Search results for: structure design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18729

Search results for: structure design

17589 Evaluation of Longitudinal and Hoops Stresses and a Critical Study of Factor of Safety (Fos) in the Design of a Glass-Fiber Pressure Vessel

Authors: Zainul Huda, Mohammad Hani Ajani

Abstract:

The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.

Keywords: thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass

Procedia PDF Downloads 489
17588 Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part

Authors: Hee Yong Kang, Hyeon Ho Shin, Jung Cheol Yoo, Il Taek Lee, Sung Mo Yang

Abstract:

Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207.

Keywords: seat back frame, bending and torsional strength, BMC (Bulk Molding Compound), FMVSS 207 seating systems

Procedia PDF Downloads 208
17587 A Building Structure Health Monitoring DeviceBased on Cost Effective 1-Axis Accelerometers

Authors: Chih Hsing Lin, Wen-Ching Chen, Ssu-Ying Chen, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang

Abstract:

Critical structures such as buildings, bridges and dams require periodic inspections to ensure safe operation. The reliable inspection of structures can be achieved by combing temperature sensor and accelerometers. In this work, we propose a building structure health monitoring device (BSHMD) with using three 1-axis accelerometers, gateway, analog to digital converter (ADC), and data logger to monitoring the building structure. The proposed BSHMD achieves the features of low cost by using three 1-axis accelerometers with the data synchronization problem being solved, and easily installation and removal. Furthermore, we develop a packet acquisition program to receive the sensed data and then classify it based on time and date. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 64.3% cost saving. Compared with previous structural monitoring device, the BSHMD achieves 89% area saving. Therefore, with using the proposed device, the realtime diagnosis system for building damage monitoring can be conducted effectively.

Keywords: building structure health monitoring, cost effective, 1-axis accelerometers, real-time diagnosis

Procedia PDF Downloads 367
17586 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 480
17585 Seismic Analysis of Vertical Expansion Hybrid Structure by Response Spectrum Method Concern with Disaster Management and Solving the Problems of Urbanization

Authors: Gautam, Gurcharan Singh, Mandeep Kaur, Yogesh Aggarwal, Sanjeev Naval

Abstract:

The present ground reality scenario of suffering of humanity shows the evidence of failure to take wrong decisions to shape the civilization with Irresponsibilities in the history. A strong positive will of right responsibilities make the right civilization structure which affects itself and the whole world. Present suffering of humanity shows and reflect the failure of past decisions taken to shape the true culture with right social structure of society, due to unplanned system of Indian civilization and its rapid disaster of population make the failure to face all kind of problems which make the society sufferer. Our India is still suffering from disaster like earthquake, floods, droughts, tsunamis etc. and we face the uncountable disaster of deaths from the beginning of humanity at the present time. In this research paper our focus is to make a Disaster Resistance Structure having the solution of dense populated urban cities area by high vertical expansion HYBRID STRUCTURE. Our efforts are to analyse the Reinforced Concrete Hybrid Structure at different seismic zones, these concrete frames were analyzed using the response spectrum method to calculate and compare the different seismic displacement and drift. Seismic analysis by this method generally is based on dynamic analysis of building. Analysis results shows that the Reinforced Concrete Building at seismic Zone V having maximum peak story shear, base shear, drift and node displacement as compare to the analytical results of Reinforced Concrete Building at seismic Zone III and Zone IV. This analysis results indicating to focus on structural drawings strictly at construction site to make a HYBRID STRUCTURE. The study case is deal with the 10 story height of a vertical expansion Hybrid frame structure at different zones i.e. zone III, zone IV and zone V having the column 0.45x0.36mt and beam 0.6x0.36mt. with total height of 30mt, to make the structure more stable bracing techniques shell be applied like mage bracing and V shape bracing. If this kind of efforts or structure drawings are followed by the builders and contractors then we save the lives during earthquake disaster at Bhuj (Gujarat State, India) on 26th January, 2001 which resulted in more than 19,000 deaths. This kind of Disaster Resistance Structure having the capabilities to solve the problems of densely populated area of cities by the utilization of area in vertical expansion hybrid structure. We request to Government of India to make new plans and implementing it to save the lives from future disasters instead of unnecessary wants of development plans like Bullet Trains.

