Search results for: power distance
6995 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller
Authors: Jia-Shiun Chen, Hsiu-Ying Hwang
Abstract:
Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control
Procedia PDF Downloads 3846994 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3876993 Morphometric Study of Human Anterior and Posterior Meniscofemoral Ligaments of the Knee Joint on Thiel Embalmed Cadavers
Authors: Mohammad Alobaidy, David Nicoll, Tracey Wilkinson
Abstract:
Background: Many patients suffer postoperative knee stability after total knee arthroplasty (joint replacement) involving posterior cruciate ligament (PCL) sacrificing or retaining, but is not clear whether the meniscofemoral ligaments (MFLs) are retained during these procedures; their function in terms of knee stability is not well established in the literature. Purpose: Macroscopic, detailed, morphometric investigation of the anterior and posterior MFLs of the knee joint was undertaken to assist understanding of knee stability after total knee arthroplasty and ligament reconstruction. Methods: Dissection of eighty Thiel embalmed knees from 19 male and 21 female cadavers was conducted, mean age 77 (range 47-99 years). The origin and insertion of the anterior and posterior MFLs were measured using high accuracy, calibrated, digital Vernier calipers at 0.01mm. Results: The means were: anterior meniscofemoral ligament (aMFL) length 28.4 ± 2.7mm; posterior meniscofemoral ligament (pMFL) length 29 ± 3.7mm; aMFL femoral width 6.4 ± 1.7mm, mid-distance ligament width 4 ± 1.1mm, meniscal ligament width 3.9 ± 1.2mm; pMFL femoral width 5.6 ± 1.5mm, mid-distance ligament width 4.1 ± 1.1mm, meniscal ligament width 4.1 ± 1.3mm. Some of the male measurements were larger than female, with significant differences in the length of the aMFL femoral length p<0.01 and pMFL femoral length p<0.007, and width of the pMFL mid-distance p<0.04. Conclusion: This study may help explore the role of the meniscofemoral ligaments in knee stability after total knee arthroplasty with a posterior cruciate ligament retaining prosthesis. Anatomical information for Thiel embalmed knees may aid orthopaedic surgeons in ligament reconstruction.Keywords: anterior and posterior meniscofemoral ligaments, morphometric analysis, Thiel embalmed knees, knee arthroplasty
Procedia PDF Downloads 3796992 Investigation of Wind Farm Interaction with Ethiopian Electric Power’s Grid: A Case Study at Ashegoda Wind Farm
Authors: Fikremariam Beyene, Getachew Bekele
Abstract:
Ethiopia is currently on the move with various projects to raise the amount of power generated in the country. The progress observed in recent years indicates this fact clearly and indisputably. The rural electrification program, the modernization of the power transmission system, the development of wind farm is some of the main accomplishments worth mentioning. As it is well known, currently, wind power is globally embraced as one of the most important sources of energy mainly for its environmentally friendly characteristics, and also that once it is installed, it is a source available free of charge. However, integration of wind power plant with an existing network has many challenges that need to be given serious attention. In Ethiopia, a number of wind farms are either installed or are under construction. A series of wind farm is planned to be installed in the near future. Ashegoda Wind farm (13.2°, 39.6°), which is the subject of this study, is the first large scale wind farm under construction with the capacity of 120 MW. The first phase of 120 MW (30 MW) has been completed and is expected to be connected to the grid soon. This paper is concerned with the investigation of the wind farm interaction with the national grid under transient operating condition. The main concern is the fault ride through (FRT) capability of the system when the grid voltage drops to exceedingly low values because of short circuit fault and also the active and reactive power behavior of wind turbines after the fault is cleared. On the wind turbine side, a detailed dynamic modelling of variable speed wind turbine of a 1 MW capacity running with a squirrel cage induction generator and full-scale power electronics converters is done and analyzed using simulation software DIgSILENT PowerFactory. On the Ethiopian electric power corporation side, after having collected sufficient data for the analysis, the grid network is modeled. In the model, a fault ride-through (FRT) capability of the plant is studied by applying 3-phase short circuit on the grid terminal near the wind farm. The results show that the Ashegoda wind farm can ride from voltage deep within a short time and the active and reactive power performance of the wind farm is also promising.Keywords: squirrel cage induction generator, active and reactive power, DIgSILENT PowerFactory, fault ride-through capability, 3-phase short circuit
