Search results for: soil classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5065

Search results for: soil classification

3955 The Agroclimatic Atlas of Croatia for the Periods 1981-2010 and 1991-2020

Authors: Višnjica Vučetić, Mislav Anić, Jelena Bašić, Petra Sviličić, Ivana Tomašević

Abstract:

The Agroclimatic Atlas of Croatia (Atlas) for the periods 1981–2010 and 1991–2020 is monograph of six chapters in digital form. Detailed descriptions of particular agroclimatological data are given in separate chapters as follows: agroclimatic indices based on air temperature (degree days, Huglin heliothermal index), soil temperature, water balance components (precipitation, potential evapotranspiration, actual evapotranspiration, soil moisture content, runoff, recharge and soil moisture loss) and fire weather indices. The last chapter is a description of the digital methods for the spatial interpolations (R and GIS). The Atlas comprises textual description of the relevant climate characteristic, maps of the spatial distribution of climatological elements at 109 stations (26 stations for soil temperature) and tables of the 30-year mean monthly, seasonal and annual values of climatological parameters at 24 stations. The Atlas was published in 2021, on the seventieth anniversary of the agrometeorology development at the Meteorological and Hydrological Service of Croatia. It is intended to support improvement of sustainable system of agricultural production and forest protection from fire and as a rich source of information for agronomic and forestry experts, but also for the decision-making bodies to use it for the development of strategic plans.

Keywords: agrometeorology, agroclimatic indices, soil temperature, water balance components, fire weather index, meteorological and hydrological service of Croatia

Procedia PDF Downloads 127
3954 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: agriculture, human factors, product design, soil moisture control

Procedia PDF Downloads 172
3953 Diversity of Microbial Ground Improvements

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Low cost, sustainable, and environmentally friendly microbial cements, grouts, polysaccharides and bioplastics are useful in construction and geotechnical engineering. Construction-related biotechnologies are based on activity of different microorganisms: urease-producing, acidogenic, halophilic, alkaliphilic, denitrifying, iron- and sulphate-reducing bacteria, cyanobacteria, algae, microscopic fungi. The bio-related materials and processes can be used for the bioaggregation, soil biogrouting and bioclogging, biocementation, biodesaturation of water-satured soil, bioencapsulation of soft clay, biocoating, and biorepair of the concrete surface. Altogether with the most popular calcium- and urea based biocementation, there are possible and often are more effective such methods of ground improvement as calcium- and magnesium based biocementation, calcium phosphate strengthening of soil, calcium bicarbonate biocementation, and iron- or polysaccharide based bioclogging. The construction-related microbial biotechnologies have a lot of advantages over conventional construction materials and processes.

Keywords: ground improvement, biocementation, biogrouting, microorganisms

Procedia PDF Downloads 229
3952 Advancement in Scour Protection with Flexible Solutions: Interpretation of Hydraulic Tests Data for Reno Mattresses in Open Channel Flow

Authors: Paolo Di Pietro, Matteo Lelli, Kinjal Parmar

Abstract:

Water hazards are consistently identified as among the highest global risks in terms of impact. Riverbank protection plays a key role in flood risk management. For erosion control and scour protection, flexible solutions like gabions & mattresses are being used since quite some time now. The efficacy of erosion control systems depends both on the ability to prevent soil loss underneath, as well as to maintain their integrity under the effects of the water flow. The paper presents the results of a research carried out at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control system. Mattresses were subjected to various flow conditions on a 10m long flume where they were placed on a 0.30 m thick soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties and under variable hydraulic flow regimes. While confirming the stability obtained using a conventional design approach (commonly referred to tractive force theories), the results of the research allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control system as a function of the size of the filling stones, their uniformity, their unit weight, the thickness of the mattress, and the presence of vertical connecting elements between the mattress lid and bottom.