Keywords: history, irresponsibilities, unplanned social structure, humanity, hybrid structure, response spectrum analysis, DRIFT, and NODE displacement

Procedia PDF Downloads 208
17584 Structural Evidence of the Conversion of Nitric Oxide (NO) to Nitrite Ion (NO2‾) by Lactoperoxidase (LPO): Structure of the Complex of LPO with NO2‾ at 1.89å Resolution

Authors: V. Viswanathan, Md. Irshad Ahmad, Prashant K. Singh, Nayeem Ahmad, Pradeep Sharma, Sujata Sharma, Tej P Singh

Abstract:

Lactoperoxidase (LPO) is a heme containing mammalian enzyme which uses hydrogen peroxide (H2O2) to catalyze the conversion of substrates into oxidized products. LPO is found in body fluids and tissues such as milk, saliva, tears, mucosa and other body secretions. The previous structural studies have shown that LPO converts substrates, thiocyanate (SCN‾) and iodide (I‾) ions into oxidized products, hypothiocyanite (OSCN‾) and hypoiodite (IO‾) ions, respectively. We report here a new structure of the complex of LPO with an oxidized product, nitrite (NO2‾). This product was generated from NO using the two step reaction of LPO by adding hydrogen peroxide (H2O2) in the solution of LPO in 0.1M phosphate buffer at pH 6.8 as the first step. In the second step, NO gas was added to the above mixture. This was crystallized using 20% (w/v) PEG-3350 and 0.2M ammonium iodide at pH 6.8. The structure determination showed the presence of NO2‾ ion in the distal heme cavity of the substrate binding site of LPO. The structure also showed that the propionate group, which is linked to pyrrole ring D of the heme moiety, was disordered. Similarly, the side chain of Asp108, which is covalently linked to heme moiety, was also split into two components. As a result of these changes, the conformation of the side chain of Arg255 was altered, allowing it to form new interactions with the disordered carboxylic group of propionate moiety. These structural changes are indicative of an intermediate state in the catalytic reaction pathway of LPO.

Keywords: lactoperoxidase, structure, nitric oxide, nitrite ion, intermediate, complex

Procedia PDF Downloads 101
17583 A Shift in the Structure of Economy and Synergy of University: Developing Potential Through Research and Development Center of SMEs in Jember

Authors: Muhamad Nugraha

Abstract:

Economic growth always correlate positively with the magnitude of the unemployment rate. This is caused by labor which one of important variable to keep growth in the real sector of the region. Meanwhile, the economic structure in districts of Jember showed an increase of economic activity began to shift towards the industrial sector and some other economic sectors, so they have an affects to considerations for policy makers to increase economic growth in Jember as an autonomous region in East Java Province. At the fact, SMEs is among the factors driving economic growth in the region. This is shown by the high amount of SMEs. However, employment in the sector grew slightly slowed. It is caused by a lack of productivity in SMEs. Through the analysis of the transformation of economic structure theory, and the theory of Triple Helix using descriptive analytical method Location Quotient and Shift - Share, found that the results of the economic structure in Jember slowly shifting from the agricultural sector to the industrial sector, because it is dominated by trade sector, hotel and restaurant sector. In addition, SMEs is the potential sector of economic growth in Jember. While to maximizing role and functions of the institution's Research and Development Center of SMEs, there are three points to be known, that are Business Landscape, Business Architecture and Value Added.

