, we propose context-aware POI (point-of-interests) recommender systems using location-based network analysis and sentiment analysis which consider context, social network information and implicit user’s preference score. We propose a context-aware POI recommendation system consisting of three sub-modules and an integrated recommendation system of them. First, we will develop a recommendation module based on network analysis. This module combines social network analysis and cluster-indexing collaboration filtering. Next, this study develops a recommendation module using social singular value decomposition (SVD) and implicit SVD. In this research, we will develop a recommendation module that can recommend preference scores based on the frequency of POI visits of user in POI recommendation process by using social and implicit SVD which can reflect implicit feedback in collaborative filtering. We also develop a recommendation module using them that can estimate preference scores based on the recommendation. Finally, this study will propose a recommendation module using opinion mining and emotional analysis using data such as reviews of POIs extracted from location-based social networks. Finally, we will develop an integration algorithm that combines the results of the three recommendation modules proposed in this research. Experimental results show the usefulness of the proposed model in relation to the recommended performance.Keywords: sentiment analysis, network analysis, recommender systems, point-of-interests, business analytics
Procedia PDF Downloads 2527154 Green Supply Chain Management: A Revolutionary and Robust Innovation in the Field of Efficient Environmental Development and Regulation
Authors: Jinesh Kumar Jain, Faishal Pathan
Abstract:
The concept of sustainable development and effective environmental regulation has led to the emergence of a new field of study and practise that is the Green Supply Chain Management. GSCM has become a subject of great importance for both the developed and developing countries to achieve the desired and much-awaited goals of the firm within the environmental and sustainable framework. Its merits are comprised of good financial pay off and competitiveness to the firms in a long lasting and sustainable manner. The purpose of the paper is to briefly review the recent literature of the GSCM and also determines the new direction area of this emerging field. A detailed study has helped to enlighten the minute details and develop the research direction of the study. The GSCM has gained popularity with both academic and practitioners. The items for the study were developed based on the extent literature. Here we found that the state of adoption of GSCM practices by Indian Firms was still in its infancy, the awareness of environmental sustainability was quite low among consumers and the regulatory frameworks were also lacking in terms promoting environmental sustainability. The present paper is an attempt to emphasize much attention on the above-mentioned issues and present a conclusive summary to make its use widespread and for reaching.Keywords: environmental management, environmental performance, financial performance, green supply chain management
Procedia PDF Downloads 2157153 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery
Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi
Abstract:
Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.Keywords: flaring, fuel gas network, GHG emissions, stream
Procedia PDF Downloads 3477152 Hansen Solubility Parameters, Quality by Design Tool for Developing Green Nanoemulsion to Eliminate Sulfamethoxazole from Contaminated Water
Authors: Afzal Hussain, Mohammad A. Altamimi, Syed Sarim Imam, Mudassar Shahid, Osamah Abdulrahman Alnemer
Abstract:
Exhaustive application of sulfamethoxazole (SUX) became as a global threat for human health due to water contamination through diverse sources. The addressed combined application of Hansen solubility (HSPiP software) parameters and Quality by Design tool for developing various green nanoemulsions. HSPiP program assisted to screen suitable excipients based on Hansen solubility parameters and experimental solubility data. Various green nanoemulsions were prepared and characterized for globular size, size distribution, zeta potential, and removal efficiency. Design Expert (DoE) software further helped to identify critical factors responsible to have direct impact on percent removal efficiency, size, and viscosity. Morphological investigation was visualized under transmission electron microscopy (TEM). Finally, the treated was studied to negate the presence of the tested drug employing ICP-OES (inductively coupled plasma optical emission microscopy) technique and HPLC (high performance liquid chromatography). Results showed that HSPiP predicted biocompatible lipid, safe surfactant (lecithin), and propylene glycol (PG). Experimental solubility of the drug in the predicted excipients were quite convincing and vindicated. Various green nanoemulsions were fabricated, and these were evaluated for in vitro findings. Globular size (100-300 nm), PDI (0.1-0.5), zeta potential (~ 25 mV), and removal efficiency (%RE = 70-98%) were found to be in acceptable range for deciding input factors with level in DoE. Experimental design tool assisted to identify the most critical variables controlling %RE and optimized content of nanoemulsion under set constraints. Dispersion time was varied from 5-30 min. Finally, ICP-OES and HPLC techniques corroborated the absence of SUX in the treated water. Thus, the strategy is simple, economic, selective, and efficient.Keywords: quality by design, sulfamethoxazole, green nanoemulsion, water treatment, icp-oes, hansen program (hspip software