Procedia PDF Downloads 1766991 High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites
Authors: Charmaine Lamiel, Van Hoa Nguyen, Deivasigamani Ranjith Kumar, Jae-Jin Shim
Abstract:
The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors.Keywords: cobalt manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor
Procedia PDF Downloads 3586990 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System
Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba
Abstract:
This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.Keywords: battery storage buffer, charging station, electric vehicle, experimental analysis, management algorithm, switches control
Procedia PDF Downloads 1666989 Participatory Culture and Value Perception Amongst the Korean and Chinese Drama International Fandom
Authors: Patricia P. M. C. Lourenco, Javier Bringué Sala, Anaisa D. A. de Sena
Abstract:
Almost everyone in Dramaland knows the names of big Korean stars that grace their computer screens on a roll through social media and video streaming platforms that enable awareness of Korean dramas and lifestyle at a click. A surface culture instilled with notions of belonging has redefined the meaning of friendship and challenged deep inner values. Not everyone, however, knows Chinese Dramas or their stars, which is a consequence of Dramaland's focus on Korean dramas and promoting the Korean experience. Despite a parity in terms of production quality, star power, scripts and compelling visual settings, Chinese Dramas have been playing catch up to their famous counterparts. While they might have a strong competitive soft power for international drama fans, the soft power of Korean dramas is imbued with substantial societal values that they want to share with others. Those values are portrayed in an artistic way that connects with audiences who experience loneliness in the non-virtual world contrary to the way Chinese Dramas are perceived.Keywords: Chinese dramas, fandom, Korean dramas, participatory culture, value perception, soft power, surface culture
Procedia PDF Downloads 1706988 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification
Authors: Kunio Yoshikawa, Ding Lu
Abstract:
Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).Keywords: biomass carbonization, densification, distributed power generation, gasification
Procedia PDF Downloads 1586987 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network
Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S
Abstract:
Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)
Procedia PDF Downloads 1656986 The Application of Maintenance Strategy in Energy Power Plant: A Case Study
Authors: Steven Vusmuzi Mashego, Opeyeolu Timothy Laseinde
Abstract:
This paper presents a case study on applying maintenance strategies observed in a turbo-generator at a coal power plant. Turbo generators are one of the primary and critical components in energy generation. It is essential to apply correct maintenance strategies and apply operational procedures accordingly. The maintenance strategies are implemented to ensure the high reliability of the equipment. The study was carried out at a coal power station which will transit to a cleaner energy source in the nearest future. The study is relevant as lessons learned in this system will support plans and operational models implemented when cleaner energy sources replace coal-powered turbines. This paper first outlines different maintenance strategies executed on the turbo-generator modules. Secondly, the impacts of human factors on a coal power station are discussed, and the findings prompted recommendations for future actions.Keywords: maintenance strategies, turbo generator, operational error, human factor, electricity generation
Procedia PDF Downloads 1136985 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach
Authors: Jianli Jiang, Bai-Chen Xie
Abstract:
The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.Keywords: spatial network DEA, environmental efficiency, sustainable development, power system
Procedia PDF Downloads 1106984 Recontextualisation of Political Discourse: A Case Study of Translation of News Stories
Authors: Hossein Sabouri
Abstract:
