Search results for: rainfall mean
604 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia
Authors: Arragaw Alemayehu, Woldeamlak Bewket
Abstract:
The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend
Procedia PDF Downloads 438603 Evaluation of IMERG Performance at Estimating the Rainfall Properties through Convective and Stratiform Rain Events in a Semi-Arid Region of Mexico
Authors: Eric Muñoz de la Torre, Julián González Trinidad, Efrén González Ramírez
Abstract:
Rain varies greatly in its duration, intensity, and spatial coverage, it is important to have sub-daily rainfall data for various applications, including risk prevention. However, the ground measurements are limited by the low and irregular density of rain gauges. An alternative to this problem are the Satellite Precipitation Products (SPPs) that use passive microwave and infrared sensors to estimate rainfall, as IMERG, however, these SPPs have to be validated before their application. The aim of this study is to evaluate the performance of the IMERG: Integrated Multi-satellitE Retrievals for Global Precipitation Measurament final run V06B SPP in a semi-arid region of Mexico, using 4 automatic rain gauges (pluviographs) sub-daily data of October 2019 and June to September 2021, using the Minimum inter-event Time (MIT) criterion to separate unique rain events with a dry period of 10 hrs. for the purpose of evaluating the rainfall properties (depth, duration and intensity). Point to pixel analysis, continuous, categorical, and volumetric statistical metrics were used. Results show that IMERG is capable to estimate the rainfall depth with a slight overestimation but is unable to identify the real duration and intensity of the rain events, showing large overestimations and underestimations, respectively. The study zone presented 80 to 85 % of convective rain events, the rest were stratiform rain events, classified by the depth magnitude variation of IMERG pixels and pluviographs. IMERG showed poorer performance at detecting the first ones but had a good performance at estimating stratiform rain events that are originated by Cold Fronts.Keywords: IMERG, rainfall, rain gauge, remote sensing, statistical evaluation
Procedia PDF Downloads 70602 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 138601 Applications of Analytical Probabilistic Approach in Urban Stormwater Modeling in New Zealand
Authors: Asaad Y. Shamseldin
Abstract:
Analytical probabilistic approach is an innovative approach for urban stormwater modeling. It can provide information about the long-term performance of a stormwater management facility without being computationally very demanding. This paper explores the application of the analytical probabilistic approach in New Zealand. The paper presents the results of a case study aimed at development of an objective way of identifying what constitutes a rainfall storm event and the estimation of the corresponding statistical properties of storms using two selected automatic rainfall stations located in the Auckland region in New Zealand. The storm identification and the estimation of the storm statistical properties are regarded as the first step in the development of the analytical probabilistic models. The paper provides a recommendation about the definition of the storm inter-event time to be used in conjunction with the analytical probabilistic approach.Keywords: hydrology, rainfall storm, storm inter-event time, New Zealand, stormwater management
Procedia PDF Downloads 344600 Development of IDF Curves for Precipitation in Western Watershed of Guwahati, Assam
Authors: Rajarshi Sharma, Rashidul Alam, Visavino Seleyi, Yuvila Sangtam
Abstract:
The Intensity-Duration-Frequency (IDF) relationship of rainfall amounts is one of the most commonly used tools in water resources engineering for planning, design and operation of water resources project, or for various engineering projects against design floods. The establishment of such relationships was reported as early as in 1932 (Bernard). Since then many sets of relationships have been constructed for several parts of the globe. The objective of this research is to derive IDF relationship of rainfall for western watershed of Guwahati, Assam. These relationships are useful in the design of urban drainage works, e.g. storm sewers, culverts and other hydraulic structures. In the study, rainfall depth for 10 years viz. 2001 to 2010 has been collected from the Regional Meteorological Centre Borjhar, Guwahati. Firstly, the data has been used to construct the mass curve for duration of more than 7 hours rainfall to calculate the maximum intensity and to form the intensity duration curves. Gumbel’s frequency analysis technique has been used to calculate the probable maximum rainfall intensities for a period of 2 yr, 5 yr, 10 yr, 50 yr, 100 yr from the maximum intensity. Finally, regression analysis has been used to develop the intensity-duration-frequency (IDF) curve. Thus, from the analysis the values for the constants ‘a’,‘b’ &‘c’ have been found out. The values of ‘a’ for which the sum of the squared deviation is minimum has been found out to be 40 and when the corresponding value of ‘c’ and ‘b’ for the minimum squared deviation of ‘a’ are 0.744 and 1981.527 respectively. The results obtained showed that in all the cases the correlation coefficient is very high indicating the goodness of fit of the formulae to estimate IDF curves in the region of interest.Keywords: intensity-duration-frequency relationship, mass curve, regression analysis, correlation coefficient
