Search results for: back-propagation algorithm
2476 Data-Centric Anomaly Detection with Diffusion Models
Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu
Abstract:
Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.Keywords: diffusion models, anomaly detection, data-centric, generative AI
Procedia PDF Downloads 822475 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1982474 Software Assessment Using Ant Colony Optimization Algorithm
Authors: Saad M. Darwish
Abstract:
Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However,these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.Keywords: optimization technique, quality assurance, software certification model, software assessment
Procedia PDF Downloads 4872473 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force
Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh
Abstract:
This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection
Procedia PDF Downloads 3892472 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm
Authors: Mary Anne Roa
Abstract:
Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.Keywords: congestion control, queue management, computer networks, fuzzy logic
Procedia PDF Downloads 3972471 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter
Authors: Vahid Anari, Leila Shahmohammadi
Abstract:
Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction
Procedia PDF Downloads 672470 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model
Authors: T. Sanches, K. Bousson
Abstract:
As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control
Procedia PDF Downloads 1382469 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction
Authors: Sol Girouard, Zona Kostic
Abstract:
A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training
Procedia PDF Downloads 2772468 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 3572467 Algorithm for Information Retrieval Optimization
Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran
Abstract:
When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (Keywords: information retrieval, document relevance, performance measures, personalization
Procedia PDF Downloads 2412466 Full-Face Hyaluronic Acid Implants Assisted by Artificial Intelligence-Generated Post-treatment 3D Models
Authors: Ciro Cursio, Pio Luigi Cursio, Giulia Cursio, Isabella Chiardi, Luigi Cursio
Abstract:
Introduction: Full-face aesthetic treatments often present a difficult task: since different patients possess different anatomical and tissue characteristics, there is no guarantee that the same treatment will have the same effect on multiple patients; additionally, full-face rejuvenation and beautification treatments require not only a high degree of technical skill but also the ability to choose the right product for each area and a keen artistic eye. Method: We present an artificial intelligence-based algorithm that can generate realistic post-treatment 3D models based on the patient’s requests together with the doctor’s input. These 3-dimensional predictions can be used by the practitioner for two purposes: firstly, they help ensure that the patient and the doctor are completely aligned on the expectations of the treatment; secondly, the doctor can use them as a visual guide, obtaining a natural result that would normally stem from the practitioner's artistic skills. To this end, the algorithm is able to predict injection zones, the type and quantity of hyaluronic acid, the injection depth, and the technique to use. Results: Our innovation consists in providing an objective visual representation of the patient that is helpful in the patient-doctor dialogue. The patient, based on this information, can express her desire to undergo a specific treatment or make changes to the therapeutic plan. In short, the patient becomes an active agent in the choices made before the treatment. Conclusion: We believe that this algorithm will reveal itself as a useful tool in the pre-treatment decision-making process to prevent both the patient and the doctor from making a leap into the dark.Keywords: hyaluronic acid, fillers, full face, artificial intelligence, 3D
Procedia PDF Downloads 892465 Distribution Planning with Renewable Energy Units Based on Improved Honey Bee Mating Optimization
Authors: Noradin Ghadimi, Nima Amjady, Oveis Abedinia, Roza Poursoleiman
Abstract:
This paper proposed an Improved Honey Bee Mating Optimization (IHBMO) for a planning paradigm for network upgrade. The proposed technique is a new meta-heuristic algorithm which inspired by mating of the honey bee. The paradigm is able to select amongst several choices equi-cost one assuring the optimum in terms of voltage profile, considering various scenarios of DG penetration and load demand. The distributed generation (DG) has created a challenge and an opportunity for developing various novel technologies in power generation. DG prepares a multitude of services to utilities and consumers, containing standby generation, peaks chopping sufficiency, base load generation. The proposed algorithm is applied over the 30 lines, 28 buses power system. The achieved results demonstrate the good efficiency of the DG using the proposed technique in different scenarios.Keywords: distributed generation, IHBMO, renewable energy units, network upgrade
Procedia PDF Downloads 4872464 Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm
Authors: A. Cerrato Casado, C. Guigou, P. Jean
Abstract:
In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information.Keywords: dispersion, inverse problem, particle swarm optimization, SASW, soil profile
Procedia PDF Downloads 1852463 Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography
Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song
Abstract:
A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.Keywords: common-path OCT, FD-OCT, OCT, tracking algorithm
Procedia PDF Downloads 3802462 Mobile Platform’s Attitude Determination Based on Smoothed GPS Code Data and Carrier-Phase Measurements
Authors: Mohamed Ramdani, Hassen Abdellaoui, Abdenour Boudrassen
Abstract:
Mobile platform’s attitude estimation approaches mainly based on combined positioning techniques and developed algorithms; which aim to reach a fast and accurate solution. In this work, we describe the design and the implementation of an attitude determination (AD) process, using only measurements from GPS sensors. The major issue is based on smoothed GPS code data using Hatch filter and raw carrier-phase measurements integrated into attitude algorithm based on vectors measurement using least squares (LSQ) estimation method. GPS dataset from a static experiment is used to investigate the effectiveness of the presented approach and consequently to check the accuracy of the attitude estimation algorithm. Attitude results from GPS multi-antenna over short baselines are introduced and analyzed. The 3D accuracy of estimated attitude parameters using smoothed measurements is over 0.27°.Keywords: attitude determination, GPS code data smoothing, hatch filter, carrier-phase measurements, least-squares attitude estimation
Procedia PDF Downloads 1552461 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database
Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski
Abstract:
Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration
Procedia PDF Downloads 4622460 A Study of the Performance Parameter for Recommendation Algorithm Evaluation
Authors: C. Rana, S. K. Jain
Abstract:
The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems
Procedia PDF Downloads 4142459 A Geometrical Method for the Smoluchowski Equation on the Sphere
Authors: Adriano Valdes-Gomez, Francisco Javier Sevilla
Abstract:
We devise a numerical algorithm to simulate the diffusion of a Brownian particle restricted to the surface of a three-dimensional sphere when the particle is under the effects of an external potential that is coupled linearly. It is obtained using elementary geometry, yet, it converges, in the weak sense, to the solutions to the Smoluchowski equation. Rotations on the sphere, which are the analogs of linear displacements in euclidean spaces, are calculated using algebraic operations and then by a proper scaling, which makes the algorithm efficient and quite simple, especially to what may be the short-time propagator approach. Our findings prove that the global effects of curvature are taken into account in both dynamic and stationary processes, and it is not restricted to work in configuration space, neither restricted to the overdamped limit. We have generalized it successfully to simulate the Kramers or the Ornstein-Uhlenbeck process, where it is necessary to work directly in phase space, and it may be adapted to other two dimensional surfaces with non-constant curvature.Keywords: diffusion on the sphere, Fokker-Planck equation on the sphere, non equilibrium processes on the sphere, numerical methods for diffusion on the sphere
Procedia PDF Downloads 1822458 Improving Coverage in Wireless Sensor Networks Using Particle Swarm Optimization Algorithm
Authors: Ehsan Abdolzadeh, Sanaz Nouri, Siamak Khalaj
Abstract:
Today WSNs have many applications in different fields like the environment, military operations, discoveries, monitoring operations, and so on. Coverage size and energy consumption are the important challenges that these networks need to face. This paper tries to solve the problem of coverage with a requirement of k-coverage and minimum energy consumption. In order to minimize energy consumption, visual sensor networks have been used that observe and process just those targets that are located in their view direction. As a result, sensor rotations have decreased, and subsequently, energy consumption has been minimized. To solve the problem of coverage particle swarm optimization, coverage optimization has been able to ensure coverage requirement together with minimizing sensor rotations while meeting the problem requirement of k≤14. So energy consumption has decreased, and this could extend the sensors’ lifetime subsequently.Keywords: K coverage, particle union optimization algorithm, wireless sensor networks, visual sensor networks
Procedia PDF Downloads 1162457 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems
Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick
Abstract:
This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms
Procedia PDF Downloads 2312456 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm
Authors: Saad M. Darwish
Abstract:
Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.Keywords: software quality, quality assurance, software certification model, software assessment
Procedia PDF Downloads 5242455 Hybrid GA-PSO Based Pitch Controller Design for Aircraft Control System
Authors: Vaibhav Singh Rajput, Ravi Kumar Jatoth, Nagu Bhookya, Bhasker Boda
Abstract:
In this paper proportional, integral, derivative (PID) controller is used to control the pitch angle of the aircraft when the elevation angle is changed or modified. The pitch angle is dependent on elevation angle; a change in one corresponds to a change in the other. The PID controller helps in restricted change of pitch rate in response to the elevation angle. The PID controller is dependent on different parameters like Kp, Ki, Kd which change the pitch rate as they change. Various methodologies are used for changing those parameters for getting a perfect time response pitch angle, as desired or wished by a concerned person. While reckoning the values of those parameters, trial and guessing may prove to be futile in order to provide comfort to passengers. So, using some metaheuristic techniques can be useful in handling these errors. Hybrid GA-PSO is one such powerful algorithm which can improve transient and steady state response and can give us more reliable results for PID gain scheduling problem.Keywords: pitch rate, elevation angle, PID controller, genetic algorithm, particle swarm optimization, phugoid
Procedia PDF Downloads 3282454 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump
Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison
Abstract:
Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.Keywords: centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm
Procedia PDF Downloads 4102453 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization
Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.
Abstract:
Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex
Procedia PDF Downloads 5322452 Speed-Up Data Transmission by Using Bluetooth Module on Gas Sensor Node of Arduino Board
Authors: Hiesik Kim, YongBeum Kim
Abstract:
Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to speed up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group(SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as Open source hardware, Gas sensor, and Bluetooth Module and algorithm controlling transmission speed is demonstrated. Experiment controlling transmission speed also is progressed by developing Android Application receiving measured data, and controlling this speed is available at the experiment result. it is important that in the future, improvement for communication algorithm be needed because few error occurs when data is transferred or received.Keywords: Arduino, Bluetooth, gas sensor, internet of things, transmission Speed
Procedia PDF Downloads 4832451 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients
Authors: Soha A. Bahanshal, Byung G. Kim
Abstract:
Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission
Procedia PDF Downloads 1862450 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models
Authors: Manisha Mukherjee, Diptarka Saha
Abstract:
Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function
Procedia PDF Downloads 1652449 Proactive WPA/WPA2 Security Using DD-WRT Firmware
Authors: Mustafa Kamoona, Mohamed El-Sharkawy
Abstract:
Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.Keywords: Wi-Fi, WPS, TLS, DD-WRT
Procedia PDF Downloads 2332448 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas
Authors: Sahithi Yarlagadda
Abstract:
The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm
Procedia PDF Downloads 1102447 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach
Authors: M. Taheri Tehrani, H. Ajorloo
Abstract:
In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems
Procedia PDF Downloads 518