Search results for: Cox proportional hazard regression
4154 Hearing Threshold Levels among Steel Industry Workers in Samut Prakan Province, Thailand
Authors: Petcharat Kerdonfag, Surasak Taneepanichskul, Winai Wadwongtham
Abstract:
Industrial noise is usually considered as the main impact of the environmental health and safety because its exposure can cause permanently serious hearing damage. Despite providing strictly hearing protection standards and campaigning extensively encouraging public health awareness among industrial workers in Thailand, hazard noise-induced hearing loss has dramatically been massive obstacles for workers’ health. The aims of the study were to explore and specify the hearing threshold levels among steel industrial workers responsible in which higher noise levels of work zone and to examine the relationships of hearing loss and workers’ age and the length of employment in Samut Prakan province, Thailand. Cross-sectional study design was done. Ninety-three steel industrial workers in the designated zone of higher noise (> 85dBA) with more than 1 year of employment from two factories by simple random sampling and available to participate in were assessed by the audiometric screening at regional Samut Prakan hospital. Data of doing screening were collected from October to December, 2016 by the occupational medicine physician and a qualified occupational nurse. All participants were examined by the same examiners for the validity. An Audiometric testing was performed at least 14 hours after the last noise exposure from the workplace. Workers’ age and the length of employment were gathered by the developed occupational record form. Results: The range of workers’ age was from 23 to 59 years, (Mean = 41.67, SD = 9.69) and the length of employment was from 1 to 39 years, (Mean = 13.99, SD = 9.88). Fifty three (60.0%) out of all participants have been exposing to the hazard of noise in the workplace for more than 10 years. Twenty-three (24.7%) of them have been exposing to the hazard of noise less than or equal to 5 years. Seventeen (18.3%) of them have been exposing to the hazard of noise for 5 to 10 years. Using the cut point of less than or equal to 25 dBA of hearing thresholds, the average means of hearing thresholds for participants at 4, 6, and 8 kHz were 31.34, 29.62, and 25.64 dB, respectively for the right ear and 40.15, 32.20, and 25.48 dB for the left ear, respectively. The more developing age of workers in the work zone with hazard of noise, the more the hearing thresholds would be increasing at frequencies of 4, 6, and 8 kHz (p =.012, p =.026, p =.024) for the right ear, respectively and for the left ear only at the frequency 4 kHz (p =.009). Conclusion: The participants’ age in the hazard of noise work zone was significantly associated with the hearing loss in different levels while the length of participants’ employment was not significantly associated with the hearing loss. Thus hearing threshold levels among industrial workers would be regularly assessed and needed to be protected at the beginning of working.Keywords: hearing threshold levels, hazard of noise, hearing loss, audiometric testing
Procedia PDF Downloads 2284153 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System
Authors: Fouzi Aboura
Abstract:
The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO
Procedia PDF Downloads 914152 Radium Equivalent and External Hazard Indices of Trace Elements Concentrations in Aquatic Species by Neutron Activation Analysis (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
Authors: B. G. Muhammad, S. M. Jafar
Abstract:
Neutron Activation Analysis (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were employed to analyze the level of trace elements concentrations in sediment samples and their bioaccumulation in some aquatic species selected randomly from surface water resources in the Northern peninsula of Malaysia. The NAA results of the sediment samples indicated a wide range in concentration of different elements were observed. Fe, K, and Na were found to have major concentration values that ranges between 61,000 ± 1400 to 4,500 ± 100 ppm, 20100±1000 to 3100±600 and 3,100±600 and 200±10 ppm, respectively. Traces of heavy metals with much more contamination health concern, such as Cr and As, were also identified in many of the samples analyzed. The average specific activities of 40K, 232Th and 226Ra in soil and the corresponding radium equivalent activity and the external hazard index were all found to be lower than the maximum permissible limits (370 Bq kg-1 and 1).Keywords: external hazard index, Neutron Activation Analysis, radium equivalent, trace elements concentrations
Procedia PDF Downloads 4284151 Model Averaging for Poisson Regression
Authors: Zhou Jianhong
Abstract:
Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again.Keywords: model averaging, poission regression, Kullback-Leibler distance, statistics
Procedia PDF Downloads 5204150 Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle
Authors: L. Q. Yuan, J. Yang, A. Siddiqui
Abstract:
A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power.Keywords: CHF experiment, CHF correlation, regression uncertainty, Monte Carlo Method, Taylor Series Method
Procedia PDF Downloads 4174149 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 814148 MIMO PID Controller of a Power Plant Boiler–Turbine Unit