News stories as one of the branches of political discourse has always been regarded a sensitive and challenging area. Political translators often encounter some struggles that are vitally important when it comes to deal with the political tension between the source culture and the target one. Translating news stories is of prime importance since it has widespread availability and power of defining or even changing the facts. News translation is usually more than straight transfer of source text. Like original text endeavoring to manipulate the readers’ minds with imposing their ideologies, translated text seeking to change these ideologies influenced by ideological power. In other words, translation product is not considered more than a recontextualisation of the source text. The present study examines possible criteria for occurring changes in the translation process of news stories based on the ideological and political stance of translator using theories of ‘critical discourse analysis’and ‘translation and power. Fairclough investigates the ideological issues in (political) discourse and Tymoczko studies the political and power-related engagement of the translator in the process of translation. Incorporation of Fairclough and Gentzler and Tymoczko’s theories paves the way for the researcher to looks at the ideological power position of the translator. Data collection and analysis have been accomplished using 17 political-text samples taken from online news agencies which are related to the ‘Iran’s Nuclear Program’. Based on the findings, recontextualisation is mainly observed in terms of the strategies of ‘substitution, omissions, and addition’ in the translation process. The results of the study suggest that there is a significant relationship between the translation of political texts and ideologies of target culture.Keywords: news translation, recontextualisation, ideological power, political discourse
Procedia PDF Downloads 1946983 Water Dumpflood into Multiple Low-Pressure Gas Reservoirs
Authors: S. Lertsakulpasuk, S. Athichanagorn
Abstract:
As depletion-drive gas reservoirs are abandoned when there is insufficient production rate due to pressure depletion, waterflooding has been proposed to increase the reservoir pressure in order to prolong gas production. Due to high cost, water injection may not be economically feasible. Water dumpflood into gas reservoirs is a new promising approach to increase gas recovery by maintaining reservoir pressure with much cheaper costs than conventional waterflooding. Thus, a simulation study of water dumpflood into multiple nearly abandoned or already abandoned thin-bedded gas reservoirs commonly found in the Gulf of Thailand was conducted to demonstrate the advantage of the proposed method and to determine the most suitable operational parameters for reservoirs having different system parameters. A reservoir simulation model consisting of several thin-layered depletion-drive gas reservoirs and an overlying aquifer was constructed in order to investigate the performance of the proposed method. Two producers were initially used to produce gas from the reservoirs. One of them was later converted to a dumpflood well after gas production rate started to decline due to continuous reduction in reservoir pressure. The dumpflood well was used to flow water from the aquifer to increase pressure of the gas reservoir in order to drive gas towards producer. Two main operational parameters which are wellhead pressure of producer and the time to start water dumpflood were investigated to optimize gas recovery for various systems having different gas reservoir dip angles, well spacings, aquifer sizes, and aquifer depths. This simulation study found that water dumpflood can increase gas recovery up to 12% of OGIP depending on operational conditions and system parameters. For the systems having a large aquifer and large distance between wells, it is best to start water dumpflood when the gas rate is still high since the long distance between the gas producer and dumpflood well helps delay water breakthrough at producer. As long as there is no early water breakthrough, the earlier the energy is supplied to the gas reservoirs, the better the gas recovery. On the other hand, for the systems having a small or moderate aquifer size and short distance between the two wells, performing water dumpflood when the rate is close to the economic rate is better because water is more likely to cause an early breakthrough when the distance is short. Water dumpflood into multiple nearly-depleted or depleted gas reservoirs is a novel study. The idea of using water dumpflood to increase gas recovery has been mentioned in the literature but has never been investigated. This detailed study will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost and risk.Keywords: dumpflood, increase gas recovery, low-pressure gas reservoir, multiple gas reservoirs
