Search results for: genetic breeding models
7361 A Review Investigating the Potential Of Zooxanthellae to Be Genetically Engineered to Combat Coral Bleaching
Authors: Anuschka Curran, Sandra Barnard
Abstract:
Coral reefs are of the most diverse and productive ecosystems on the planet, but due to the impact of climate change, these infrastructures are dying off primarily through coral bleaching. Coral bleaching can be described as the process by which zooxanthellae (algal endosymbionts) are expelled from the gastrodermal cavity of the respective coral host, causing increased coral whitening. The general consensus is that mass coral bleaching is due to the dysfunction of photosynthetic processes in the zooxanthellae as a result of the combined action of elevated temperature and light-stress. The question then is, do zooxanthellae have the potential to play a key role in the future of coral reef restoration through genetic engineering? The aim of this study is firstly to review the different zooxanthellae taxa and their traits with respect to environmental stress, and secondly, to review the information available on the protective mechanisms present in zooxanthellae cells when experiencing temperature fluctuations, specifically concentrating on heat shock proteins and the antioxidant stress response of zooxanthellae. The eight clades (A-H) previously recognized were redefined into seven genera. Different zooxanthellae taxa exhibit different traits, such as their photosynthetic stress responses to light and temperature. Zooxanthellae have the ability to determine the amount and type of heat shock proteins (hsps) present during a heat response. The zooxanthellae can regulate both the host’s respective hsps as well as their own. Hsps, generally found in genotype C3 zooxanthellae, such as Hsp70 and Hsp90, contribute to the thermal stress response of the respective coral host. Antioxidant activity found both within exposed coral tissue, and the zooxanthellae cells can prevent coral hosts from expelling their endosymbionts. The up-regulation of gene expression, which may mitigate thermal stress induction of any of the physiological aspects discussed, can ensure stable coral-zooxanthellae symbiosis in the future. It presents a viable alternative strategy to preserve reefs amidst climate change. In conclusion, despite their unusual molecular design, genetic engineering poses as a useful tool in understanding and manipulating variables and systems within zooxanthellae and therefore presents a solution that can ensure stable coral-zooxanthellae symbiosis in the future.Keywords: antioxidant enzymes, genetic engineering, heat-shock proteins, Symbiodinium
Procedia PDF Downloads 1947360 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration
Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos
Abstract:
In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.Keywords: CFD, deflagration, hydrogen, combustion model
Procedia PDF Downloads 5077359 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique
Authors: N. Guo, C. Xu, Z. C. Yang
Abstract:
In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search
Procedia PDF Downloads 1647358 Screening Some Accessions of Lentil (Lens culinaris M.) for Salt Tolerance at Germination and Early Seedling Stage in Eastern Ethiopia
Authors: Azene Tesfaye, Yohannes Petros, Habtamu Zeleke
Abstract:
To evaluate genetic variation among Ethiopian lentil, laboratory experiment were conducted to screen 12 accessions of lentil (Lens culinaris M.) for salt tolerance. Seeds of 12 Lentil accessions were grown at laboratory (Petri dish) condition with different levels of salinity (0, 2, 4, and 8 dSm-1 NaCl) for 4 weeks. The experimental design was completely randomized design (CRD) in factorial combination with three replications. Data analysis was carried out using SAS software. Average germination time, germination percentage, seedling shoot and root traits, seedling shoot and root weight were evaluated. The two way ANOVA for varieties revealed statistically significant variation among lentil accession, NaCl level and their interactions (p<0.001) with respect to the entire parameters. It was found that salt stress significantly delays germination rate and decreases germination percentage, shoot and root length, seedling shoot and root weight of lentil accessions. The degree of decrement varied with accessions and salinity levels. Accessions 36120, 9235 and 36004 were better salt tolerant than the other accessions. As the result, it is recommended to be used as a genetic resource for the development of lentil accession and other very salt sensitive crop with improved germination under salt stress condition.Keywords: accession, germination, lentil, NaCl, screening, seedling stage
Procedia PDF Downloads 3487357 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 1057356 The Diversity of DRB1 Locus of Exon 2 of MHC Molecule of Sudanese Indigenous Desert Sheep
Authors: Muna A. Eissawi, Safaa Abed Elfataah, Haytham Hago, Fatima E Abukunna, Ibtisam Amin Goreish, Nahid Gornas
Abstract:
The study examined and analyzed the genetic diversity of DRB1locus of exon 2 of major histocompatibility complex of Sudanese desert sheep using PCR-RFLP and DNA sequencing. Five hundred samples belonging to five ecotypes of Desert Sudanese sheep (Abrag (Ab), Ashgar (Ash), Hamari (H), Kabashi (K) and Watish (W) were included. Amplification of exon 2 of the DRB1 gene yielded (300bp) amplified product in different ecotypes. Nine different digestion patterns corresponding to Five distinct alleles were observed with Rsa1 digestion. Genotype (ag) was the most common among all ecotypes, with a percentage comprised (40.4 %). The Hardy-Weinberg equilibrium (HWE) test showed that the studied ecotypes have significantly deviated from the theoretical proportions of Rsa1 patterns; probability values of the Chi-square test for HWE for MHC-DRB1 gene in SDS were 0.00 in all ecotypes. The constructed phylogenetic tree revealed the relation of 22 Sudanese isolates with each other and showed the shared sequences with 47 published foreign sequences randomly selected from different geographic regions. The results of this study highlight the effect of heterozygosity of MHC genes of the Desert sheep of Sudan which may clarify some of genetic back ground of their disease resistance and adaptation to environment.Keywords: desert sheep, MHC, Ovar-DRB1, polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP)
Procedia PDF Downloads 837355 Seismic Response of Belt Truss System in Regular RC Frame Structure at the Different Positions of the Storey
Authors: Mohd Raish Ansari, Tauheed Alam Khan
Abstract:
This research paper is a comparative study of the belt truss in the Regular RC frame structure at the different positions of the floor. The method used in this research is the response spectrum method with the help of the ETABS Software, there are six models in this paper with belt truss. The Indian standard code used in this work are IS 456:2000, IS 800:2007, IS 875 part-1, IS 875 part-1, and IS 1893 Part-1:2016. The cross-section of the belt truss is the I-section, a grade of steel that is made up of Mild Steel. The basic model in this research paper is the same, only position of the belt truss is going to change, and the dimension of the belt truss is remain constant for all models. The plan area of all models is 24.5 meters x 28 meters, and the model has G+20, where the height of the ground floor is 3.5 meters, and all floor height is 3.0 meters remains constant. This comparative research work selected some important seismic parameters to check the stability of all models, the parameters are base shear, fundamental period, storey overturning moment, and maximum storey displacement.Keywords: belt truss, RC frames structure, ETABS, response spectrum analysis, special moment resisting frame
Procedia PDF Downloads 957354 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System
Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko
Abstract:
Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic
Procedia PDF Downloads 667353 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3957352 A Review of Gas Hydrate Rock Physics Models
Authors: Hemin Yuan, Yun Wang, Xiangchun Wang
Abstract:
Gas hydrate is drawing attention due to the fact that it has an enormous amount all over the world, which is almost twice the conventional hydrocarbon reserves, making it a potential alternative source of energy. It is widely distributed in permafrost and continental ocean shelves, and many countries have launched national programs for investigating the gas hydrate. Gas hydrate is mainly explored through seismic methods, which include bottom simulating reflectors (BSR), amplitude blanking, and polarity reverse. These seismic methods are effective at finding the gas hydrate formations but usually contain large uncertainties when applying to invert the micro-scale petrophysical properties of the formations due to lack of constraints. Rock physics modeling links the micro-scale structures of the rocks to the macro-scale elastic properties and can work as effective constraints for the seismic methods. A number of rock physics models have been proposed for gas hydrate modeling, which addresses different mechanisms and applications. However, these models are generally not well classified, and it is confusing to determine the appropriate model for a specific study. Moreover, since the modeling usually involves multiple models and steps, it is difficult to determine the source of uncertainties. To solve these problems, we summarize the developed models/methods and make four classifications of the models according to the hydrate micro-scale morphology in sediments, the purpose of reservoir characterization, the stage of gas hydrate generation, and the lithology type of hosting sediments. Some sub-categories may overlap each other, but they have different priorities. Besides, we also analyze the priorities of different models, bring up the shortcomings, and explain the appropriate application scenarios. Moreover, by comparing the models, we summarize a general workflow of the modeling procedure, which includes rock matrix forming, dry rock frame generating, pore fluids mixing, and final fluid substitution in the rock frame. These procedures have been widely used in various gas hydrate modeling and have been confirmed to be effective. We also analyze the