Keywords: Reno Mattress, riverbank protection, hydraulics, full scale tests

Procedia PDF Downloads 24
3951 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 494
3950 Diversity of Dermatophytes and Keratinophilic Fungi from Inernational Tourist Spots, City of Taj Mahal

Authors: Harison Masih, Jyotsna Kiran Peter, Sundara Singh, Geetha Singh

Abstract:

The present investigation deals with diversity of dermatophytes and keratinophilic fungi from different tourist spots such as Agra Fort, Akbar tomb, It-Mat-Ud-Daulah, Mariam tomb, Radha Swami Bagh, and Taj Mahal of Agra City. These fungi are medically important which causes various infections and diseases in humans and animals. The main reservoir of these pathogens are the keratinous substances that increases due to birds and animal activities in the vicinity of monuments, where thousands (5413266) annual visitors from all over the world are visiting. The soil samples were subjected to isolate the pathogenic fungi through bait technique (buffalo skin, chicken feathers, human hair and goat tail hair). Baits were spread over the soil samples and incubated at room temperature for 30-35 days and pure culture isolates were maintained in SDA medium, stored at 4°C. Highest number of visitors were (3906453) from Taj Mahal, minimum 10785 at Mariam tomb annually, the total 271 isolates were encountered from soil samples out of these 18 genera and 38 species were found in different season. Highest incidence was 4.79% frequency shown by Chrysosporium keratinophilum while least 738% frequency occurrence by Trichophyton simii in soil samples. From the present study it was concluded that the incidence of pathogenic fungal isolates were the common in tourists soil that are etiological agents of superficial mycosis. Thus, both human and animal activity seemed to play an important role in occurrence and distribution of keratinophilic and related dermatophytes at various tourist places of Agra city.

Keywords: dermatophytic fungal diversity, bait technique, visitors at tourist spots, human and animal activities, soil samples

Procedia PDF Downloads 487
3949 Music Genre Classification Based on Non-Negative Matrix Factorization Features

Authors: Soyon Kim, Edward Kim

Abstract:

In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.

Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)

Procedia PDF Downloads 303
3948 Synergistic Effect of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi to Enhance Wheat Grain Yield, Biofortification and Soil Health: A Field Study

Authors: Radheshyam Yadav, Ramakrishna Wusirika

Abstract:

Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal (AM) Fungi are ubiquitous in soil and often very critical for crop yield and agriculture sustainability, and this has motivated the agricultural practices to support and promote PGPB and AM Fungi in agriculture. PGPB can be involved in a range of processes that affect Nitrogen (N) and Phosphorus (P) transformations in soil and thus influence nutrient availability and uptake to the plants. A field study with two wheat cultivars, HD-3086, and HD-2967 was performed in Malwa region, Bathinda of Punjab, India, to evaluate the effect of native and non-native PGPB alone and in combination with AM fungi as an inoculant on wheat grain yield, nutrient uptake and soil health parameters (dehydrogenase, urease, β‐glucosidase). Our results showed that despite an early insignificant increase in shoot length, plants treated with PGPB (Bacillus sp.) and AM Fungi led to a significant increase in shoot growth at maturity, aboveground biomass, nitrogen (45% - 40%) and phosphorus (40% - 34%) content in wheat grains relative to untreated control plants. Similarly, enhanced grain yield and nutrients uptake i.e. copper (27.15% - 36.25%) iron (43% - 53%) and zinc (44% - 47%) was recorded in PGPB and AM Fungi treated plants relative to untreated control. Overall, inoculation with native PGPB alone and in combination with AM Fungi provided benefits to enhance grain yield, wheat biofortification, and improved soil fertility, despite this effect varied depending on different PGPB isolates and wheat cultivars. These field study results provide evidence of the benefits of agricultural practices involving native PGPB and AM Fungi to the plants. These native strains and AM Fungi increased accumulations of copper, iron, and zinc in wheat grains, enhanced grain yield, and soil fertility.

Keywords: AM Fungi, biofortification, PGPB, soil microbial enzymes

Procedia PDF Downloads 325
3947 Effect of Distillery Spentwash Application on Soil Properties and Yield of Maize (Zea mays L.) and Finger Millet (Eleusine coracana (L.) G)

Authors: N. N. Lingaraju, A. Sathish, K. N. Geetha, C. A. Srinivasamurthy, S. Bhaskar

Abstract:

Studies on spent wash utilization as a nutrient source through 'Effect of distillery spentwash application on soil properties and yield of maize (Zea may L.) and finger millet (Eleusine coracana (L.) G)' was carried out in Malavalli Taluk, Mandya District, Karnataka State, India. The study was conducted in fourteen different locations of Malavalli (12) and Maddur taluk (2) involving maize and finger millet as a test crop. The spentwash was characterized for various parameters like pH, EC, total NPK, Na, Ca, Mg, SO₄, Fe, Zn, Cu, Mn and Cl content. It was observed from the results that the pH was slightly alkaline (7.45), EC was excess (23.3 dS m⁻¹), total NPK was 0.12, 0.02, and 1.31 percent respectively, Na, Ca, Mg and SO₄ concentration was 664, 1305, 745 and 618 (mg L⁻¹) respectively, total solid content was quite high (6.7%), Fe, Zn, Cu, Mn, values were 23.5, 5.70, 3.64, 4.0 mg L⁻¹, respectively. The crops were grown by adopting different crop management practices after application of spentwash at 100 m³ ha⁻¹ to the identified farmer fields. Soil samples were drawn at three stages i.e., before sowing of crop, during crop growth stage and after harvest of the crop at 2 depths (0-30 and 30-60 cm) and analyzed for pH, EC, available K and Na parameters by adopting standard procedures. The soil analysis showed slightly acidic reaction (5.93), normal EC (0.43 dS m⁻¹), medium available potassium (267 kg ha⁻¹) before application of spentwash. Application of spentwash has enhanced pH level of soil towards neutral (6.97), EC 0.25 dS m⁻¹, available K2O to 376 kg ha⁻¹ and sodium content of 0.73 C mol (P+) kg⁻¹ during the crop growth stage. After harvest of the crops soil analysis data indicated a decrease in pH to 6.28, EC of 0.22 dS m⁻¹, available K₂O to 316 kg ha⁻¹ and Na 0.52 C mol (P⁺) kg⁻¹ compared with crop growth stage. The study showed that, there will be enhancement of potassium levels if the spentwash is applied once to dryland. The yields of both the crops were quantified and found to be in the range of 35.65 to 65.55 q ha⁻¹ and increased yield to the extent of 13.36-22.36 percent as compared to control field (11.36-22.33 q ha⁻¹) in maize crop. Also, finger millet yield was increased with the spentwash application to the extent of 14.21-20.49 percent (9.5-17.73 q ha⁻¹) higher over farmers practice (8.15-14.15 q ha⁻¹).

Keywords: distillery spentwash, finger millet, maize, waste water

Procedia PDF Downloads 358
3946 Gradations in Concentration of Heavy and Mineral Elements with Distance and Depth of Soil in the Vicinity of Auto Mechanic Workshops in Sabon Gari, Kaduna State, Nigeria

Authors: E. D. Paul, H. Otanwa, O. F. Paul, A. J. Salifu, J. E. Toryila, C. E. Gimba

Abstract:

The concentration levels of six heavy metals (Cd, Cr, Fe, Ni, Pb, and Zn) and two mineral elements (Ca and Mg) were determined in soil samples collected from the vicinity of two auto mechanic workshops in Sabon-Gari, Kaduna state, Nigeria, using Atomic Absorption Spectrometry (AAS), in order to compare the gradation of their concentrations with distance and depth of soil from the workshop sites. At site 1, concentrations of lead, chromium, iron, and zinc were generally found to be above the World Health Organization limits, while those of Nickel and Cadmium fell within the limits. Iron had the highest concentration with a range of 176.274 ppm to 489.127 ppm at depths of 5 cm to 15 cm and a distance range of 5 m to 15 m, while the concentration of cadmium was least with a range of 0.001 ppm to 0.008 ppm at similar depth and distance ranges. In addition, there was more of calcium (11.521 ppm to 121.709 ppm), in all the samples, than magnesium (11.293 ppm to 21.635 ppm). Similar results were obtained for site II. The concentrations of all the metals analyzed showed a downward gradient with an increase in depth and distance from both workshop sites except for iron and zinc at site 2. The immediate and remote implications of these findings on the biota are discussed.

