Search results for: hybrid extragradient method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20219

Search results for: hybrid extragradient method

19049 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 502
19048 Comparison of Allowable Stress Method and Time History Response Analysis for Seismic Design of Buildings

Authors: Sayuri Inoue, Naohiro Nakamura, Tsubasa Hamada

Abstract:

The seismic design method of buildings is classified into two types: static design and dynamic design. The static design is a design method that exerts static force as seismic force and is a relatively simple design method created based on the experience of seismic motion in the past 100 years. At present, static design is used for most of the Japanese buildings. Dynamic design mainly refers to the time history response analysis. It is a comparatively difficult design method that input the earthquake motion assumed in the building model and examine the response. Currently, it is only used for skyscrapers and specific buildings. In the present design standard in Japan, it is good to use either the design method of the static design and the dynamic design in the medium and high-rise buildings. However, when actually designing middle and high-rise buildings by two kinds of design methods, the relatively simple static design method satisfies the criteria, but in the case of a little difficult dynamic design method, the criterion isn't often satisfied. This is because the dynamic design method was built with the intention of designing super high-rise buildings. In short, higher safety is required as compared with general buildings, and criteria become stricter. The authors consider applying the dynamic design method to general buildings designed by the static design method so far. The reason is that application of the dynamic design method is reasonable for buildings that are out of the conventional standard structural form such as emphasizing design. For the purpose, it is important to compare the design results when the criteria of both design methods are arranged side by side. In this study, we performed time history response analysis to medium-rise buildings that were actually designed with allowable stress method. Quantitative comparison between static design and dynamic design was conducted, and characteristics of both design methods were examined.

Keywords: buildings, seismic design, allowable stress design, time history response analysis, Japanese seismic code

Procedia PDF Downloads 157
19047 Inheritance, Stability, and Validation of Provitamin a Markers in Striga Hermonthica-Resistant Maize

Authors: Fiston Masudi Tambwe, Lwanga Charles, Arfang Badji, Unzimai Innocent

Abstract:

The development of maize varieties combining Provitamin A (PVA), high yield, and Striga resistance is an effective and affordable strategy to contribute to food security in sub-Saharan Africa, where maize is a staple food crop. There has been limited research on introgressing PVA genes into Striga-resistant maize genotypes. The objectives of this study were to: i) determine the mode of gene action controlling PVA carotenoid accumulation in Striga-resistant maize, ii) identify Striga-resistant maize hybrids with high PVA content and stable yield, and iii) validate the presence of PVA functional markers in offspring. Six elite, Striga-resistant inbred females were crossed with six high-PVA inbred males in a North Carolina Design II and their offspring were evaluated in four environments, following a 5x8 alpha lattice design with four hybrid checks. Results revealed that both additive and non-additive gene action control carotenoid accumulation in the present study, with a predominance of non-additive gene effects for PVA. Hybrids STR1004xCLHP0352 and STR1004xCLHP0046 - identified as Striga-resistant because they supported fewer Striga plants – were the highest-yielding genotypes with a moderate PVA concentration of 5.48 and 5.77 µg/g, respectively. However, those two hybrids were not stable in terms of yield across all environments. Hybrid STR1007xCLHP0046, however, supported fewer Striga plants, had a yield of 4.52 T/ha, a PVA concentration of 4.52 µg/g, and was also stable. Gel-based marker systems of CrtRB1 and LCYE were used to screen the hybrids and favorable alleles of CrtRB1 primers were detected in 20 hybrids, confirming good levels of PVA carotenoids. Hybrids with favorable alleles of LCYE had the highest concentration of non-PVA carotenoids. These findings will contribute to the development of high-yielding PVA-rich maize varieties in Uganda.