Keywords: economic growth, SMEs, labor, Research and Development Center of SMEs

Procedia PDF Downloads 443
17582 Investigating Effective Factors on the Organizational Pathology of Knowledge Production in Islamic Azad University

Authors: Davoud Maleki, Neda Zamani

Abstract:

The purpose of this research was to investigate the factors affecting the organizational pathology of knowledge production in Islamic Azad University. The present research method is quantitative. It was a survey type and applied research in terms of its purpose. The statistical population of the present study included all full-time professors of the Islamic Azad Universities in the North, South, East, West and Central regions, including the Islamic Azad Universities of Sari, Isfahan, Kerman, Khorramabad and Shiraz, and their total number was 1389, based on the Cochran formula. 305 people were selected as the sample size by random sampling method. The research tool was a researcher-made questionnaire, whose validity was calculated from the professors' point of view and its reliability was calculated based on Cronbach's alpha and was 0.89. For data analysis, confirmatory factor analysis and structural equations were used with Smart3 Pls software. The findings showed that the variables of strategy, structure and process directly and the variable of strategy explained indirectly through the variables of structure and process 96.8% of the pathology of knowledge production. Also, structure 49.6% and process variable 58.4% explain the pathology of knowledge production. 38% of knowledge production changes related to the direct effect of strategy, 39% of knowledge production changes Related to the effect of structure, 32% of the changes in knowledge production are related to the direct effect of the process, 70.5% of the changes related to the structure are related to the direct effect of the strategy, 36.5% of the changes related to the process are related to the direct effect of the strategy, 46.3 Percentage of process variable changes It is related to the direct effect of the structure. According to the obtained results, it can be acknowledged that the pathology model of knowledge production in Islamic Azad University can be used as an effective model in the pathology of knowledge production and can improve the scientific level of knowledge producers.

Keywords: pathology of knowledge production, strategic issues, process issues, Islamic Azad University

Procedia PDF Downloads 16
17581 Design Consideration of a Plastic Shredder in Recycling Processes

Authors: Tolulope A. Olukunle

Abstract:

Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.

Keywords: design, machine, plastic waste, recycling

Procedia PDF Downloads 318
17580 Structure of Grain Boundaries in α-Zirconium and Niobium

Authors: Divya Singh, Avinash Parashar

Abstract:

Due to superior mechanical, creep and nuclear cross section, zirconium and niobium (Zr-Nb) based alloys are commonly used as nuclear materials for the manufacturing of fuel cladding and pressure tubes in nuclear power plants. In this work, symmetrical tilt grain boundary (STGB) structures in α-Zr are studied for their structure and energies along two tilt axes- [0001] and [0-110] using MD based simulations. Tilt grain boundaries are obtained along [0001] tilt axis, and special twin structures are obtained along [0-110] tilt axis in α-Zr. For Nb, STGBs are constructed along [100] and [110] axis using atomistic simulations. The correlation between GB structures and their energies is subsequently examined. A close relationship is found to exist between individual GB structure and its energy in both α-Zr and Nb. It is also concluded that the energies of the more coherent twin grain boundaries are lower than the symmetrical tilt grain boundaries.

Keywords: grain boundaries, molecular dynamics, grain boundary energy, hcp crystal

Procedia PDF Downloads 263
17579 Barclays Bank Zambia: Considerations for Raft Foundation Design on Dolomite Land

Authors: Yashved Serhun, Kim A. Timm

Abstract:

Barclays Bank has identified the need for a head office building in Lusaka, Zambia, and construction of a 7200 m2 three-storey reinforced concrete office building with a structural steel roof is currently underway. A unique characteristic of the development is that the building footprint is positioned on dolomitic land. Dolomite rock has the tendency to react with and breakdown in the presence of slightly acidic water, including rainwater. This leads to a potential for subsidence and sinkhole formation. Subsidence and the formation of sinkholes beneath a building can be detrimental during both the construction and operational phases. This paper outlines engineering principles which were considered during the structural design of the raft foundation for the Barclays head office building. In addition, this paper includes multidisciplinary considerations and the impact of these on the structural engineering design of the raft foundation. By ensuring that the design of raft foundations on dolomitic land incorporates the requirements of all disciplines and relevant design codes during the design process, the risk associated with subsidence and sinkhole formation can be effectively mitigated during the operational phase of the building.

Keywords: dolomite, dolomitic land, raft foundation, structural engineering design

Procedia PDF Downloads 121
17578 A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics

Authors: R. Sharma, J. K. Bhatnagar, Poonam, R. C. Sharma

Abstract:

Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems.