Procedia PDF Downloads 4456982 Investigation of Beam Defocusing Impact in Millisecond Laser Drilling for Variable Operational Currents
Authors: Saad Nawaz, Yu Gang, Baber Saeed Olakh, M. Bilal Awan
Abstract:
Owing to its exceptional performance and precision, laser drilling is being widely used in modern manufacturing industries. This experimental study mainly addressed the defocusing of laser beam along with different operational currents. The performance has been evaluated in terms of tapering phenomena, entrance and exit diameters etc. The operational currents have direct influence on laser power which ultimately affected the shape of the drilled hole. Different operational currents in low, medium and high ranges are used for laser drilling of 18CrNi8. Experiment results have depicted that there is an increase in entrance diameter with an increase in defocusing distance. However, the exit diameter first decreases and then increases with respect to increasing defocusing length. The evolution of drilled hole from tapered to straight hole has been explained with defocusing at different levels. The optimum parametric combinations for attaining perfect shape of drilled hole is proposed along with lower heat treatment effects for higher process efficiency.Keywords: millisecond laser, defocusing beam, operational current, keyhole profile, recast layer
Procedia PDF Downloads 1716981 The SBO/LOCA Analysis of TRACE/SNAP for Kuosheng Nuclear Power Plant
Authors: J. R. Wang, H. T. Lin, Y. Chiang, H. C. Chen, C. Shih
Abstract:
Kuosheng Nuclear Power Plant (NPP) is located on the northern coast of Taiwan. Its nuclear steam supply system is a type of BWR/6 designed and built by General Electric on a twin unit concept. First, the methodology of Kuosheng NPP SPU (Stretch Power Uprate) safety analysis TRACE/SNAP model was developed in this research. Then, in order to estimate the safety of Kuosheng NPP under the more severe condition, the SBO (Station Blackout) + LOCA (Loss-of-Coolant Accident) transient analysis of Kuosheng NPP SPU TRACE/SNAP model was performed. Besides, the animation model of Kuosheng NPP was presented using the animation function of SNAP with TRACE/SNAP analysis results.Keywords: TRACE, safety analysis, BWR/6, severe accident
Procedia PDF Downloads 7156980 Design and Analysis of a Combined Cooling, Heating and Power Plant for Maximum Operational Flexibility
Authors: Salah Hosseini, Hadi Ramezani, Bagher Shahbazi, Hossein Rabiei, Jafar Hooshmand, Hiwa Khaldi
Abstract:
Diversity of energy portfolio and fluctuation of urban energy demand establish the need for more operational flexibility of combined Cooling, Heat, and Power Plants. Currently, the most common way to achieve these specifications is the use of heat storage devices or wet operation of gas turbines. The current work addresses using variable extraction steam turbine in conjugation with a gas turbine inlet cooling system as an alternative way for enhancement of a CCHP cycle operating range. A thermodynamic model is developed and typical apartments building in PARDIS Technology Park (located at Tehran Province) is chosen as a case study. Due to the variable Heat demand and using excess chiller capacity for turbine inlet cooling purpose, the mentioned steam turbine and TIAC system provided an opportunity for flexible operation of the cycle and boosted the independence of the power and heat generation in the CCHP plant. It was found that the ratio of power to the heat of CCHP cycle varies from 12.6 to 2.4 depending on the City heating and cooling demands and ambient condition, which means a good independence between power and heat generation. Furthermore, selection of the TIAC design temperature is done based on the amount of ratio of power gain to TIAC coil surface area, it was found that for current cycle arrangement the TIAC design temperature of 15 C is most economical. All analysis is done based on the real data, gathered from the local weather station of the PARDIS site.Keywords: CCHP plant, GTG, HRSG, STG, TIAC, operational flexibility, power to heat ratio
Procedia PDF Downloads 2826979 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System
Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha
Abstract:
A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.Keywords: ANFIS, large-scale, power system, PSS, stability enhancement
Procedia PDF Downloads 3066978 Model Organic Ranikin Cycle Power Plant for Waste Heat Recovery in Olkaria-I Geothermal Power Plant