Keywords: gene action, stability, striga resistance, provitamin A markers, beta-carotene hydroxylase 1, CrtRB1, beta-carotene, beta-cryptoxanthin, lycopene epsilon cyclase, LCYE

Procedia PDF Downloads 72
19046 Second Order Analysis of Frames Using Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The main purpose of this paper is to present the Modified Newmark Method as a method of non-linear frame analysis by considering the effect of the axial load (second order analysis). The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. This part of the investigation is performed to generalize the established method for the assemblage structures such as frameworks. As explained, the governing differential equations are non-linear and cannot be formulated easily due to unknown axial load of the struts in the frame. By the assumption of constant axial load, the governing equations are changed to linear ones in most methods. Since the modeling and the solutions of the non-linear form of the governing equations are cumbersome, the linear form of the equations would be used in the established method. However, according to the ability of the method to reconsider the minor omitted parameters in modeling during the solution procedure, the axial load in the elements at each stage of the iteration can be computed and applied in the next stage. Therefore, the ability of the method to present an accurate approach to the solutions of non-linear equations will be demonstrated again in this paper.

Keywords: nonlinear, stability, buckling, modified newmark method

Procedia PDF Downloads 427
19045 Hybrid Approach for Country’s Performance Evaluation

Authors: C. Slim

Abstract:

This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.

Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance

Procedia PDF Downloads 340
19044 Reliability-Based Method for Assessing Liquefaction Potential of Soils

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated.

Keywords: liquefaction, reliability analysis, chalos area, civil and structural engineering

Procedia PDF Downloads 470
19043 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method

Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent

Abstract:

A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.

Keywords: bed topography, FBM, LBM, shallow water, simulations

Procedia PDF Downloads 99
19042 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 287
19041 MATLAB Supported Learning and Students' Conceptual Understanding of Functions of Two Variables: Experiences from Wolkite University

Authors: Eyasu Gemech, Kassa Michael, Mulugeta Atnafu

Abstract:

A non-equivalent group's quasi-experiment research was conducted at Wolkite University to investigate MATLAB supported learning and students' conceptual understanding in learning Applied Mathematics II using four different comparative instructional approaches: MATLAB supported traditional lecture method, MATLAB supported collaborative method, only collaborative method, and only traditional lecture method. Four intact classes of mechanical engineering groups 1 and 2, garment engineering and textile engineering students were randomly selected out of eight departments. The first three departments were considered as treatment groups and the fourth one 'Textile engineering' was assigned as a comparison group. The departments had 30, 29, 35 and 32 students respectively. The results of the study show that there is a significant mean difference in students' conceptual understanding between groups of students learning through MATLAB supported collaborative method and the other learning approaches. Students who were learned through MATLAB technology-supported learning in combination with collaborative method were found to understand concepts of functions of two variables better than students learning through the other methods of learning. These, hence, are informative of the potential approaches universities would follow for a better students’ understanding of concepts.

Keywords: MATLAB supported collaborative method, MATLAB supported learning, collaborative method, conceptual understanding, functions of two variables

Procedia PDF Downloads 281
19040 Assessment of ASEI-PDSI Method on Students’ Attitude and Achievement in Junior Secondary Schools Mathematics in FCT-Abuja

Authors: Amenaghawon Clement Osemwinyen

Abstract:

The Activity, Student-centred, Experiment, Improvisation - Plan, Do, See, Improve (ASEI-PDSI) method championed by the Strengthening Mathematics And Science Education (SMASE) - Nigeria Project is an attempt to improve the quality of mathematics, which has consistently declined over the years in both public primary and secondary schools across the country. The study thus assessed the ASEI-PDSI method on students’ attitudes and achievement in junior secondary schools (JSS) mathematics in FCT-Abuja. A survey research design was adopted, and 100 mathematics teachers using a stratified random sampling method were used for the study. The data were collected using structured questionnaires and analyzed using descriptive statistics. The findings showed that the ASEI-PDSI method had significantly improved the attitudes of students toward mathematics. The study also revealed that the ASEI-PDSI method significantly influenced junior secondary school (JSS) students’ mathematics achievement. Amongst the recommendations were that teachers should be encouraged to adopt the ASEI-PDSI method in teaching and learning mathematics in order to create a mathematically stimulating classroom environment which could advertently influence junior secondary school (JSS) students’ attitude and academic performance in mathematics. Also, regular in-service training programs should be organized by stakeholders (government and other interest groups) so as to improve the teaching strategies of teachers, mostly as they affect the ASEI-PDSI method.

