Search results for: pattern recognition approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17274

Search results for: pattern recognition approach

17184 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 308
17183 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 392
17182 A Contribution to Human Activities Recognition Using Expert System Techniques

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

This paper deals with human activity recognition from sensor data. It is an active research area, and the main objective is to obtain a high recognition rate. In this work, a recognition system based on expert systems is proposed; the recognition is performed using the objects, object states, and gestures and taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions and the activity). The system recognizes complex activities after decomposing them into simple, easy-to-recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 119
17181 Switching to the Latin Alphabet in Kazakhstan: A Brief Overview of Character Recognition Methods

Authors: Ainagul Yermekova, Liudmila Goncharenko, Ali Baghirzade, Sergey Sybachin

Abstract:

In this article, we address the problem of Kazakhstan's transition to the Latin alphabet. The transition process started in 2017 and is scheduled to be completed in 2025. In connection with these events, the problem of recognizing the characters of the new alphabet is raised. Well-known character recognition programs such as ABBYY FineReader, FormReader, MyScript Stylus did not recognize specific Kazakh letters that were used in Cyrillic. The author tries to give an assessment of the well-known method of character recognition that could be in demand as part of the country's transition to the Latin alphabet. Three methods of character recognition: template, structured, and feature-based, are considered through the algorithms of operation. At the end of the article, a general conclusion is made about the possibility of applying a certain method to a particular recognition process: for example, in the process of population census, recognition of typographic text in Latin, or recognition of photos of car numbers, store signs, etc.

Keywords: text detection, template method, recognition algorithm, structured method, feature method

Procedia PDF Downloads 188
17180 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation

Procedia PDF Downloads 543
17179 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 157
17178 Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases, Healthcare Multi-Agent System

Procedia PDF Downloads 552
17177 Intelligent Agent Travel Reservation System Requirements Definitions Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Intelligent Agent Reservation System (IARS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are developing the Behavioral Pattern Analysis (BPA) modeling methodology, and developing an interactive software tool (DECISION) which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, intelligent agent, reservation system, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 485
17176 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li

Abstract:

The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.

Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition

Procedia PDF Downloads 306
17175 Human Activities Recognition Based on Expert System

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

Recognition of human activities from sensor data is an active research area, and the main objective is to obtain a high recognition rate. In this work, we propose a recognition system based on expert systems. The proposed system makes the recognition based on the objects, object states, and gestures, taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions, and the activity). This work focuses on complex activities which are decomposed into simple easy to recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 142
17174 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem I. El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 547
17173 Recognition of Noisy Words Using the Time Delay Neural Networks Approach

Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha

Abstract:

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Keywords: TDNN, neural networks, noise, speech recognition

Procedia PDF Downloads 290
17172 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax

Authors: Svitov David, Alyamkin Sergey

Abstract:

The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.

Keywords: ArcFace, distillation, face recognition, margin-based softmax

Procedia PDF Downloads 148
17171 Frequent-Pattern Tree Algorithm Application to S&P and Equity Indexes

Authors: E. Younsi, H. Andriamboavonjy, A. David, S. Dokou, B. Lemrabet

Abstract:

Software and time optimization are very important factors in financial markets, which are competitive fields, and emergence of new computer tools further stresses the challenge. In this context, any improvement of technical indicators which generate a buy or sell signal is a major issue. Thus, many tools have been created to make them more effective. This worry about efficiency has been leading in present paper to seek best (and most innovative) way giving largest improvement in these indicators. The approach consists in attaching a signature to frequent market configurations by application of frequent patterns extraction method which is here most appropriate to optimize investment strategies. The goal of proposed trading algorithm is to find most accurate signatures using back testing procedure applied to technical indicators for improving their performance. The problem is then to determine the signatures which, combined with an indicator, outperform this indicator alone. To do this, the FP-Tree algorithm has been preferred, as it appears to be the most efficient algorithm to perform this task.

Keywords: quantitative analysis, back-testing, computational models, apriori algorithm, pattern recognition, data mining, FP-tree

Procedia PDF Downloads 363
17170 Using Support Vector Machines for Measuring Democracy

Authors: Tommy Krieger, Klaus Gruendler

Abstract:

We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.

Keywords: democracy, democracy index, machine learning, support vector machines

Procedia PDF Downloads 380
17169 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 235
17168 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
17167 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition

Procedia PDF Downloads 383
17166 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, TeleRobotics control, security, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 439
17165 Review of Speech Recognition Research on Low-Resource Languages

Authors: XuKe Cao

Abstract:

This paper reviews the current state of research on low-resource languages in the field of speech recognition, focusing on the challenges faced by low-resource language speech recognition, including the scarcity of data resources, the lack of linguistic resources, and the diversity of dialects and accents. The article reviews recent progress in low-resource language speech recognition, including techniques such as data augmentation, end to-end models, transfer learning, and multi-task learning. Based on the challenges currently faced, the paper also provides an outlook on future research directions. Through these studies, it is expected that the performance of speech recognition for low resource languages can be improved, promoting the widespread application and adoption of related technologies.