Authors: Haile Araya Nigusse, Hiram M. Ndiritu, Robert Kiplimo
Abstract:
Energy consumption is an indispensable component for the continued development of the human population. The global energy demand increases with development and population rise. The increase in energy demand, high cost of fossil fuels and the link between energy utilization and environmental impacts have resulted in the need for a sustainable approach to the utilization of the low grade energy resources. The Organic Rankine Cycle (ORC) power plant is an advantageous technology that can be applied in generation of power from low temperature brine of geothermal reservoirs. The power plant utilizes a low boiling organic working fluid such as a refrigerant or a hydrocarbon. Researches indicated that the performance of ORC power plant is highly dependent upon factors such as proper organic working fluid selection, types of heat exchangers (condenser and evaporator) and turbine used. Despite a high pressure drop, shell-tube heat exchangers have satisfactory performance for ORC power plants. This study involved the design, fabrication and performance assessment of the components of a model Organic Rankine Cycle power plant to utilize the low grade geothermal brine. Two shell and tube heat exchangers (evaporator and condenser) and a single stage impulse turbine have been designed, fabricated and the performance assessment of each component has been conducted. Pentane was used as a working fluid and hot water simulating the geothermal brine. The results of the experiment indicated that the increase in mass flow rate of hot water by 0.08 kg/s caused a rise in overall heat transfer coefficient of the evaporator by 17.33% and the heat transferred was increased by 6.74%. In the condenser, the increase of cooling water flow rate from 0.15 kg/s to 0.35 kg/s increased the overall heat transfer coefficient by 1.21% and heat transferred was increased by 4.26%. The shaft speed varied from 1585 to 4590 rpm as inlet pressure was varied from 0.5 to 5.0 bar and power generated was varying from 4.34 to 14.46W. The results of the experiments indicated that the performance of each component of the model Organic Rankine Cycle power plant operating at low temperature heat resources was satisfactory.Keywords: brine, heat exchanger, ORC, turbine
Procedia PDF Downloads 6516977 Review of Existing Pumped Storage Technologies and their Application in the Case of Bistrica Pump Storage Plant
Authors: Dušan Bojović, Wei Huang, Zdravko Stojanović, Jovan Ilić
Abstract:
In an era of ever-growing electricity generation from renewable energy sources, namely wind and solar, a need for reliable energy storage and intensive balancing of the electric power system gains significance. For decades, pump storage hydroelectric power plants have proven to be an important asset regarding the storage of generated electricity. However, with the increasing overall share of wind and solar in electric systems at large, the importance of electric grid stability keeps growing. A large pump storage project, the Bistrica Pump Storage Plant (PSP), is currently under development in Serbia. The Bistrica PSP will be designed as a 600+ MW power plant, which is envisaged as a significant contributor to the Serbian power grid stability as more and more renewable energy sources are implemented over time. PSP Bistrica is seen as a strategically important project on the green agenda path of the Electric Power Industry of Serbia as a necessary pre-condition for the safe implementation of other renewable energy sources. The importance of such a plant would also play an important role in reducing the electricity production from coal, i.e., thermoelectric power plants. During the project’s development, various techniques and technologies are evaluated for the purpose of determining the optimum (the most profitable) solution. Over the course of this paper, these technologies – such as frequency-regulated pump turbines and ternary sets will be presented, with a detailed explanation of their possible application within the Bistrica PSP project and their relative advantages/disadvantages in this particular case.Keywords: hydraulic turbines, pumped storage, renewable energy, competing technologies
Procedia PDF Downloads 926976 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.Keywords: identification, neural networks, predictive control, transient stability, UPFC
Procedia PDF Downloads 3746975 Physical Function and Physical Activity Preferences of Elderly Individuals Admitted for Elective Abdominal Surgery: A Pilot Study.