Keywords: AAS, heavy metals, mechanic workshops, soil, variation

Procedia PDF Downloads 494
3945 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517
3944 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 101
3943 Modeling of Compaction Curves for CCA-Cement Stabilized Lateritic Soils

Authors: O. Ahmed Apampa, Yinusa, A. Jimoh

Abstract:

The aim of this study was to develop an appropriate model for predicting the compaction behavior of lateritic soils and corn cob ash (CCA) stabilized lateritic soils. This was done by first adopting an equation earlier developed for fine-grained soils and subsequent adaptation by others and extending it to modified lateritic soil through the introduction of alpha and beta parameters which are polynomial functions of the CCA binder input. The polynomial equations were determined with MATLAB R2011 curve fitting tool, while the alpha and beta parameters were determined by standard linear programming techniques using the Solver function of Microsoft Excel 2010. The model so developed was a good fit with a correlation coefficient R2 value of 0.86. The paper concludes that it is possible to determine the optimum moisture content and the maximum dry density of CCA stabilized soils from the compaction test of the unmodified soil, and recommends that this procedure is extended to other binder stabilized lateritic soils to facilitate quick decision making in roadworks.

Keywords: compaction, corn cob ash, lateritic soil, stabilization

Procedia PDF Downloads 533
3942 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 202
3941 Assessment of Phytoremediation of Pb-Anthracene Co-Contaminated Soils Using Vetiveira zizanioides, Heianthus annuus L., Zea mays and Glycine max

Authors: O. U. Nwosu, C. O. Osuagwu, N. Nnawugwu, C. T. Amanze

Abstract:

Phytoremediation is a green and sustainable approach to decontaminate and restore contaminated sites while maintaining the biological activity and physical structure of soils. A pot experiment was conducted for a period of 70 days to evaluate the remediation potentials of Vetiveira zizanioides, Heianthus annuus L., Zea mays, and Glycine max in concurrent removal of anthracene and Pb in co-contaminated soil. Sandy loam soils were polluted with Pb chloride salt and anthracene at three different levels (50mg/kg of Pb, 100mg/kg of Pb, and 100mg/kg of Pb+100mg/kg of anthracene) and laid out in a completely randomized design with three replicates. Shoot dry matter weight was significantly reduced (p≤0.05) in comparison to control treatments by 33%, 32%, 40%, and 6.7% when exposed to 100mg kg⁻¹ of Pb, respectively in G.max, H.annuus, Z.mays, and vetiver. There was 42%, 41%, 48%, and 7.1% growth inhibition of shoot dry matter weight of G.max, H.annuus, Z.mays, and vetiver relative to control treatments when 100 mg Pb kg⁻¹ was mixed with 100 mgkg⁻¹ anthracene. Root and shoot metal concentration in G.max, H.annuus, Z.mays, and vetiver increased with increasing concentration of Pb. Translocation factor (TF < 1) obtained for G.max, Z.mays, and vetiver suggests that these plant species predominantly retain Pb in the root portion, while the TF value (TF≥1) obtained for H.annuus suggests that it predominantly retains Pb in the shoot portion. The extractable anthracene decreased significantly (p ≤ 0.05) in soil planted with G.max, H.annuus, Z.mays, and vetiver, as well as in pots without plants. This accounted for 53% to 71% of anthracene dissipation in planted soil and 40% dissipation in unplanted soil. This result suggested that the plant species used are a promising candidate for phytoremediation.

Keywords: phytoremediation, heavy metals, polyaromatic hydrocarbon, co-contaminated soil

Procedia PDF Downloads 121
3940 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets

Procedia PDF Downloads 125
3939 Characterization of the Soils of the Edough Massif (North East Algeria)

Authors: Somia Lakehal Ayat, Ibtissem Samai, Srara Lakehal Ayat, Chaima Dahmani

Abstract:

The aim of this work relates to the physicochemical diversity and the characterization of the different types of soils of the edough massif (North East of Algeria) and to the evaluation and characterization of the existing organic matter as well as to the evolution. and the dynamics of the latter, also on its influence on changes in the physical properties of soils. In order to know the soil properties of seraidi forest, we established a stratified sampling plan. The results obtained show that we are in the presence of a great diversity of soils, such as neutral to alkaline, whose adsorbent complex is sufficiently saturated. Also, the presence of limestone offers the soil a fairly significant buffering capacity. In our study region, the texture of the soils is varied between clayey and silty, where it offers medium porosity, there is a strong accumulation of organic matter, therefore soils rich in organic matter.The fractionation of the organic matter of the soils allowed to obtain a very high rate of humification. The soil characteristics of the edough massif (North East of Algeria) are controlled by the contribution of organic matter, which presents a dynamic and an important evolution and which varies with the climatic conditions and the nature and the type of plant formation, and these the latter have a capital and important role in the rate of mineralization of organic matter.