Keywords: low-resource languages, speech recognition, data augmentation techniques, NLP

Procedia PDF Downloads 18
17164 Exploratory Analysis of A Review of Nonexistence Polarity in Native Speech

Authors: Deawan Rakin Ahamed Remal, Sinthia Chowdhury, Sharun Akter Khushbu, Sheak Rashed Haider Noori

Abstract:

Native Speech to text synthesis has its own leverage for the purpose of mankind. The extensive nature of art to speaking different accents is common but the purpose of communication between two different accent types of people is quite difficult. This problem will be motivated by the extraction of the wrong perception of language meaning. Thus, many existing automatic speech recognition has been placed to detect text. Overall study of this paper mentions a review of NSTTR (Native Speech Text to Text Recognition) synthesis compared with Text to Text recognition. Review has exposed many text to text recognition systems that are at a very early stage to comply with the system by native speech recognition. Many discussions started about the progression of chatbots, linguistic theory another is rule based approach. In the Recent years Deep learning is an overwhelming chapter for text to text learning to detect language nature. To the best of our knowledge, In the sub continent a huge number of people speak in Bangla language but they have different accents in different regions therefore study has been elaborate contradictory discussion achievement of existing works and findings of future needs in Bangla language acoustic accent.

Keywords: TTR, NSTTR, text to text recognition, deep learning, natural language processing

Procedia PDF Downloads 133
17163 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition

Procedia PDF Downloads 230
17162 Modern Machine Learning Conniptions for Automatic Speech Recognition

Authors: S. Jagadeesh Kumar

Abstract:

This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition.

Keywords: automatic speech recognition, deep learning methods, machine learning archetypes, Bayesian learning, supervised and unsupervised learning

Procedia PDF Downloads 448
17161 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 190
17160 Biometric Recognition Techniques: A Survey

Authors: Shabir Ahmad Sofi, Shubham Aggarwal, Sanyam Singhal, Roohie Naaz

Abstract:

Biometric recognition refers to an automatic recognition of individuals based on a feature vector(s) derived from their physiological and/or behavioral characteristic. Biometric recognition systems should provide a reliable personal recognition schemes to either confirm or determine the identity of an individual. These features are used to provide an authentication for computer based security systems. Applications of such a system include computer systems security, secure electronic banking, mobile phones, credit cards, secure access to buildings, health and social services. By using biometrics a person could be identified based on 'who she/he is' rather than 'what she/he has' (card, token, key) or 'what she/he knows' (password, PIN). In this paper, a brief overview of biometric methods, both unimodal and multimodal and their advantages and disadvantages, will be presented.

Keywords: biometric, DNA, fingerprint, ear, face, retina scan, gait, iris, voice recognition, unimodal biometric, multimodal biometric

Procedia PDF Downloads 756
17159 A Human Activity Recognition System Based on Sensory Data Related to Object Usage

Authors: M. Abdullah, Al-Wadud

Abstract:

Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.

Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model

Procedia PDF Downloads 323
17158 Automatic Intelligent Analysis of Malware Behaviour

Authors: Hermann Dornhackl, Konstantin Kadletz, Robert Luh, Paul Tavolato

Abstract:

In this paper we describe the use of formal methods to model malware behaviour. The modelling of harmful behaviour rests upon syntactic structures that represent malicious procedures inside malware. The malicious activities are modelled by a formal grammar, where API calls’ components are the terminals and the set of API calls used in combination to achieve a goal are designated non-terminals. The combination of different non-terminals in various ways and tiers make up the attack vectors that are used by harmful software. Based on these syntactic structures a parser can be generated which takes execution traces as input for pattern recognition.

Keywords: malware behaviour, modelling, parsing, search, pattern matching

Procedia PDF Downloads 334
17157 Enhanced Thai Character Recognition with Histogram Projection Feature Extraction

Authors: Benjawan Rangsikamol, Chutimet Srinilta

Abstract:

This research paper deals with extraction of Thai character features using the proposed histogram projection so as to improve the recognition performance. The process starts with transformation of image files into binary files before thinning. After character thinning, the skeletons are entered into the proposed extraction using histogram projection (horizontal and vertical) to extract unique features which are inputs of the subsequent recognition step. The recognition rate with the proposed extraction technique is as high as 97 percent since the technique works very well with the idiosyncrasies of Thai characters.

Keywords: character recognition, histogram projection, multilayer perceptron, Thai character features extraction

Procedia PDF Downloads 466
17156 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector

Procedia PDF Downloads 375
17155 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition

Procedia PDF Downloads 178