Keywords: air cathode, battery design, magnesium air battery, magnesium anode, rechargeable magnesium air battery

Procedia PDF Downloads 240
17577 Electronic Structure and Optical Properties of YNi₄Si-Type GdNi₅: A Coulomb Corrected Local-Spin Density Approximation Study

Authors: Sapan Mohan Saini

Abstract:

In this work, we report the calculations on the electronic and optical properties of YNi₄Si-type GdNi₅ compound. Calculations are performed using the full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Spin polarised calculations of band structure show that several bands cross the Fermi level (EF) reflect the metallic character. Analysis of density of states (DOS) demonstrates that spin up Gd-f states lie around 7.5 eV below EF and spin down Gd-f lie around 4.5 eV above EF. We found Ni-3d states mainly contribute to DOS from -5.0 eV to the EF. Our calculated results of optical conductivity agree well with the experimental data.

Keywords: electronic structure, optical properties, FPLAPW method, YNi₄Si-type GdNi₅

Procedia PDF Downloads 168
17576 BIASS in the Estimation of Covariance Matrices and Optimality Criteria

Authors: Juan M. Rodriguez-Diaz

Abstract:

The precision of parameter estimators in the Gaussian linear model is traditionally accounted by the variance-covariance matrix of the asymptotic distribution. However, this measure can underestimate the true variance, specially for small samples. Traditionally, optimal design theory pays attention to this variance through its relationship with the model's information matrix. For this reason it seems convenient, at least in some cases, adapt the optimality criteria in order to get the best designs for the actual variance structure, otherwise the loss in efficiency of the designs obtained with the traditional approach may be very important.

Keywords: correlated observations, information matrix, optimality criteria, variance-covariance matrix

Procedia PDF Downloads 441
17575 Device Modelling and Analysis of Eco-friendly Inverted Solar Cell Structure Using Valency Ordered Inorganic Double Perovskite Material

Authors: Sindhu S Nair, Atul Thakur, Preeti Thakur, Trukhanov Alex

Abstract:

Perovskite-based absorbing materials that are organic, inorganic, or hybrid have gained interest as an appealing candidate for the development of solar cell devices. Lead-based perovskites are among the most promising materials, but their application is plagued with toxicity and stability concerns. Most of the perovskite solar cell consists of conventional (n-i-p) structure with organic or inorganic charge transport materials. The commercial application of such device is limited due to higher J-V hysteresis and the need for high temperature during fabrication. This numerical analysis primarily directs to investigate the performance of various inorganic lead-free valency ordered double perovskite absorber materials and to develop an inverted perovskite solar cell device structure. Simulation efforts using SCAPS-1D was carried out with various organic and inorganic charge transport materials with absorber layer materials, and their performance has been evaluated for various factors of thickness, absorber thickness, absorber defect density, and interface defect density to achieve the optimized structure.

Keywords: perovskite materials, solar cell, inverted solar cell, inorganic perovskite solar cell materials, cell efficiency

Procedia PDF Downloads 80
17574 Evolution of Gravity Flap Structures in the Southern Central Atlas of Tunisia. Example: Northern of Orbata Anticline (Ben Zannouch Structure)

Authors: Soulef Amamria, Mohamed Sadok Bensalem, Mohamed Ghanmi

Abstract:

Several works found in the fold-and-thrust belt area of the southern central atlas of Tunisia, which were often related with tectonic shortening, are, in fact, related to superficial gravity structures. These gravitational collapse structures have developed in the northern flank of jebel Orbata. These include rock-slides, rock falls, wrinkle folds, slip sheets, and flaps. The Gravity collapse structures of ben zannouch are parallel to the major thrust of Bou Omrane between Orbata and El Ong structures. The thrust activity of Bou Omrane associated to the important paleo-slope to the south and plastic lithology (incompetent marly and gypsum layers) facilitates the development of the Ben Zannouch Flap structure. The definition in the first time of gravitional collapse structures in Tunisia, particularly in the northern flank of Jebel Orbata, is controlled by three principal structural conditions: the fragmentation of the landslide surfaces, the lithology, and the topography. Other regional factors can be distinguished in the southern-central Tunisian Atlas as the seismity activity of the Gafsa fault and the wetter conditions during the postglacial period.