Procedia PDF Downloads 245599 Agro-Climatic Analysis in the Northern Areas of Khyber Pakhtunkhwa, Pakistan
Abstract:
A research study was conceded in four locations (Swat, Dir, Kakul and Balakot) of Khyber Pakhtunkhwa, to find agro-climatic classes by using aridity index, Growing Degree Days of wheat and maize, crop growth index and Spatio-temporal analysis of rainfall by using long term climatic data (1970-2010). The climatic data used for research was acquired from Pakistan Meteorological Department (PMD) Islamabad, Agriculture Research Institute, Weather Station Peshawar and Tarnab Peshawar. Agro-climatic classes of each location were determined using three criteria mean temperature of the coldest month, mean temperature of the warmest month and aridity index. The agro-climatic classes of Dir, Swat, Kakul and Balakot were classified as Humid, Cold and very Warm (H-K-VW). Average aridity index of wheat for Dir, Swat, Kakul, and Balakot was 2.23, 2.67, 1.94 and 2.34 and for Maize was 1.31, 1.26, 1.97, and 2.83 respectively. The overall and decade-wise trend of GDD of Wheat and Maize was declined in Swat and Kakul while increased in Dir and Balakot.The average maximum CGI (1.26) and (0.73) of Wheat and Maize was observed for Balakot and Dir, while the minimum (1.09) and (0.62) was observed for Swat and Kakul. Spatio-temporal analysis of rainfall shows that the trend has increased in Swat while decreased in Dir, Kakul and Balakot. From the relation between rainfalls with altitude showed that there was an increasing trend between rainfalls with altitude. The maximum average rainfall was in Swat (2703mm) on altitude 2000m while the minimum average rainfall was observed in Kakul (1410mm) on altitude of 1255m.Keywords: agro-climatic zones, aridity index, GDD, rainfall
Procedia PDF Downloads 419598 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects
Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho
Abstract:
This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.Keywords: pretreatment, sewage, solid waste, wastewater
Procedia PDF Downloads 471597 Estimating City-Level Rooftop Rainwater Harvesting Potential with a Focus on Sustainability
Authors: Priya Madhuri P., Kamini J., Jayanthi S. C.
Abstract:
Rooftop rainwater harvesting is a crucial practice to address water scarcity, pollution, and flooding. This study aims to estimate the rooftop rainwater harvesting potential (RRWHP) for Suryapet, India, using building footprint data and average rainfall data. The study uses rainfall grids from the India Meteorological Department and Very High Resolution Satellite data to capture building footprints and calculate the RRWHP for a five-year period (2015-2020). Buildings with an area of more than 20 square meters are considered. A conservative figure of 60% efficiency for the catchment area is considered. The study chose 31,770 buildings with an effective rooftop area of around 1.56 sq. km. The city experiences annual rainfall values ranging from 791 mm to 987 mm, with August being the wettest month. The projected annual rooftop rainwater harvesting potential is 1.3 billion litres.Keywords: buildings, rooftop rainwater harvesting, sustainable water management, urban
Procedia PDF Downloads 41596 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models
Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo De Magalhães
Abstract:
This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.Keywords: rainfall-runoff models, automatic calibration, hyperbolic smoothing method
Procedia PDF Downloads 149595 A Study on the Contribution of Nitrogen Pollution Sources in a Stream Runoff Using Hydrograph Separation
Authors: Sunghyen Cho, Dongguen Lee, Woo-Jin Shin, Kwang-Sik Lee
Abstract:
The water quality policy of Korea is to maintain the sum of the total concentration in the basin water below a certain standard. However, interest in nitrogen, the main nutrient source of eutrophication, is increasing due to eutrophication and the deterioration of water quality caused by climate change. We classified the nitrogen sources of a stream into livestock manure, domestic wastewater, and soil and examined whether they could be distinguished using stable isotopes of nitrogen and oxygen in nitrate and stable isotopes of boron. Sampling was performed through regular sampling and sampling during rainfall. While nitrate concentrations were much higher during the wet season than during the dry season, nitrogen from the manure and sewage appeared to contribute less to watershed discharge. Because a large amount of soil nitrogen flows into the stream during the wet season, the contribution ratio of