Authors: N. Ben-Mahmoud, M. Elfandi, A. Shallof
Abstract:
This paper presents a methodology to design multivariable PID controllers for multi-input and multi-output systems. The proposed control strategy, which is centralized, combines of PID controllers. The proportional gains in the P controllers act as tuning parameters of (SISO) in order to modify the behavior of the loops almost independently. The design procedure consists of three steps: first, an ideal decoupler including integral action is determined. Second, the decoupler is approximated with PID controllers. Third, the proportional gains are tuned to achieve the specified performance. The proposed method is applied to representative processes.Keywords: boiler turbine, MIMO, PID controller, control by decoupling, anti wind-up techniques
Procedia PDF Downloads 3284147 Modeling and Controlling the Rotational Degree of a Quadcopter Using Proportional Integral and Derivative Controller
Authors: Sanjay Kumar, Lillie Dewan
Abstract:
The study of complex dynamic systems has advanced through various scientific approaches with the help of computer modeling. The common design trends in aerospace system design can be applied to quadcopter design. A quadcopter is a nonlinear, under-actuated system with complex aerodynamics parameters and creates challenges that demand new, robust, and effective control approaches. The flight control stability can be improved by planning and tracking the trajectory and reducing the effect of sensors and the operational environment. This paper presents a modern design Simmechanics visual modeling approach for a mechanical model of a quadcopter with three degrees of freedom. The Simmechanics model, considering inertia, mass, and geometric properties of a dynamic system, produces multiple translation and rotation maneuvers. The proportional, integral, and derivative (PID) controller is integrated with the Simmechanics model to follow a predefined quadcopter rotational trajectory for a fixed time interval. The results presented are satisfying. The simulation of the quadcopter control performed operations successfully.Keywords: nonlinear system, quadcopter model, simscape modelling, proportional-integral-derivative controller
Procedia PDF Downloads 1964146 Non-Parametric Regression over Its Parametric Couterparts with Large Sample Size
Authors: Jude Opara, Esemokumo Perewarebo Akpos
Abstract:
This paper is on non-parametric linear regression over its parametric counterparts with large sample size. Data set on anthropometric measurement of primary school pupils was taken for the analysis. The study used 50 randomly selected pupils for the study. The set of data was subjected to normality test, and it was discovered that the residuals are not normally distributed (i.e. they do not follow a Gaussian distribution) for the commonly used least squares regression method for fitting an equation into a set of (x,y)-data points using the Anderson-Darling technique. The algorithms for the nonparametric Theil’s regression are stated in this paper as well as its parametric OLS counterpart. The use of a programming language software known as “R Development” was used in this paper. From the analysis, the result showed that there exists a significant relationship between the response and the explanatory variable for both the parametric and non-parametric regression. To know the efficiency of one method over the other, the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) are used, and it is discovered that the nonparametric regression performs better than its parametric regression counterparts due to their lower values in both the AIC and BIC. The study however recommends that future researchers should study a similar work by examining the presence of outliers in the data set, and probably expunge it if detected and re-analyze to compare results.Keywords: Theil’s regression, Bayesian information criterion, Akaike information criterion, OLS
Procedia PDF Downloads 3074145 Guidance and Control of a Torpedo Autonomous Underwater Vehicle
Authors: Soheil Arash Moghadam, Abdol R. Kashani Nia, Ali Akrami Zade
Abstract:
Considering numerous applications of Autonomous Underwater Vehicles in various industries, there has been plenty of researches and studies on the motion control of such vehicles. One of the useful aspects for studying is the guidance of these vehicles. In this paper, while presenting motion equations with six degrees of freedom for Autonomous Underwater Vehicles, Proportional Navigation Guidance Law and the first order sliding mode control for TAIPAN AUV was used to address its guidance for the purpose of collision with a moving target.Keywords: Autonomous Underwater Vehicle (AUV), degree of freedom (DOF), hydrodynamic, line of sight(LOS), proportional navigation guidance(PNG), sliding mode control(SMC)
Procedia PDF Downloads 4684144 Risk of Fractures at Different Anatomic Sites in Patients with Irritable Bowel Syndrome: A Nationwide Population-Based Cohort Study
Authors: Herng-Sheng Lee, Chi-Yi Chen, Wan-Ting Huang, Li-Jen Chang, Solomon Chih-Cheng Chen, Hsin-Yi Yang
Abstract:
A variety of gastrointestinal disorders, such as Crohn’s disease, ulcerative colitis, and coeliac disease, are recognized as risk factors for osteoporosis and osteoporotic fractures. One recent study suggests that individuals with irritable bowel syndrome (IBS) might also be at increased risk of osteoporosis and osteoporotic fractures. Up to now, the association between IBS and the risk of fractures at different anatomic sites occurrences is not completely clear. We conducted a population-based cohort analysis to investigate the fracture risk of IBS in comparison with non-IBS group. We identified 29,505 adults aged ≥ 20 years with newly diagnosed IBS using the Taiwan National Health Insurance Research Database in 2000-2012. A comparison group was constructed of patients without IBS who were matched according to gender and age. The occurrence of fracture was monitored until the end of 2013. We analyzed the risk of fracture events to occur in IBS by using Cox proportional hazards regression models. Patients with IBS had a higher incidence of osteoporotic fractures compared with non-IBS group (12.34 versus 9.45 per 1,000 person-years) and an increased risk of osteoporotic fractures (adjusted hazard ratio [aHR] = 1.27, 95 % confidence interval [CI] = 1.20 – 1.35). Site specific analysis showed that the IBS group had a higher risk of fractures for spine, forearm, hip and hand than did the non-IBS group. With further stratification for gender and age, a higher aHR value for osteoporotic fractures in IBS group was seen across all age groups in males, but seen in elderly females. In addition, female, elderly, low income, hypertension, coronary artery disease, cerebrovascular disease, and depressive disorders as independent osteoporotic fracture risk factors in IBS patients. The IBS is considered as a risk factor for osteoporotic fractures, particularly in female individuals and fracture sites located at the spine, forearm, hip and hand.Keywords: irritable bowel syndrome, fracture, gender difference, longitudinal health insurance database, public health
Procedia PDF Downloads 2304143 Preserving Heritage in the Face of Natural Disasters: Lessons from the Bam Experience in Iran
Authors: Mohammad Javad Seddighi, Avar Almukhtar
Abstract:
The occurrence of natural disasters, such as floods and earthquakes, can cause significant damage to heritage sites and surrounding areas. In Iran, the city of Bam was devastated by an earthquake in 2003, which had a major impact on the rivers and watercourses around the city. This study aims to investigate the environmental design techniques and sustainable hazard mitigation strategies that can be employed to preserve heritage sites in the face of natural disasters, using the Bam experience as a case study. The research employs a mixed-methods approach, combining both qualitative and quantitative data collection and analysis methods. The study begins with a comprehensive literature review of recent publications on environmental design techniques and sustainable hazard mitigation strategies in heritage conservation. This is followed by a field study of the rivers and watercourses around Bam, including the Adoori River (Talangoo) and other watercourses, to assess the current conditions and identify potential hazards. The data collected from the field study is analysed using statistical methods and GIS mapping techniques. The findings of this study reveal the importance of sustainable hazard mitigation strategies and environmental design techniques in preserving heritage sites during natural disasters. The study suggests that these techniques can be used to prevent the outbreak of another natural disaster in Bam and the surrounding areas. Specifically, the study recommends the establishment of a comprehensive early warning system, the creation of flood-resistant landscapes, and the use of eco-friendly building materials in the reconstruction of heritage sites. These findings contribute to the current knowledge of sustainable hazard mitigation and environmental design in heritage conservation.Keywords: natural disasters, heritage conservation, sustainable hazard mitigation, environmental design, landscape architecture, flood management, disaster resilience
Procedia PDF Downloads 884142 Landslide Hazard Zonation and Risk Studies Using Multi-Criteria Decision-Making and Slope Stability Analysis
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
In India, landslides are the most frequently occurring disaster in the regions of the Himalayas and the Western Ghats. The steep slopes and land use in these areas are quite apprehensive. In the recent past, many landslide hazard zonation (LHZ) works have been carried out in the Himalayas. However, the preparation of LHZ maps considering temporal factors such as seismic ground shaking, seismic amplification at surface level, and rainfall are limited. Hence this study presents a comprehensive use of the multi-criteria decision-making (MCDM) method in landslide risk assessment. In this research, we conducted both geospatial and geotechnical analysis to minimize the danger of landslides. Geospatial analysis is performed using high-resolution satellite data to produce landslide causative factors which were given weightage using the MCDM method. The geotechnical analysis includes a slope stability check, which was done to determine the potential landslide slope. The landslide risk map can provide useful information which helps people to understand the risk of living in an area.Keywords: landslide hazard zonation, PHA, AHP, GIS