Keywords: collapse structure, flap structure, gravity structures, thrust activity

Procedia PDF Downloads 83
17573 Thermodynamic Properties of Calcium-Containing DPPA and DPPC Liposomes

Authors: Tamaz Mdzinarashvili, Mariam Khvedelidze, Eka Shekiladze, Salome Chinchaladze, Mariam Mdzinarashvili

Abstract:

The work is about the preparation of calcium-containing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) and their calorimetric study. In order to prepare these complex liposomes, for the first stage it is necessary for ligands and lipids to directly interact, followed by the addition of pH-buffered water or solvent at temperatures slightly above the liposome phase transition temperature. The resulting mixture is briefly but vigorously shaken and then transformed into liposomes of the desired size using an extruder. Particle sizing and calorimetry were used to evaluate liposome formation. We determined the possible structure of calcium-containing liposomes made by our new technology and determined their thermostability. The paper provides calculations showing how many phospholipid molecules are required to make a 200 nm diameter liposome. Calculations showed that 33x10³ lipid molecules are needed to prepare one DPPA and DPPC liposome. Based on the calorimetric experiments, we determined that the structure of uncomplexed DPPA liposomes is unilaminar (one double layer), while DPPC liposome is a nanoparticle with a multilaminar (multilayer) structure. This was determined by the cooperativity of the heat absorption peak. Calorimetric studies of calcium liposomes made by our technology showed that calcium ions are placed in the multilaminar structure of the DPPC liposome. Calcium ions also formed a complex in the DPPA liposome structure, moreover, calcium made the DPPA liposome multilaminar, since the cooperative narrow heat absorption peak was transformed into a three-peak heat absorption peak. Since both types of liposomes in complex with calcium ions present a multilaminar structure, where the number of lipid heads in one particle is large, the number of calcium ions in one particle will also be increased. That makes it possible to use these nanoparticles as transporters of a large amount of calcium ions in a living organism.

Keywords: calcium, liposomes, thermodynamic parameters, calorimetry

Procedia PDF Downloads 35
17572 Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History

Authors: Rama Debbarma, Debanjan Das

Abstract:

The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration.

Keywords: Earthquake, multiple tuned mass dampers, single tuned mass damper, Time history.

Procedia PDF Downloads 266
17571 Cultural-Creative Design with Language Figures of Speech

Authors: Wei Chen Chang, Ming Yu Hsiao

Abstract:

The commodity takes one kind of mark, the designer how to construction and interpretation the user how to use the process and effectively convey message in design education has always been an important issue. Cultural-creative design refers to signifying cultural heritage for product design. In terms of Peirce’s Semiotic Triangle: signifying elements-object-interpretant, signifying elements are the outcomes of design, the object is cultural heritage, and the interpretant is the positioning and description of product design. How to elaborate the positioning, design, and development of a product is a narrative issue of the interpretant, and how to shape the signifying elements of a product by modifying and adapting styles is a rhetoric matter. This study investigated the rhetoric of elements signifying products to develop a rhetoric model with cultural style. Figures of speech are a rhetoric method in narrative. By adapting figures of speech to the interpretant, this study developed the rhetoric context of cultural context by narrative means. In this two-phase study, phase I defines figures of speech and phase II analyzes existing cultural-creative products in terms of figures of speech to develop a rhetoric of style model. We expect it can reference for the future development of Cultural-creative design.

Keywords: cultural-creative design, cultural-creative products, figures of speech, Peirce’s semiotic triangle, rhetoric of style model

Procedia PDF Downloads 371
17570 Expressions of Local Identity via Residential Architecture Practice in UNESCO World Heritage Sites

Authors: Surasak Kangkhao, Chaturong Louhapensang

Abstract:

This research investigates design and cultural heritage interpretations by residential architecture design in World Heritage cities: Kamphaeng Phet, Thailand reflect on the essence of design based on local identity. The research consisted of three thematic foci. First, the studies examined the contextual background that led to the genesis of the building. Second, the investigations concentrated on how its design was developed and implemented. Third, these modes of problematisation lent a basis to argue that a quality of placeness was not confined exclusively to traditional or vernacular structures but could be found from the unconventional aesthetics of Residential Architecture as well.