nitrogen from the wastewater is estimated to be lower even if the amount of nitrogen supplied to the stream is greater during the season than during the dry season. During the flood period, we collected samples from both rainfall and streamflow and separated the runoff hydrographs into old water and rainfall components to assess the pathways by nitrogen entered the stream. To assess the contribution of non-point source nitrogen from the surface to the stream by rainfall, the fast-flowing surface or intermediate runoff components were additionally separated from the runoff hydrograph. The study found that soil water contributed significantly to the stream runoff caused by rainfall. These results also convinced us that a large amount of soil nitrogen flows into stream discharge during the rainy season. We believe that further research is needed as we cannot confirm this through a single field experiment. It is also necessary to regularly sample stream water and analyze its quality. As these results accumulate, we believe that the origin of nitrogen pollution will become clear and that the data can be utilized in our country's water resource management policy.Keywords: nitrogen, stable isotope, old water, fast-flowing surface, intermediate runoff, rainfall, hydrograph
Procedia PDF Downloads 3594 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm
Authors: Safayat Ali Shaikh
Abstract:
Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern
Procedia PDF Downloads 203593 Robust Method for Evaluation of Catchment Response to Rainfall Variations Using Vegetation Indices and Surface Temperature
Authors: Revalin Herdianto
Abstract:
Recent climate changes increase uncertainties in vegetation conditions such as health and biomass globally and locally. The detection is, however, difficult due to the spatial and temporal scale of vegetation coverage. Due to unique vegetation response to its environmental conditions such as water availability, the interplay between vegetation dynamics and hydrologic conditions leave a signature in their feedback relationship. Vegetation indices (VI) depict vegetation biomass and photosynthetic capacity that indicate vegetation dynamics as a response to variables including hydrologic conditions and microclimate factors such as rainfall characteristics and land surface temperature (LST). It is hypothesized that the signature may be depicted by VI in its relationship with other variables. To study this signature, several catchments in Asia, Australia, and Indonesia were analysed to assess the variations in hydrologic characteristics with vegetation types. Methods used in this study includes geographic identification and pixel marking for studied catchments, analysing time series of VI and LST of the marked pixels, smoothing technique using Savitzky-Golay filter, which is effective for large area and extensive data. Time series of VI, LST, and rainfall from satellite and ground stations coupled with digital elevation models were analysed and presented. This study found that the hydrologic response of vegetation to rainfall variations may be shown in one hydrologic year, in which a drought event can be detected a year later as a suppressed growth. However, an annual rainfall of above average do not promote growth above average as shown by VI. This technique is found to be a robust and tractable approach for assessing catchment dynamics in changing climates.Keywords: vegetation indices, land surface temperature, vegetation dynamics, catchment
Procedia PDF Downloads 287592 Concerns for Extreme Climate Conditions and Their Implications in Southwest Nigeria
Authors: Oyenike Eludoyin
Abstract:
Extreme climate conditions are deviation from the norms and are capable of causing upsets in many important environmental parameter including disruption of water balance and air temperature balance. Studies have shown that extreme climate conditions can foretell disaster in regions with inadequate early warning systems. In this paper, we combined geographical information systems, statistics and social surveys to evaluate the physiologic indices [(Dewpoint Temperature (Td), Effective Temperature Index (ETI) and Relative Strain Index (RSI)] and extreme climate conditions in different parts of southwest Nigeria. This was with the view to assessing the nature and the impact of the conditions on the people and their coping strategies. The results indicate that minimum, mean and maximum temperatures were higher in 1960-1990 than 1991-2013 periods at most areas, and more than 80% of the people adapt to thermal stress by changing wear type or cloth, installing air conditioner and fan at home and/or work place and sleeping outside at certain period of the night and day. With respect to livelihoods, about 52% of the interviewed farmers indicated that too early rainfall, late rainfall, prolonged dryness after an initial rainfall, excessive rainfall and windstorms caused low crop yields. Main (76%) coping strategies were changing of planting dates, diversification of crops, and practices of mulching and intercropping. Government or institutional support was less than 20%.Keywords: coping strategies, extreme climate, livelihoods, physiologic comfort