Keywords: organic matter, soil, foresty, diversity, mineralization

Procedia PDF Downloads 89
3938 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 70
3937 Phytoremediation Potenciality of ‘Polypogon monspeliensis L. in Detoxification of Petroleum-Contaminated Soils

Authors: Mozhgan Farzami Sepehr, Farhad Nourozi

Abstract:

In a greenhouse study, decontamination capacity of the species Polypogon monspoliensis, for detoxification of petroleum-polluted soils caused by sewage and waste materials of Tehran Petroleum Refinery. For this purpose, the amount of total oil and grease before and 45 days after transplanting one-month-old seedlings in the soils of five different treatments in which pollution-free agricultural soil and contaminated soil were mixed together with the weight ratio of respectively 1 to 9 (% 10), 2 to 8 (%20), 3 to 7 (%30) , 4 to 6 (%40), and 5 to 5 (%50) were evaluated and compared with the amounts obtained from control treatment without vegetation, but with the same concentration of pollution. Findings demonstrated that the maximum reduction in the petroleum rate ,as much as 84.85 percent, is related to the treatment 10% containing the plant. Increasing the shoot height in treatments 10% and 20% as well as the root dry and fresh weight in treatments 10% , 20% , and 30% shows that probably activity of more rhizosphere microorganisms of the plant in these treatments has led to the improvement in growth of plant organs comparing to the treatments without pollution.

Keywords: phytoremediation, total oil and grease, rhizosphere, microorganisms, petroleum-contaminated soil

Procedia PDF Downloads 409
3936 Mapping Potential Soil Salinization Using Rule Based Object Oriented Image Analysis

Authors: Zermina Q., Wasif Y., Naeem S., Urooj S., Sajid R. A.

Abstract:

Land degradation, a leading environemtnal problem and a decrease in the quality of land has become a major global issue, caused by human activities. By land degradation, more than half of the world’s drylands are affected. The worldwide scope of main saline soils is approximately 955 M ha, whereas inferior salinization affected approximately 77 M ha. In irrigated areas, a total of 58% of these soils is found. As most of the vegetation types requires fertile soil for their growth and quality production, salinity causes serious problem to the production of these vegetation types and agriculture demands. This research aims to identify the salt affected areas in the selected part of Indus Delta, Sindh province, Pakistan. This particular mangroves dominating coastal belt is important to the local community for their crop growth. Object based image analysis approach has been adopted on Landsat TM imagery of year 2011 by incorporating different mathematical band ratios, thermal radiance and salinity index. Accuracy assessment of developed salinity landcover map was performed using Erdas Imagine Accuracy Assessment Utility. Rain factor was also considered before acquiring satellite imagery and conducting field survey, as wet soil can greatly affect the condition of saline soil of the area. Dry season considered best for the remote sensing based observation and monitoring of the saline soil. These areas were trained with the ground truth data w.r.t pH and electric condutivity of the soil samples. The results were obtained from the object based image analysis of Keti bunder and Kharo chan shows most of the region under low saline soil.Total salt affected soil was measured to be 46,581.7 ha in Keti Bunder, which represents 57.81 % of the total area of 80,566.49 ha. High Saline Area was about 7,944.68 ha (9.86%). Medium Saline Area was about 17,937.26 ha (22.26 %) and low Saline Area was about 20,699.77 ha (25.69%). Where as total salt affected soil was measured to be 52,821.87 ha in Kharo Chann, which represents 55.87 % of the total area of 94,543.54 ha. High Saline Area was about 5,486.55 ha (5.80 %). Medium Saline Area was about 13,354.72 ha (14.13 %) and low Saline Area was about 33980.61 ha (35.94 %). These results show that the area is low to medium saline in nature. Accuracy of the soil salinity map was found to be 83 % with the Kappa co-efficient of 0.77. From this research, it was evident that this area as a whole falls under the category of low to medium saline area and being close to coastal area, mangrove forest can flourish. As Mangroves are salt tolerant plant so this area is consider heaven for mangrove plantation. It would ultimately benefit both the local community and the environment. Increase in mangrove forest control the problem of soil salinity and prevent sea water to intrude more into coastal area. So deforestation of mangrove should be regularly monitored.