potential sources of uncertainties in each modeling step, which enables us to clearly recognize the potential uncertainties in the modeling. In the end, we explicate the general problems of the current models, including the influences of pressure and temperature, pore geometry, hydrate morphology, and rock structure change during gas hydrate dissociation and re-generation. We also point out that attenuation is also severely affected by gas hydrate in sediments and may work as an indicator to map gas hydrate concentration. Our work classifies rock physics models of gas hydrate into different categories, generalizes the modeling workflow, analyzes the modeling uncertainties and potential problems, which can facilitate the rock physics characterization of gas hydrate bearding sediments and provide hints for future studies.Keywords: gas hydrate, rock physics model, modeling classification, hydrate morphology
Procedia PDF Downloads 1637351 A Content Analysis of Corporate Sustainability Performance and Business Excellence Models
Authors: Kari M. Solomon
Abstract:
Companies with a culture accepting of change management and performance excellence are better suited to determine their sustainability performance and impacts. A mature corporate culture supportive of performance excellence is better positioned to integrate sustainability management tools into their standard business strategy. Companies use various sustainability management tools and reporting standards to communicate levels of sustainability performance to their stakeholders, more often focusing on shareholders and investors. A research gap remains in understanding how companies adapt business excellence models to define corporate sustainability performance. A content analysis of medium-sized enterprises using corporate sustainability reports and business excellence models reveals the challenges and opportunities of reporting sustainability performance in the context of organizational excellence. The outcomes of this content analysis contribute knowledge on the resources needed for companies to build sustainability performance management systems integral to existing management systems. The findings of this research inform academic research areas of corporate sustainability performance, the business community contributing to sustainable development initiatives, and integrating sustainable development issues into business excellence models. There are potential research links between sustainability performance management and the alignment of the United Nations Sustainable Development Goals (UN SDGs) when organizations promote a culture of performance or business excellence.Keywords: business excellence, corporate sustainability, performance excellence, sustainability performance
Procedia PDF Downloads 1877350 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models
Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel
Abstract:
Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling
Procedia PDF Downloads 1697349 Governance Models of Higher Education Institutions
Authors: Zoran Barac, Maja Martinovic
Abstract:
Higher Education Institutions (HEIs) are a special kind of organization, with its unique purpose and combination of actors. From the societal point of view, they are central institutions in the society that are involved in the activities of education, research, and innovation. At the same time, their societal function derives complex relationships between involved actors, ranging from students, faculty and administration, business community and corporate partners, government agencies, to the general public. HEIs are also particularly interesting as objects of governance research because of their unique public purpose and combination of stakeholders. Furthermore, they are the special type of institutions from an organizational viewpoint. HEIs are often described as “loosely coupled systems” or “organized anarchies“ that implies the challenging nature of their governance models. Governance models of HEIs describe roles, constellations, and modes of interaction of the involved actors in the process of strategic direction and holistic control of institutions, taking into account each particular context. Many governance models of the HEIs are primarily based on the balance of power among the involved actors. Besides the actors’ power and influence, leadership style and environmental contingency could impact the governance model of an HEI. Analyzing them through the frameworks of institutional and contingency theories, HEI governance models originate as outcomes of their institutional and contingency adaptation. HEIs tend to fit to institutional context comprised of formal and informal institutional rules. By fitting to institutional context, HEIs are converging to each other in terms of their structures, policies, and practices. On the other hand, contingency framework implies that there is no governance model that is suitable for all situations. Consequently, the contingency approach begins with identifying contingency variables that might impact a particular governance model. In order to be effective, the governance model should fit to contingency variables. While the institutional context