Keywords: achievement, ASEI-PDSI method, attitude, mathematics, SMASE

Procedia PDF Downloads 119
19039 Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge

Authors: Heng Han, Zhilei Liang, Xiangong Zhou

Abstract:

In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed; By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1℃, which meets the requirements of construction control accuracy; For the main cable with a diameter greater than 400mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature.

Keywords: suspension bridge, main cable, temperature field, finite element

Procedia PDF Downloads 163
19038 A Stable Method for Determination of the Number of Independent Components

Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor

Abstract:

Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.

Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock

Procedia PDF Downloads 100
19037 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models

Authors: Phanida Phukoetphim, Asaad Y. Shamseldin

Abstract:

In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.

Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics

Procedia PDF Downloads 339
19036 Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers

Authors: Wenjuan Du

Abstract:

The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillations. By using linearized equal area criterion, a theoretical proof to the application for the PSS design is presented. Hence PSS design in the paper is an example of stable tending control by localized method.

Keywords: phase compensation method, power system small-signal stability, power system stabilizer

Procedia PDF Downloads 641
19035 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices

Authors: Mirvat Shamseddine, Issam Lakkis

Abstract:

We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.

Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows

Procedia PDF Downloads 301
19034 Assessment of Aminopolyether on 18F-FDG Samples

Authors: Renata L. C. Leão, João E. Nascimento, Natalia C. E. S. Nascimento, Elaine S. Vasconcelos, Mércia L. Oliveira

Abstract:

The quality control procedures of a radiopharmaceutical include the assessment of its chemical purity. The method suggested by international pharmacopeias consists of a thin layer chromatographic run. In this paper, the method proposed by the United States Pharmacopeia (USP) is compared to a direct method to determine the final concentration of aminopolyether in Fludeoxyglucose (18F-FDG) preparations. The approach (no chromatographic run) was achieved by placing the thin-layer chromatography (TLC) plate directly on an iodine vapor chamber. Both methods were validated and they showed adequate results to determine the concentration of aminopolyether in 18F-FDG preparations. However, the direct method is more sensitive, faster and simpler when compared to the reference method (with chromatographic run), and it may be chosen for use in routine quality control of 18F-FDG.

Keywords: chemical purity, Kryptofix 222, thin layer chromatography, validation

Procedia PDF Downloads 202
19033 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration

Procedia PDF Downloads 167
19032 Adaptive Nonparametric Approach for Guaranteed Real-Time Detection of Targeted Signals in Multichannel Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

An adaptive nonparametric method is proposed for stable real-time detection of seismoacoustic sources in multichannel C-OTDR systems with a significant number of channels. This method guarantees given upper boundaries for probabilities of Type I and Type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this report.

Keywords: guaranteed detection, multichannel monitoring systems, change point, interval estimation, adaptive detection

Procedia PDF Downloads 449
19031 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: state estimation, control systems, observer systems, nonlinear systems

Procedia PDF Downloads 138
19030 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs

Authors: Dingyang Hu, Dan Liu

Abstract:

DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.

Keywords: adversarial sample, gradient, probability, black box

Procedia PDF Downloads 105
19029 Hardware Implementation and Real-time Experimental Validation of a Direction of Arrival Estimation Algorithm

Authors: Nizar Tayem, AbuMuhammad Moinuddeen, Ahmed A. Hussain, Redha M. Radaydeh

Abstract:

This research paper introduces an approach for estimating the direction of arrival (DOA) of multiple RF noncoherent sources in a uniform linear array (ULA). The proposed method utilizes a Capon-like estimation algorithm and incorporates LU decomposition to enhance the accuracy of DOA estimation while significantly reducing computational complexity compared to existing methods like the Capon method. Notably, the proposed method does not require prior knowledge of the number of sources. To validate its effectiveness, the proposed method undergoes validation through both software simulations and practical experimentation on a prototype testbed constructed using a software-defined radio (SDR) platform and GNU Radio software. The results obtained from MATLAB simulations and real-time experiments provide compelling evidence of the proposed method's efficacy.