Procedia PDF Downloads 281591 Dynamic Model for Forecasting Rainfall Induced Landslides
Authors: R. Premasiri, W. A. H. A. Abeygunasekara, S. M. Hewavidana, T. Jananthan, R. M. S. Madawala, K. Vaheeshan
Abstract:
Forecasting the potential for disastrous events such as landslides has become one of the major necessities in the current world. Most of all, the landslides occurred in Sri Lanka are found to be triggered mostly by intense rainfall events. The study area is the landslide near Gerandiella waterfall which is located by the 41st kilometer post on Nuwara Eliya-Gampala main road in Kotmale Division in Sri Lanka. The landslide endangers the entire Kotmale town beneath the slope. Geographic Information System (GIS) platform is very much useful when it comes to the need of emulating the real-world processes. The models are used in a wide array of applications ranging from simple evaluations to the levels of forecast future events. This project investigates the possibility of developing a dynamic model to map the spatial distribution of the slope stability. The model incorporates several theoretical models including the infinite slope model, Green Ampt infiltration model and Perched ground water flow model. A series of rainfall values can be fed to the model as the main input to simulate the dynamics of slope stability. Hydrological model developed using GIS is used to quantify the perched water table height, which is one of the most critical parameters affecting the slope stability. Infinite slope stability model is used to quantify the degree of slope stability in terms of factor of safety. DEM was built with the use of digitized contour data. Stratigraphy was modeled in Surfer using borehole data and resistivity images. Data available from rainfall gauges and piezometers were used in calibrating the model. During the calibration, the parameters were adjusted until a good fit between the simulated ground water levels and the piezometer readings was obtained. This model equipped with the predicted rainfall values can be used to forecast of the slope dynamics of the area of interest. Therefore it can be investigated the slope stability of rainfall induced landslides by adjusting temporal dimensions.Keywords: factor of safety, geographic information system, hydrological model, slope stability
Procedia PDF Downloads 424590 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province
Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim
Abstract:
Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR
Procedia PDF Downloads 199589 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region
Authors: Tomiwa, Akinyemi Clement
Abstract:
Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.Keywords: remote sensing, precipitation, drop size distribution, micro rain radar
Procedia PDF Downloads 40588 Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin
Authors: Nader Saadatkhah, Jafar Rahnamarad, Shattri Mansor, Zailani Khuzaimah, Arnis Asmat, Nor Aizam Adnan, Siti Noradzah Adam
Abstract:
Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades.Keywords: improved-TRIGRS model, land cover changes, Kelantan river basin, flood event
Procedia PDF Downloads 412587 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability
Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks
Abstract:
Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.Keywords: open-cut, mining, erosion, rainfall simulator
Procedia PDF Downloads 102586 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran
Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani
Abstract:
The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation
Procedia PDF Downloads 242585 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia
Authors: Zeinu Ahmed Rabba, Derek D Stretch
Abstract:
Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase
Procedia PDF Downloads 287584 An Exploratory Study on the Impact of Climate Change on Design Rainfalls in the State of Qatar
Authors: Abdullah Al Mamoon, Niels E. Joergensen, Ataur Rahman, Hassan Qasem
Abstract:
Intergovernmental Panel for Climate Change (IPCC) in its fourth Assessment Report AR4 predicts a more extreme climate towards the end of the century, which is likely to impact the design of engineering infrastructure projects with a long design life. A recent study in 2013 developed new design rainfall for Qatar, which provides an improved design basis of drainage infrastructure for the State of Qatar under the current climate. The current design standards in Qatar do not consider increased rainfall intensity caused by climate change. The focus of this paper is to update recently developed design rainfalls in Qatar under the changing climatic conditions based on IPCC's AR4 allowing a later revision to the proposed design standards, relevant for projects with a longer design life. The future climate has been investigated based on the climate models released by IPCC’s AR4 and A2 story line of emission scenarios (SRES) using a