creates converging forces on HEI governance actors and approaches, contingency variables are the causes of divergence of actors’ behavior and governance models. Finally, an HEI governance model is a balanced adaptation of the HEIs to the institutional context and contingency variables. It also encompasses roles, constellations, and modes of interaction of involved actors influenced by institutional and contingency pressures. Actors’ adaptation to the institutional context brings benefits of legitimacy and resources. On the other hand, the adaptation of the actors’ to the contingency variables brings high performance and effectiveness. HEI governance models outlined and analyzed in this paper are collegial, bureaucratic, entrepreneurial, network, professional, political, anarchical, cybernetic, trustee, stakeholder, and amalgam models.Keywords: governance, governance models, higher education institutions, institutional context, situational context
Procedia PDF Downloads 3397348 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application
Authors: Sadeep Sasidharan, T. B. Isha
Abstract:
Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.Keywords: electric vehicles, induction motor, inset permanent magnet motor, loss models, switched reluctance motor, thermal analysis
Procedia PDF Downloads 2297347 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells
Authors: András Szekrényes
Abstract:
Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.Keywords: J-integral, levy method, third-order shell theory, state space solution
Procedia PDF Downloads 1377346 A Review on Modeling and Optimization of Integration of Renewable Energy Resources (RER) for Minimum Energy Cost, Minimum CO₂ Emissions and Sustainable Development, in Recent Years
Authors: M. M. Wagh, V. V. Kulkarni
Abstract:
The rising economic activities, growing population and improving living standards of world have led to a steady growth in its appetite for quality and quantity of energy services. As the economy expands the electricity demand is going to grow further, increasing the challenges of the more generation and stresses on the utility grids. Appropriate energy model will help in proper utilization of the locally available renewable energy sources such as solar, wind, biomass, small hydro etc. to integrate in the available grid, reducing the investments in energy infrastructure. Further to these new technologies like smart grids, decentralized energy planning, energy management practices, energy efficiency are emerging. In this paper, the attempt has been made to study and review the recent energy planning models, energy forecasting models, and renewable energy integration models. In addition, various modeling techniques and tools are reviewed and discussed.Keywords: energy modeling, integration of renewable energy, energy modeling tools, energy modeling techniques
Procedia PDF Downloads 3507345 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1687344 Design and Implementation of Low-code Model-building Methods
Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu
Abstract:
This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment
Procedia PDF Downloads 357343 Organic Agriculture Harmony in Nutrition, Environment and Health: Case Study in Iran
Authors: Sara Jelodarian
Abstract:
Organic agriculture is a kind of living and dynamic agriculture that was introduced in the early 20th century. The fundamental basis for organic agriculture is in harmony with nature. This version of farming emphasizes removing growth hormones, chemical fertilizers, toxins, radiation, genetic manipulation and instead, integration of modern scientific techniques (such as biologic and microbial control) that leads to the production of healthy food and the preservation of the environment and use of agricultural products such as forage and manure. Supports from governments for the markets producing organic products and taking advantage of the experiences from other successful societies in this field can help progress the positive and effective aspects of this technology, especially in developing countries. This research proves that till 2030, 25% of the global agricultural lands would be covered by organic farming. Consequently Iran, due to its rich genetic resources and various climates, can be a pioneer in promoting organic products. In addition, for sustainable farming, blend of organic and other innovative systems is needed. Important limitations exist to accept these systems, also a diversity of policy instruments will be required to comfort their development and implementation. The paper was conducted to results of compilation of reports, issues, books, articles related to the subject with library studies and research. Likewise we combined experimental and survey to get data.Keywords: develop, production markets, progress, strategic role, technology
Procedia PDF Downloads 1217342 Development and Verification of the Idom Shielding Optimization Tool
Authors: Omar Bouhassoun, Cristian Garrido, César Hueso
Abstract:
The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.Keywords: optimization, shielding, nuclear, genetic algorithm
Procedia PDF Downloads 1137341 How to Perform Proper Indexing?