Keywords: indus delta, object based image analysis, soil salinity, thematic mapper

Procedia PDF Downloads 619
3935 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
3934 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159
3933 Two Dimensional Numerical Analysis for the Seismic Response of the Geosynthetic-Reinforced Soil Integral Abutments

Authors: Dawei Shen, Ming Xu, Pengfei Liu

Abstract:

The joints between simply supported bridge decks and abutments need to be regularly repaired, which would greatly increase the cost during the service life of the bridge. Simply supported girder bridges suffered the most severe damage during earthquakes. Another type of bridge, the integral bridge, of which the superstructure and abutment are rigidly connected, was also used in some European countries. Because no bearings or joints exit in the integral bridge, this type of bridge could significantly reduce maintenance requirements and costs. However, conventional integral bridge usually result in high earth pressure on the abutment and surface settlement in the backfill. To solve these problems, a new type of integral bridge, geosynthetic-reinforced soil (GRS) integral bridge, was come up in recent years. This newly invented bridge has not been used in engineering practices. There was a lack of research on the seismic behavior of the conventional and new type of integral abutments. In addition, no common design code could be found for the calculation of seismic pressure of soil behind the abutment. This paper developed a dynamic constitutive model, which can consider the soil behaviors under cyclic loading. Numerical analyses of the seismic response of a full height integral bridge and GRS integral bridge were carried out using the two-dimensional numerical code, FLAC. A parametric study was also performed to investigate the soil-structure interaction. The results are presented below. The seismic responses of GRS integral bridge together with conventional simply supported bridge, GRS conventional bridge and conventional integral bridge were investigated. The results show that the GRS integral bridge holds the highest seismic stability, followed by conventional integral bridge, GRS simply supported bridge and conventional simply supported bridge. Compared with the integral bridge with 1 m thick abutments, the GRS integral bridge with 0.4 m thick abutments is subjected to a smaller bending moment, and the natural frequency and horizontal displacement remains almost the same. Geosynthetic-reinforcement will be more effective when the abutment becomes thinner or the abutment is higher.

Keywords: geosynthetic-reinforced soil integral bridge, nonlinear hysteretic model, numerical analysis, seismic response

Procedia PDF Downloads 463
3932 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 117
3931 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment

Authors: Qurbanov Huseyn Nuraddin

Abstract:

The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.

Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals

Procedia PDF Downloads 73
3930 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants

Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin

Abstract:

Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.

Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants

Procedia PDF Downloads 288
3929 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 15
3928 Two-Dimensional Seismic Response of Concrete Gravity Dams Including Base Sliding

Authors: Djamel Ouzandja, Boualem Tiliouine

Abstract:

The safety evaluation of the concrete gravity dams subjected to seismic excitations is really very complex as the earthquake response of the concrete gravity dam depends upon its contraction joints with foundation soil. This paper presents the seismic response of concrete gravity dams considering friction contact and welded contact. Friction contact is provided using contact elements. Two-dimensional (2D) finite element model of Oued Fodda concrete gravity dam, located in Chlef at the west of Algeria, is used for this purpose. Linear and nonlinear analyses considering dam-foundation soil interaction are performed using ANSYS software. The reservoir water is modeled as added mass using the Westergaard approach. The Drucker-Prager model is preferred for dam and foundation rock in nonlinear analyses. The surface-to-surface contact elements based on the Coulomb's friction law are used to describe the friction. These contact elements use a target surface and a contact surface to form a contact pair. According to this study, the seismic analysis of concrete gravity dams including base sliding. When the friction contact is considered in joints, the base sliding displacement occurs along the dam-foundation soil contact interface. Besides, the base sliding may generally decrease the principal stresses in the dam.

Keywords: concrete gravity dam, dynamic soil-structure interaction, friction contact, sliding

Procedia PDF Downloads 407
3927 Classification of EEG Signals Based on Dynamic Connectivity Analysis

Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović

Abstract:

In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.

Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients

Procedia PDF Downloads 214
3926 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT

Authors: Jae Ni Jang, Young Uk Kim

Abstract:

Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.

Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT

Procedia PDF Downloads 47