stationary approach. Annual maximum series (AMS) of predicted 24 hours rainfall data for both wet (NCAR-CCSM) scenario and dry (CSIRO-MK3.5) scenario for the Qatari grid points in the climate models have been extracted for three periods, current climate 2010-2039, medium term climate (2040-2069) and end of century climate (2070-2099). A homogeneous region of the Qatari grid points has been formed and L-Moments based regional frequency approach is adopted to derive design rainfalls. The results indicate no significant changes in the design rainfall on the short term 2040-2069, but significant changes are expected towards the end of the century (2070-2099). New design rainfalls have been developed taking into account climate change for 2070-2099 scenario and by averaging results from the two scenarios. IPCC’s AR4 predicts that the rainfall intensity for a 5-year return period rain with duration of 1 to 2 hours will increase by 11% in 2070-2099 compared to current climate. Similarly, the rainfall intensity for more extreme rainfall, with a return period of 100 years and duration of 1 to 2 hours will increase by 71% in 2070-2099 compared to current climate. Infrastructure with a design life exceeding 60 years should add safety factors taking the predicted effects from climate change into due consideration.Keywords: climate change, design rainfalls, IDF, Qatar
Procedia PDF Downloads 394583 Rain Dropsize Distribution from Individual Storms and Variability in Nigeria Topical Region
Authors: Akinyemi Tomiwa
Abstract:
The microstructure of rainfall is important for predicting and modeling various environmental processes, such as rainfall interception by vegetation, soil erosion, and radar signals in rainfall. This rain microstructure was studied with a vertically pointing Micro Rain Radar (MRR) located at a tropical location in Akure South West Nigeria (7o 15’ N, 5o 15’ E). This research utilizes two years of data (2018 and 2019), and the data obtained comprises rainfall parameters such as Rain rates, radar reflectivity, liquid water content, fall velocity and Drop Size Distribution (DSD) based on vertical profiles. The measurement and variations of rain microstructure of these parameters with heights for different rain types were presented from ground level up to the height of 4800 m at 160 m range gates. It has been found that the convective, stratiform and mixed, which are the three major rain types, have different rain microstructures at different heights and were evaluated in this research. The correlation coefficient and the regression line equation were computed for each rain event. The highest rain rate and liquid water content were observed within the height range of 160-4800. It was found that a good correlation exists between the measured parameters. Hence it shows that specific liquid water content increases with increasing rain rate for both stratiform and convective rain types in this part of the world. The results can be very useful for a better understanding of rain structure over tropical regions.Keywords: rain microstructure, drop size distribution, rain rates, stratiform, convective.
Procedia PDF Downloads 37582 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn
Abstract:
This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system
Procedia PDF Downloads 349581 Statistical Analysis of Rainfall Change over the Blue Nile Basin
Authors: Hany Mustafa, Mahmoud Roushdi, Khaled Kheireldin
Abstract:
Rainfall variability is an important feature of semi-arid climates. Climate change is very likely to increase the frequency, magnitude, and variability of extreme weather events such as droughts, floods, and storms. The Blue Nile Basin is facing extreme climate change-related events such as floods and droughts and its possible impacts on ecosystem, livelihood, agriculture, livestock, and biodiversity are expected. Rainfall variability is a threat to food production in the Blue Nile Basin countries. This study investigates the long-term variations and trends of seasonal and annual precipitation over the Blue Nile Basin for 102-year period (1901-2002). Six statistical trend analysis of precipitation was performed with nonparametric Mann-Kendall test and Sen's slope estimator. On the other hands, four statistical absolute homogeneity tests: Standard Normal Homogeneity Test, Buishand Range test, Pettitt test and the Von Neumann ratio test were applied to test the homogeneity of the rainfall data, using XLSTAT software, which results of p-valueless than alpha=0.05, were significant. The percentages of significant trends obtained for each parameter in the different seasons are presented. The study recommends adaptation strategies to be streamlined to relevant policies, enhancing local farmers’ adaptive capacity for facing future climate change effects.Keywords: Blue Nile basin, climate change, Mann-Kendall test, trend analysis
Procedia PDF Downloads 552580 Hydrological Insights: Rock Cover Performance in Wanagon Overburden
Authors: Rasa Sundana, Rusmawan Suwarman
Abstract:
Following the cessation of mining activities at the Grasberg open-pit mine in Papua, Indonesia, in January 2020, PT Freeport Indonesia (PTFI) has shifted its focus to mine closure operations, including the stabilization of overburden, infrastructure dismantling, and reclamation efforts. The Wanagon overburden stabilization project aims to enhance slope stability and mitigate erosion by re-grading the land to a 2:1 slope and reinforcing it with an Engineered Rock Cover (ERC). This study assesses the effectiveness of the ERC under simulated rainfall conditions. Two test plots, each measuring 75 m by 30 m with a 2H:1V slope, were established near the Lower Wanagon Overburden System. Test Plot #1 utilized Run-of-Mine material, while Test Plot #2 featured a two-meter-thick ERC. Both plots were equipped with collection ditches leading to a Parshall flume for runoff measurement. Rainfall simulations were conducted using seven sprinkler lines and rain gauges placed at the top and bottom of each plot, replicating 100-year return period storm events lasting 15 and 60 minutes. Results from six tests revealed that Test Plot #1 (without ERC) experienced higher peak runoff compared to Test Plot #2 (with ERC). Additionally, Test Plot #2 demonstrated a longer hydrograph recession limb, indicative of greater water retention. Further tests focusing on rainfall application to the upper or lower halves of Test Plot #2 indicated that the majority of runoff originated from the lower half.Keywords: engineered rock cover, simulated rainfall events, surface runoff, Wanagon overburden stabilization
Procedia PDF Downloads 4579 Development of a Framework for Assessing Public Health Risk Due to Pluvial Flooding: A Case Study of Sukhumvit, Bangkok
Authors: Pratima Pokharel
Abstract:
When sewer overflow due to rainfall in urban areas, this leads to public health risks when an individual is exposed to that contaminated floodwater. Nevertheless, it is still unclear the extent to which the infections pose a risk to public health. This study analyzed reported diarrheal cases by month and age in Bangkok, Thailand. The results showed that the cases are reported higher in the wet season than in the dry season. It was also found that in Bangkok, the probability of infection with diarrheal diseases in the wet season is higher for the age group between 15 to 44. However, the probability of infection is highest for kids under 5 years, but they are not influenced by wet weather. Further, this study introduced a vulnerability that leads to health risks from urban flooding. This study has found some vulnerability variables that contribute to health risks from flooding. Thus, for vulnerability analysis, the study has chosen two variables, economic status, and age, that contribute to health risk. Assuming that the people's economic status depends on the types of houses they are living in, the study shows the spatial distribution of economic status in the vulnerability maps. The vulnerability map result shows that people living in Sukhumvit have low vulnerability to health risks with respect to the types of houses they are living in. In addition, from age the probability of infection of diarrhea was analyzed. Moreover, a field survey was carried out to validate the vulnerability of people. It showed that health vulnerability depends on economic status, income level, and education. The result depicts that people with low income and poor living conditions are more vulnerable to health risks. Further, the study also carried out 1D Hydrodynamic Advection-Dispersion modelling with 2-year rainfall events to simulate the dispersion of fecal coliform concentration in the drainage network as well as 1D/2D Hydrodynamic model to simulate the overland flow. The 1D result represents higher concentrations for dry weather flows and a large dilution of concentration on the commencement of a rainfall event, resulting in a drop of the concentration due to runoff generated after rainfall, whereas the model produced flood depth, flood duration, and fecal coliform concentration maps, which were transferred to ArcGIS to produce hazard and risk maps. In addition, the study also simulates the 5-year and 10-year rainfall simulations to show the variation in health hazards and risks. It was found that even though the hazard coverage is very high with a 10-year rainfall events among three rainfall events, the risk was observed to be the same with a 5-year and 10-year rainfall events.Keywords: urban flooding, risk, hazard, vulnerability, health risk, framework
Procedia PDF Downloads 76578 Development of Map of Gridded Basin Flash Flood Potential Index: GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue Provinces
Authors: Le Xuan Cau
Abstract:
Flash flood is occurred in short time rainfall interval: from 1 hour to 12 hours in small and medium basins. Flash floods typically have two characteristics: large water flow and big flow velocity. Flash flood is occurred at hill valley site (strip of lowland of terrain) in a catchment with large enough distribution area, steep basin slope, and heavy rainfall. The risk of flash floods is determined through Gridded Basin Flash Flood Potential Index (GBFFPI). Flash Flood Potential Index (FFPI) is determined through terrain slope flash flood index, soil erosion flash flood index, land cover flash floods index, land use flash flood index, rainfall flash flood index. Determining GBFFPI, each cell in a map can be considered as outlet of a water accumulation basin. GBFFPI of the cell is determined as basin average value of FFPI of the corresponding water accumulation basin. Based on GIS, a tool is developed to compute GBFFPI using ArcObjects SDK for .NET. The maps of GBFFPI are built in two types: GBFFPI including rainfall flash flood index (real time flash flood warning) or GBFFPI excluding rainfall flash flood index. GBFFPI Tool can be used to determine a high flash flood potential site in a large region as quick as possible. The GBFFPI is improved from conventional FFPI. The advantage of GBFFPI is that GBFFPI is taking into account the basin response (interaction of cells) and determines more true flash flood site (strip of lowland of terrain) while conventional FFPI is taking into account single cell and does not consider the interaction between cells. The GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue is built and exported to Google Earth. The obtained map proves scientific basis of GBFFPI.Keywords: ArcObjects SDK for NET, basin average value of FFPI, gridded basin flash flood potential index, GBFFPI map
Procedia PDF Downloads 381577 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models
Authors: Phanida Phukoetphim, Asaad Y. Shamseldin
Abstract:
In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics
Procedia PDF Downloads 339576 Changes in Rainfall and Temperature and Its Impact on Crop Production in Moyamba District, Southern Sierra Leone
Authors: Keiwoma Mark Yila, Mathew Lamrana Siaffa Gboku, Mohamed Sahr Lebbie, Lamin Ibrahim Kamara
Abstract:
Rainfall and temperature are the important variables which are often used to trace climate variability and change. A perception study and analysis of climatic data were conducted to assess the changes in rainfall and temperature and their impact on crop production in Moyamba district, Sierra Leone. For the perception study, 400 farmers were randomly selected from farmer-based organizations (FBOs) in 4 chiefdoms, and 30 agricultural extension workers (AWEs) in the Moyamba district were purposely selected as respondents. Descriptive statistics and Kendall’s test of concordance was used to analyze the data collected from the farmers and AEWs. Data for the analysis of variability and trends of rainfall and temperature from 1991 to 2020 were obtained from the Sierra Leone Meteorological Agency and Njala University and grouped into monthly, seasonal and annual time series. Regression analysis was used to determine the statistical values and trend lines for the seasonal and annual time series data. The Mann-Kendall test and Sen’s Slope Estimator were used to analyze the trends' significance and magnitude, respectively. The results of both studies show evidence of climate change in the Moyamba district. A substantial number of farmers and AEWs perceived a decrease in the annual rainfall amount, length of the rainy season, a late start and end of the rainy season, an increase in the temperature during the day and night, and a shortened harmattan period over the last 30 years. Analysis of the meteorological data shows evidence of variability in the seasonal and annual distribution of rainfall and temperature, a decreasing and non-significant trend in the rainy season and annual rainfall, and an increasing and significant trend in seasonal and annual temperature from 1991 to 2020. However, the observed changes in rainfall and temperature by the farmers and AEWs partially agree with the results of the analyzed meteorological data. The majority of the farmers perceived that; adverse weather conditions have negatively affected crop production in the district. Droughts, high temperatures, and irregular rainfall are the three major adverse weather events that farmers perceived to have contributed to a substantial loss in the yields of the major crops cultivated in the district. In response to the negative effects of adverse weather events, a substantial number of farmers take no action due to their lack of knowledge and technical or financial capacity to implement climate-sensitive agricultural (CSA) practices. Even though few farmers are practising some CSA practices in their farms, there is an urgent need to build the capacity of farmers and AEWs to adapt to and mitigate the negative impacts of climate change. The most priority support needed by farmers is the provision of climate-resilient crop varieties, whilst the AEWs need training on CSA practices.Keywords: climate change, crop productivity, farmer’s perception, rainfall, temperature, Sierra Leone
Procedia PDF Downloads 74575 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution
Abstract:
Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.Keywords: air pollution, commercial microwave links, rainfall, washout
Procedia PDF Downloads 112