Authors: Watheq Mansour, Waleed Bin Owais, Mohammad Basheer Kotit, Khaled Khan
Abstract:
Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements.Keywords: indexing, hashing, latent semantic indexing, B-tree
Procedia PDF Downloads 1647340 Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution
Authors: Rafid Saeed Abdulrazak Alshkaki
Abstract:
In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions.Keywords: zero one inflated models, negative binomial distribution, moments estimator, non negative integer sampling
Procedia PDF Downloads 2977339 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors
Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche
Abstract:
Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships
Procedia PDF Downloads 3047338 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
Authors: Guang Zou, Kian Banisoleiman, Arturo González
Abstract:
Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.Keywords: crack initiation, fatigue reliability, inspection planning, welded joints
Procedia PDF Downloads 3557337 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 1497336 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction
Authors: Zhengrong Wu, Haibo Yang
Abstract:
In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.Keywords: large language model, knowledge graph, disaster, deep learning
Procedia PDF Downloads 617335 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites
Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov
Abstract:
A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.Keywords: analysis, modelling, thermal, voxel
Procedia PDF Downloads 2897334 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 3007333 Synthetic Daily Flow Duration Curves for the Çoruh River Basin, Turkey
Authors: Ibrahim Can, Fatih Tosunoğlu
Abstract:
The flow duration curve (FDC) is an informative method that represents the flow regime’s properties for a river basin. Therefore, the FDC is widely used for water resource projects such as hydropower, water supply, irrigation and water quality management. The primary purpose of this study is to obtain synthetic daily flow duration curves for Çoruh Basin, Turkey. For this aim, we firstly developed univariate auto-regressive moving average (ARMA) models for daily flows of 9 stations located in Çoruh basin and then these models were used to generate 100 synthetic flow series each having same size as historical series. Secondly, flow duration curves of each synthetic series were drawn and the flow values exceeded 10, 50 and 95 % of the time and 95% confidence limit of these flows were calculated. As a result, flood, mean and low flows potential of Çoruh basin will comprehensively be represented.Keywords: ARMA models, Çoruh basin, flow duration curve, Turkey
Procedia PDF Downloads 4117332 Relationship Salt Sensitivity and с825т Polymorphism of gnb3 Gene in Patients with Essential Hypertension
Authors: Aleksandr Nagay, Gulnoz Khamidullayeva
Abstract:
It is known that an unbalanced intake of salt (NaCI), lifestyle and genetic predisposition to pathology is a key component of the risk and the development of essential hypertension (EH). Purpose: To study the relationship between salt-sensitivity and blood pressure (BP) on systolic (SBP) and diastolic (DBP) blood pressure, depending on the C825T polymorphism of GNB3 in individuals of Uzbek nationality with EH. Method: studied 148 healthy and 148 patients with EH with I-II degree (WHO/ISH, 2003) with disease duration 6,5±1,3 years. Investigation of the gene GNB3 was produced by PCR-RFLP method. Determination of salt-sensitivity was performed by the method of R. Henkin. Results: For a comparative analysis of BP, the groups with carriage of CТ and TT genotypes were combined. The analysis showed that carriers of CC genotype and low salt-sensitivity were determined by higher levels of SBP compared with carriers of CT and TT genotypes, and low salt-sensitivity of SBP: 166,2±4,3 against 158,2±9,1 mm Hg (p=0,000). A similar analysis on the values of DBP also showed significantly higher values of blood pressure in carriers of CC genotype DBP: 105,8±10,6 vs. 100,5±7,2 mm Hg, respectively (p=0,001). The average values of SBP and DBP in groups with carriers of CC genotype at medium or high salt-sensitivity in comparison with carriers of CT or TT genotype did not differ statistically SBP: 165,0±0,1 vs. 160,0±8,6 mm Hg (p=0,275) and DBP: 100,1±0,1 vs. 101,6±7,6 mm Hg (p=0,687), respectively. Conclusion: It is revealed that in patients with EH CC genotype of the gene GNB3 given salt-sensitivity has a negative effect on blood pressure profile. Since patients with EH with the CC genotype of GNB3 gene with low-salt taste sensitivity is determined by a higher level of blood pressure, both on SBP and DBP.Keywords: salt sensitivity, essential hypertension EH, blood pressure BP, genetic predisposition
Procedia PDF Downloads 278