Keywords: expressions, local identity, residential architecture, practice, world heritage site

Procedia PDF Downloads 394
17569 A Case for Introducing Thermal-Design Optimisation Using Excel Spreadsheet

Authors: M. M. El-Awad

Abstract:

This paper deals with the introduction of thermal-design optimisation to engineering students by using Microsoft's Excel as a modelling platform. Thermal-design optimisation is an iterative process which involves the evaluation of many thermo-physical properties that vary with temperature and/or pressure. Therefore, suitable modelling software, such as Engineering Equation Solver (EES) or Interactive Thermodynamics (IT), is usually used for this purpose. However, such proprietary applications may not be available to many educational institutions in developing countries. This paper presents a simple thermal-design case that demonstrates how the principles of thermo-fluids and economics can be jointly applied so as to find an optimum solution to a thermal-design problem. The paper describes the solution steps and provides all the equations needed to solve the case with Microsoft Excel. The paper also highlights the advantage of using VBA (Visual Basic for Applications) for developing user-defined functions when repetitive or complex calculations are met. VBA makes Excel a powerful, yet affordable, the computational platform for introducing various engineering principles.

Keywords: engineering education, thermal design, Excel, VBA, user-defined functions

Procedia PDF Downloads 374
17568 A Brief Exploration on the Green Urban Design for Carbon Neutrality

Authors: Gaoyuan Wang, Tian Chen

Abstract:

China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality.

Keywords: carbon neutrality, green urban design, energy transition, theoretical exploration

Procedia PDF Downloads 174
17567 Optimization Techniques for Microwave Structures

Authors: Malika Ourabia

Abstract:

A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.

Keywords: segmentation, s parameters, simulation, optimization

Procedia PDF Downloads 526
17566 Ambient Vibration Testing of Existing Buildings in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The elastic period has a primary role in the seismic assessment of buildings. Reliable calculations and/or estimates of the fundamental frequency of a building and its site are essential during analysis and design process. Various code formulas based on empirical data are generally used to estimate the fundamental frequency of a structure. For existing structures, in addition to code formulas and available analytical tools such as modal analyses, various methods of testing including ambient and forced vibration testing procedures may be used to determine dynamic characteristics. In this study, the dynamic properties of the 32 buildings located in the Madinah of Saudi Arabia were identified using ambient motions recorded at several, spatially-distributed locations within each building. Ambient vibration measurements of buildings have been analyzed and the fundamental longitudinal and transverse periods for all tested buildings are presented. The fundamental mode of vibration has been compared in plots with codes formulae (Saudi Building Code, EC8, and UBC1997). The results indicate that measured periods of existing buildings are shorter than that given by most empirical code formulas. Recommendations are given based on the common design and construction practice in Madinah city.

Keywords: ambient vibration, fundamental period, RC buildings, infill walls

Procedia PDF Downloads 259
17565 Design Systems and the Need for a Usability Method: Assessing the Fitness of Components and Interaction Patterns in Design Systems Using Atmosphere Methodology

Authors: Patrik Johansson, Selina Mardh

Abstract:

The present study proposes a usability test method, Atmosphere, to assess the fitness of components and interaction patterns of design systems. The method covers the user’s perception of the components of the system, the efficiency of the logic of the interaction patterns, perceived ease of use as well as the user’s understanding of the intended outcome of interactions. These aspects are assessed by combining measures of first impression, visual affordance and expectancy. The method was applied to a design system developed for the design of an electronic health record system. The study was conducted involving 15 healthcare personnel. It could be concluded that the Atmosphere method provides tangible data that enable human-computer interaction practitioners to analyze and categorize components and patterns based on perceived usability, success rate of identifying interactive components and success rate of understanding components and interaction patterns intended outcome.