Procedia PDF Downloads 1944141 The Investigate Relationship between Moral Hazard and Corporate Governance with Earning Forecast Quality in the Tehran Stock Exchange
Authors: Fatemeh Rouhi, Hadi Nassiri
Abstract:
Earning forecast is a key element in economic decisions but there are some situations, such as conflicts of interest in financial reporting, complexity and lack of direct access to information has led to the phenomenon of information asymmetry among individuals within the organization and external investors and creditors that appear. The adverse selection and moral hazard in the investor's decision and allows direct assessment of the difficulties associated with data by users makes. In this regard, the role of trustees in corporate governance disclosure is crystallized that includes controls and procedures to ensure the lack of movement in the interests of the company's management and move in the direction of maximizing shareholder and company value. Therefore, the earning forecast of companies in the capital market and the need to identify factors influencing this study was an attempt to make relationship between moral hazard and corporate governance with earning forecast quality companies operating in the capital market and its impact on Earnings Forecasts quality by the company to be established. Getting inspiring from the theoretical basis of research, two main hypotheses and sub-hypotheses are presented in this study, which have been examined on the basis of available models, and with the use of Panel-Data method, and at the end, the conclusion has been made at the assurance level of 95% according to the meaningfulness of the model and each independent variable. In examining the models, firstly, Chow Test was used to specify either Panel Data method should be used or Pooled method. Following that Housman Test was applied to make use of Random Effects or Fixed Effects. Findings of the study show because most of the variables are positively associated with moral hazard with earnings forecasts quality, with increasing moral hazard, earning forecast quality companies listed on the Tehran Stock Exchange is increasing. Among the variables related to corporate governance, board independence variables have a significant relationship with earnings forecast accuracy and earnings forecast bias but the relationship between board size and earnings forecast quality is not statistically significant.Keywords: corporate governance, earning forecast quality, moral hazard, financial sciences
Procedia PDF Downloads 3234140 Efficacy of In-Situ Surgical vs. Needle Revision on Late Failed Trabeculectomy Blebs
Authors: Xie Xiaobin, Zhang Yan, Shi Yipeng, Sun Wenying, Chen Shuang, Cai Zhipeng, Zhang Hong, Zhang Lixia, Xie Like
Abstract:
Objective: The objective of this research is to compare the efficacy of the late in-situ surgical revision augmented with continuous infusion and needle revision on failed trabeculectomy blebs. Methods From December 2018 to December 2021, a prospective randomized controlled trial was performed on 44 glaucoma patients with failed bleb ≥ 6months with medically uncontrolled in Eye Hospital, China Academy of Chinese Medical Sciences. They were randomly divided into two groups. 22 eyes of 22 patients underwent the late in-situ surgical revision with continuous anterior chamber infusion in the study group, and 22 of 22 patients were treated with needle revision in the control group. Main outcome measures include preoperative and postoperative intraocular pressure (IOP), the number of anti-glaucoma medicines, the operation success rate, and the postoperative complications. Results The postoperative IOP values decreased significantly from the baseline in both groups (both P<0.05). IOP was significantly lower in the study group than in the control group at one week, 1, and 3 months postoperatively (all P<0.05). IOP reductions in the study group were substantially more prominent than in the control group at all postoperative time points (all P<0.05). The complete success rate in the study group was significantly higher than in the control group (71.4% vs. 33.3%, P<0.05), while the complete failure rate was significantly lower in the study group (0% vs. 28.5%, P<0.05). According to Cox’s proportional hazards regression analysis, high IOP at baseline was independently associated with increased risks of complete failure (adjusted hazard ratio=1.141, 95% confidence interval=1.021-1.276, P<0.05). There was no significant difference in the incidence of postoperative complications between the two groups (P>0.05). Conclusion: Both in-situ surgical and needle revision have acceptable success rates and safety for the late failed trabeculectomy blebs, while the former is likely to have a higher level of efficacy over the latter. Needle revision may be insufficient for eyes with low target IOP.Keywords: glaucoma, trabeculectomy blebs, in-situ surgical revision, needle revision
Procedia PDF Downloads 844139 Use of Multistage Transition Regression Models for Credit Card Income Prediction
Authors: Denys Osipenko, Jonathan Crook
Abstract:
Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability
Procedia PDF Downloads 4874138 Semiparametric Regression Of Truncated Spline Biresponse On Farmer Loyalty And Attachment Modeling
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