Keywords: DOA estimation, real-time validation, software defined radio, computational complexity, Capon's method, GNU radio

Procedia PDF Downloads 75
19028 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 139
19027 Closing the Assessment Loop: Case Study in Improving Outcomes for Online College Students during Pandemic

Authors: Arlene Caney, Linda Fellag

Abstract:

To counter the adverse effect of Covid-19 on college student success, two faculty members at a US community college have used web-based assessment data to improve curricula and, thus, student outcomes. This case study exemplifies how “closing the loop” by analyzing outcome assessments in real time can improve student learning for academically underprepared students struggling during the pandemic. The purpose of the study was to develop ways to mitigate the negative impact of Covid-19 on student success of underprepared college students. Using the Assessment, Evaluation, Feedback and Intervention System (AEFIS) and other assessment tools provided by the college’s Office of Institutional Research, an English professor and a Music professor collected data in skill areas related to their curricula over four semesters, gaining insight into specific course sections and learners’ performance across different Covid-driven course formats—face-to-face, hybrid, synchronous, and asynchronous. Real-time data collection allowed faculty to shorten and close the assessment loop, and prompted faculty to enhance their curricula with engaging material, student-centered activities, and a variety of tech tools. Frequent communication, individualized study, constructive criticism, and encouragement were among other measures taken to enhance teaching and learning. As a result, even while student success rates were declining college-wide, student outcomes in these faculty members’ asynchronous and synchronous online classes improved or remained comparable to student outcomes in hybrid and face-to-face sections. These practices have demonstrated that even high-risk students who enter college with remedial level language and mathematics skills, interrupted education, work and family responsibilities, and language and cultural diversity can maintain positive outcomes in college across semesters, even during the pandemic.

Keywords: AEFIS, assessment, distance education, institutional research center

Procedia PDF Downloads 88
19026 On Constructing a Cubically Convergent Numerical Method for Multiple Roots

Authors: Young Hee Geum

Abstract:

We propose the numerical method defined by xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N, and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability.

Keywords: asymptotic error constant, iterative method, multiple root, root-finding

Procedia PDF Downloads 221
19025 Monocular Depth Estimation Benchmarking with Thermal Dataset

Authors: Ali Akyar, Osman Serdar Gedik

Abstract:

Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.

Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers

Procedia PDF Downloads 34
19024 Simple Ways to Enhance the Security of Web Services

Authors: Majid Azarniush, Soroush Mokallaei

Abstract:

Although robust security software, including anti-viruses, anti spy wares, anti-spam and firewalls, are amalgamated with new technologies such as Safe Zone, Hybrid Cloud, Sand Box etc., and it can be said that they have managed to prepare highest level of security against viruses, spy wares and other malwares in 2012, but in fact hackers' attacks to websites are increasingly becoming more and more complicated. Because of security matters and developments, it can be said that it was expected to happen so. Here in this work, we try to point out to some functional and vital notes to enhance security on the web enabling the user to browse safely in no limit web world and to use virtual space securely.

Keywords: firewalls, security, web services, software

Procedia PDF Downloads 514
19023 Building a Blockchain-based Internet of Things

Authors: Rob van den Dam

Abstract:

Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.

Keywords: IoT, internet, wired, wireless

Procedia PDF Downloads 337
19022 Application of a SubIval Numerical Solver for Fractional Circuits

Authors: Marcin Sowa

Abstract:

The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym – SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver – the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions.

Keywords: numerical method, SubIval, fractional calculus, numerical solver, circuit analysis

Procedia PDF Downloads 207
19021 On a Continuous Formulation of Block Method for Solving First Order Ordinary Differential Equations (ODEs)

Authors: A. M. Sagir

Abstract:

The aim of this paper is to investigate the performance of the developed linear multistep block method for solving first order initial value problem of Ordinary Differential Equations (ODEs). The method calculates the numerical solution at three points simultaneously and produces three new equally spaced solution values within a block. The continuous formulations enable us to differentiate and evaluate at some selected points to obtain three discrete schemes, which were used in block form for parallel or sequential solutions of the problems. A stability analysis and efficiency of the block method are tested on ordinary differential equations involving practical applications, and the results obtained compared favorably with the exact solution. Furthermore, comparison of error analysis has been developed with the help of computer software.

Keywords: block method, first order ordinary differential equations, linear multistep, self-starting

Procedia PDF Downloads 306
19020 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70