Keywords: atomic design, atmosphere methodology, design system, expectancy testing, first impression testing, usability testing, visual affordance testing

Procedia PDF Downloads 178
17564 Exploring Exterior and Oral Tradition of Kyoto as the Act of Cultural Design

Authors: Takuya Inoue

Abstract:

Applying affordance theory to the field of communication research has been more significant. This paper suggests that the act of design, including language, is defined as encouraging or restricting affordance of an object or event and make it perceivable for users, rather merely conveying information. From this point of view, 5 types of oral expressions in Kyoto dialect, as well as 4 types of exterior design such as sekimori-ishi (a barrier-stone in a teahouse garden) which are specific to traditions in Kyoto, are examined. We found that exterior designs have no physical power in itself, they work as ‘signifier’ to highlight cultural frames which heavily depend on exclusive culture among city-dwellers in Kyoto. At the same time, the expressions are implicit, even sometimes sarcastic, which are also supported by cultural frames. In conclusion, the existence of traditional design is motivated in informative ‘ecological frame.’

Keywords: affordance theory, communication, cultural design, Japanese culture, Kyoto dialect, signifier

Procedia PDF Downloads 148
17563 A Multi-Scale Approach for the Analysis of Fiber-Reinforced Composites

Authors: Azeez Shaik, Amit Salvi, B. P. Gautham

Abstract:

Fiber reinforced polymer resin composite materials are finding wide variety of applications in automotive and aerospace industry because of their high specific stiffness and specific strengths when compared to metals. New class of 2D and 3D textile and woven fabric composites offer excellent fracture toughens as they bridge the cracks formed during fracture. Due to complexity of their fiber architectures and its resulting composite microstructures, optimized design and analysis of these structures is very complicated. A traditional homogenization approach is typically used to analyze structures made up of these materials. This approach usually fails to predict damage initiation as well as damage propagation and ultimate failure of structure made up of woven and textile composites. This study demonstrates a methodology to analyze woven and textile composites by using the multi-level multi-scale modelling approach. In this approach, a geometric repetitive unit cell (RUC) is developed with all its constituents to develop a representative volume element (RVE) with all its constituents and their interaction modeled correctly. The structure is modeled based on the RUC/RVE and analyzed at different length scales with desired levels of fidelity incorporating the damage and failure. The results are passed across (up and down) the scales qualitatively as well as quantitatively from the perspective of material, configuration and architecture.

Keywords: cohesive zone, multi-scale modeling, rate dependency, RUC, woven textiles

Procedia PDF Downloads 358
17562 The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Júlia Vilafranca Molero, Cinta Gascon, Arianna Vitiello, Tina Baloh

Abstract:

It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach.

Keywords: blended learning, challenges of blended learning, design methodologies, instructional design

Procedia PDF Downloads 117
17561 Design of an Eddy Current Brake System for the Use of Roller Coasters Based on a Human Factors Engineering Approach

Authors: Adam L. Yanagihara, Yong Seok Park

Abstract:

The goal of this paper is to converge upon a design of a brake system that could be used for a roller coaster found at an amusement park. It was necessary to find what could be deemed as a “comfortable” deceleration so that passengers do not feel as if they are suddenly jerked and pressed against the restraining harnesses. A human factors engineering approach was taken in order to determine this deceleration. Using a previous study that tested the deceleration of transit vehicles, it was found that a -0.45 G deceleration would be used as a design requirement to build this system around. An adjustable linear eddy current brake using permanent magnets would be the ideal system to use in order to meet this design requirement. Anthropometric data were then used to determine a realistic weight and length of the roller coaster that the brake was being designed for. The weight and length data were then factored into magnetic brake force equations. These equations were used to determine how the brake system and the brake run layout would be designed. A final design for the brake was determined and it was found that a total of 12 brakes would be needed with a maximum braking distance of 53.6 m in order to stop a roller coaster travelling at its top speed and loaded to maximum capacity. This design is derived from theoretical calculations, but is within the realm of feasibility.

Keywords: eddy current brake, engineering design, design synthesis, human factors engineering

Procedia PDF Downloads 122
17560 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio

Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park

Abstract:

Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.

Keywords: concrete, mixing ratio, textile, TRC

Procedia PDF Downloads 403