Regression analysis is a statistical method that is able to describe and predict causal relationships between individuals. Not all relationships have a known curve shape; often, there are relationship patterns that cannot be known in the shape of the curve; besides that, a cause can have an impact on more than one effect, so that between effects can also have a close relationship in it. Regression analysis that can be done to find out the relationship can be brought closer to the semiparametric regression of truncated spline biresponse. The purpose of this study is to examine the function estimator and determine the best model of truncated spline biresponse semiparametric regression. The results of the secondary data study showed that the best model with the highest order of quadratic and a maximum of two knots with a Goodness of fit value in the form of Adjusted R2 of 88.5%.Keywords: biresponse, farmer attachment, farmer loyalty, truncated spline
Procedia PDF Downloads 414137 Internet Purchases in European Union Countries: Multiple Linear Regression Approach
Authors: Ksenija Dumičić, Anita Čeh Časni, Irena Palić
Abstract:
This paper examines economic and Information and Communication Technology (ICT) development influence on recently increasing Internet purchases by individuals for European Union member states. After a growing trend for Internet purchases in EU27 was noticed, all possible regression analysis was applied using nine independent variables in 2011. Finally, two linear regression models were studied in detail. Conducted simple linear regression analysis confirmed the research hypothesis that the Internet purchases in analysed EU countries is positively correlated with statistically significant variable Gross Domestic Product per capita (GDPpc). Also, analysed multiple linear regression model with four regressors, showing ICT development level, indicates that ICT development is crucial for explaining the Internet purchases by individuals, confirming the research hypothesis.Keywords: European union, Internet purchases, multiple linear regression model, outlier
Procedia PDF Downloads 3034136 Competing Risk Analyses in Survival Trials During COVID-19 Pandemic
Authors: Ping Xu, Gregory T. Golm, Guanghan (Frank) Liu
Abstract:
In the presence of competing events, traditional survival analysis may not be appropriate and can result in biased estimates, as it assumes independence between competing events and the event of interest. Instead, competing risk analysis should be considered to correctly estimate the survival probability of the event of interest and the hazard ratio between treatment groups. The COVID-19 pandemic has provided a potential source of competing risks in clinical trials, as participants in trials may experienceCOVID-related competing events before the occurrence of the event of interest, for instance, death due to COVID-19, which can affect the incidence rate of the event of interest. We have performed simulation studies to compare multiple competing risk analysis models, including the cumulative incidence function, the sub-distribution hazard function, and the cause-specific hazard function, to the traditional survival analysis model under various scenarios. We also provide a general recommendation on conducting competing risk analysis in randomized clinical trials during the era of the COVID-19 pandemic based on the extensive simulation results.Keywords: competing risk, survival analysis, simulations, randomized clinical trial, COVID-19 pandemic
Procedia PDF Downloads 1884135 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings
Authors: Ayhan Ince
Abstract:
In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to non-proportional loading paths.Keywords: elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue
Procedia PDF Downloads 4664134 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Models
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Path analysis is a statistical technique used to evaluate the direct and indirect effects of variables in path models. One or more structural regression equations are used to estimate a series of parameters in path models to find the better fit of data. However, sometimes the assumptions of classical regression models, such as ordinary least squares (OLS), are violated by the nature of the data, resulting in insignificant direct and indirect effects of exogenous variables. This article aims to explore the effectiveness of a copula-based regression approach as an alternative to classical regression, specifically when variables are linked through an elliptical copula.Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique
Procedia PDF Downloads 434133 Reliability-Based Ductility Seismic Spectra of Structures with Tilting
Authors: Federico Valenzuela-Beltran, Sonia E. Ruiz, Alfredo Reyes-Salazar, Juan Bojorquez
Abstract:
A reliability-based methodology which uses structural demand hazard curves to consider the increment of the ductility demands of structures with tilting is proposed. The approach considers the effect of two orthogonal components of the ground motions as well as the influence of soil-structure interaction. The approach involves the calculation of ductility demand hazard curves for symmetric systems and, alternatively, for systems with different degrees of asymmetry. To get this objective, demand hazard curves corresponding to different global ductility demands of the systems are calculated. Next, Uniform Exceedance Rate Spectra (UERS) are developed for a specific mean annual rate of exceedance value. Ratios between UERS corresponding to asymmetric and to symmetric systems located in soft soil of the valley of Mexico are obtained. Results indicate that the ductility demands corresponding to tilted structures may be several times higher than those corresponding to symmetric structures, depending on several factors such as tilting angle and vibration period of structure and soil.Keywords: asymmetric yielding, seismic performance, structural reliability, tilted structures
Procedia PDF Downloads 5094132 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1064131 Expression of uPA, tPA, and PAI-1 in Calcified Aortic Valves
Authors: Abdullah M. Alzahrani
Abstract:
Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39). There was no correlation between u-PA and PAI-1 (r = 0.3) but t-PA and PAI-1 were strongly correlated with each other (r = 0.6). Over expression of PAI-1 was proportional to the calcium content of theAS valves. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The over expression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis.Keywords: aortic valve, PAI-1, tPA gene, uPA gene
Procedia PDF Downloads 4754130 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 1064129 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.Keywords: design of experiments, regression analysis, SI engine, statistical modeling
Procedia PDF Downloads 1864128 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems
Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral
Abstract:
This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.Keywords: object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation
Procedia PDF Downloads 3504127 An Epsilon Hierarchical Fuzzy Twin Support Vector Regression
Authors: Arindam Chaudhuri
Abstract:
The research presents epsilon- hierarchical fuzzy twin support vector regression (epsilon-HFTSVR) based on epsilon-fuzzy twin support vector regression (epsilon-FTSVR) and epsilon-twin support vector regression (epsilon-TSVR). Epsilon-FTSVR is achieved by incorporating trapezoidal fuzzy numbers to epsilon-TSVR which takes care of uncertainty existing in forecasting problems. Epsilon-FTSVR determines a pair of epsilon-insensitive proximal functions by solving two related quadratic programming problems. The structural risk minimization principle is implemented by introducing regularization term in primal problems of epsilon-FTSVR. This yields dual stable positive definite problems which improves regression performance. Epsilon-FTSVR is then reformulated as epsilon-HFTSVR consisting of a set of hierarchical layers each containing epsilon-FTSVR. Experimental results on both synthetic and real datasets reveal that epsilon-HFTSVR has remarkable generalization performance with minimum training time.Keywords: regression, epsilon-TSVR, epsilon-FTSVR, epsilon-HFTSVR
Procedia PDF Downloads 3764126 The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications
Authors: Hazem M. Al-Mofleh
Abstract:
In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution.Keywords: bimodality, estimation, hazard function, moments, Shannon’s entropy
Procedia PDF Downloads 3514125 Nonparametric Truncated Spline Regression Model on the Data of Human Development Index in Indonesia
Authors: Kornelius Ronald Demu, Dewi Retno Sari Saputro, Purnami Widyaningsih
Abstract:
Human Development Index (HDI) is a standard measurement for a country's human development. Several factors may have influenced it, such as life expectancy, gross domestic product (GDP) based on the province's annual expenditure, the number of poor people, and the percentage of an illiterate people. The scatter plot between HDI and the influenced factors show that the plot does not follow a specific pattern or form. Therefore, the HDI's data in Indonesia can be applied with a nonparametric regression model. The estimation of the regression curve in the nonparametric regression model is flexible because it follows the shape of the data pattern. One of the nonparametric regression's method is a truncated spline. Truncated spline regression is one of the nonparametric approach, which is a modification of the segmented polynomial functions. The estimator of a truncated spline regression model was affected by the selection of the optimal knots point. Knot points is a focus point of spline truncated functions. The optimal knots point was determined by the minimum value of generalized cross validation (GCV). In this article were applied the data of Human Development Index with a truncated spline nonparametric regression model. The results of this research were obtained the best-truncated spline regression model to the HDI's data in Indonesia with the combination of optimal knots point 5-5-5-4. Life expectancy and the percentage of an illiterate people were the significant factors depend to the HDI in Indonesia. The coefficient of determination is 94.54%. This means the regression model is good enough to applied on the data of HDI in Indonesia.Keywords: generalized cross validation (GCV), Human Development Index (HDI), knots point, nonparametric regression, truncated spline
Procedia PDF Downloads 342