Procedia PDF Downloads 847151 An Approach to Maximize the Influence Spread in the Social Networks
Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel
Abstract:
In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network
Procedia PDF Downloads 2517150 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 4997149 Urban Road Network Connectivity and Accessibility Analysis Using RS and GIS: A Case Study of Chandannagar City
Authors: Joy Ghosh, Debasmita Biswas
Abstract:
The road network of any area is the most important indicator of regional planning. For proper utilization of urban road networks, the structural parameters such as connectivity and accessibility should be analyzed and evaluated. This paper aims to explain the application of GIS on urban road network connectivity and accessibility analysis with a case study of Chandannagar City. This paper has been made to analyze the road network connectivity through various connectivity measurements like the total number of nodes and links, Cyclomatic Number, Alpha Index, Beta Index, Gamma index, Eta index, Pi index, Theta Index, and Aggregated Transport Score, Road Density based on existing road network in Chandannagar city in India. Accessibility is measured through the shortest Path Matrix, associate Number, and Shimbel Index. Various urban services, such as schools, banks, Hospitals, petrol pumps, ATMs, police stations, theatres, parks, etc., are considered for the accessibility analysis for each ward. This paper also highlights the relationship between urban land use/ land cover (LULC) and urban road network and population density using various spatial and statistical measurements. The datasets were collected through a field survey of 33 wards of the Chandannagar Municipal Corporation area, and the secondary data were collected through an open street map and satellite image of LANDSAT8 OLI & TIRS from USGS. Chandannagar was actually once a French colony, and at that time, various sort of planning was applied, but now Chandannagar city continues to grow haphazardly because that city is facing some problems; the knowledge gained from this paper helps to create a more efficient and accessible road network. Therefore, it would be suggested that some wards need to improve their connectivity and accessibility for the future growth and development of Chandannagar.Keywords: accessibility, connectivity, transport, road network
Procedia PDF Downloads 757148 Green Materials for Hot Mixed Asphalt Production
Authors: Salisu Dahiru, Jibrin M. Kaura, Abubakar I. Jumare, Sulaiman M. Mahmood
Abstract:
Reclaimed asphalt, used automobile tires and rice husk, were regarded as waste. These materials could be used in construction of new roads and for roads rehabilitation. Investigation into the production of a Green Hot Mixed Asphalt (GHMA) pavement using Reclaimed Asphalt Pavement (RAP) as partial replacement for coarse aggregate, Crumb Rubber (CR) from waste automobile tires as modifier for bitumen binder and Rice Husk Ash (RHA) as partial replacement of ordinary portland cement (OPC) filler, for roads construction and rehabilitation was presented. 30% Reclaimed asphalt of total aggregate, 15% Crumb Rubber of total binder content, 5% Rice Husk Ash of total mix, and 5.2% Crumb Rubber Modified Bitumen content were recommended for optimum performance. Loss of marshal stability was investigated on mix with the recommended optimum CRMB. The mix revealed good performance with only about 13% loss of stability after 24 hours of immersion in hot water bath, as against about 24% marshal stability lost reported in previous studies for conventional Hot Mixed Asphalt (HMA).Keywords: rice husk, reclaimed asphalt, filler, crumb rubber, bitumen content green hot mix asphalt
Procedia PDF Downloads 3367147 Visualization of Malaysia Universities Websites Based On Social Network Analysis
Authors: N. A. Ismail, Abdul Arif, Sharul Hafiz, Lu S. J., Tham W. S., Wong S. K.
Abstract:
This paper investigates the visulization of Malaysia universities websites. Twenty (20) public universities websites in Malaysia has been chosen as samples to explore and visualize the link relationship between their academic websites using social network analysis methods such as inlink, degree, weight, betweenness and modularity class. All of the connection and relation demonstrate the power to influence, comprehensive strength and also the variety of subject types that are present in universities. The experimental results also show that University Malaysia Sabah (UMS) is the biggest back links provider.Keywords: academic websites, link analysis, social network analysis, experimental result
Procedia PDF Downloads 4737146 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 887145 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments
Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán
Abstract:
Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models
Procedia PDF Downloads 1497144 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-worls, resilience to damage
Procedia PDF Downloads 545