Authors: Rozelle Labuschagne, Ronel Roos
Abstract:
Individuals often experience a reduction in physical function, quality of life and basic activities of daily living after surgery. This is exponentially true for high-risk patients, especially the elderly and frail individuals. Not much is known about the physical function, physical activity preferences and factors associated with the six-minute walk test of elderly individuals who would undergo elective abdominal surgery in South Africa. Such information is important to design effective prehabilitation physiotherapy programs prior to elective surgery. The purpose of the study was to describe the demographic profile and physical function of elderly patients who would undergo elective surgery and to determine factors associated with their six-minute walk test distance findings. A cross-sectional descriptive study in elderly patients older than 60 years of age who would undergo elective abdominal surgery were consecutively sampled at a private hospital in Pretoria, South Africa. Participants’ demographics were collected and physical function assessed with the Functional Comorbidity Index (FCI), DeMorton Mobility Index (DEMMI), Lawton-Brody Instrumental Activities of Daily Living Scale (IADL) and six-minute walk test (6MWT). Descriptive and inferential statistics were used for data analysis with IBM SPSS 25. A p-value ≤ 0.05 were deemed statistically significant. The pilot study consisted of 12 participants (female (n=11, 91.7%), male (n=1, 8.3%) with a mean age of 65.8 (±4.5) years, body mass index of 28 (±4.2) kg.m2 with one (8.3%) participant being a current smoker and four (33.3%) participants having a smoking history. Nine (75%) participants lived independently at home and three (25%) had caregivers. Participants reported walking (n=6, 50%), stretching exercises (n=1, 8.3%), household chores & gardening (n=2, 16.7%), biking/swimming/running (n=1, 8.3%) as physical activity preferences. Physical function findings of the sample were: mean FCI score 3 (±1.1), DEMMI score 81.1 (±14.9), IADL 95 (±17.3), 6MWT 435.50 (IQR 364.75-458.50) with percentage 6MWT distance achieved 81.8% (IQR 64.4%-87.5%). A strong negative correlation was observed between 6MWT distance walked and FCI (r = -0.729, p=0.007). The majority of study participants reported incorporating some form of physical activity into their daily life as form of exercise. Most participants did not achieve their predicted 6MWT distance indicating less than optimal levels of physical function capacity. The number of comorbidities as determined by the FCI was associated with the distance that participants could walk with the 6MWT. The results of this pilot study could be used to indicate which elderly individuals would benefit most from a pre-surgical rehabilitation program. The main goal of such a program would be to improve physical function capacity as measured by the 6MWT. Surgeons could refer patients based on age and number of comorbidities, as determined by the FCI, to potentially improve surgical outcomes.Keywords: abdominal surgery, elderly, physical function, six-minute walk test
Procedia PDF Downloads 1986974 Damage Assessment of Reinforced Concrete Slabs Subjected to Blast Loading
Authors: W. Badla
Abstract:
A numerical investigation has been carried out to examine the behaviour of reinforced concrete slabs to uniform blast loading. The aim of this work is to determine the effects of various parameters on the results. Finite element simulations were performed in the non linear dynamic range using an elasto-plastic damage model. The main parameters considered are: the negative phase of blast loading, time duration, equivalent weight of TNT, distance of the explosive and slab dimensions. Numerical modelling has been performed using ABAQUS/Explicit. The results obtained in terms of displacements and propagation of damage show that the above parameters influence considerably the nonlinear dynamic behaviour of reinforced concrete slabs under uniform blast loading.Keywords: blast loading, reinforced concrete slabs, elasto-plastic damage model, negative phase, time duration, equivalent weight of TNT, explosive distance, slab dimensions
Procedia PDF Downloads 5346973 Dynamics of India's Nuclear Identity
Authors: Smita Singh
Abstract:
Through the constructivist perspective, this paper explores the transformation of India’s nuclear identity from an irresponsible nuclear weapon power to a ‘de-facto nuclear power’ in the emerging international nuclear order From a nuclear abstainer to a bystander and finally as a ‘de facto nuclear weapon state’, India has put forth its case as a unique and exceptional nuclear power as opposed to Iran, Iraq and North Korea with similar nuclear ambitions, who have been snubbed as ‘rogue states’ by the international community. This paper investigates the reasons behind international community’s gradual acceptance of India’s nuclear weapons capabilities and nuclear identity after the Indo-U.S. Nuclear Deal. In this paper, the central concept of analysis is the inter-subjective nature of identity in the nuclear arena. India’s nuclear behaviour has been discursively constituted by India through evolving images of the ‘self’ and the ‘other.’ India’s sudden heightened global status is not solely the consequence of its 1998 nuclear tests but a calibrated projection as a responsible stakeholder in other spheres such as economic potential, market prospects, democratic credentials and so on. By examining India’s nuclear discourse this paper contends that India has used its material and discursive power in presenting a n striking image as a responsible nuclear weapon power (though not yet a legal nuclear weapon state as per the NPT). By historicising India’s nuclear trajectory through an inter-subjective analysis of identities, this paper moves a step ahead in providing a theoretical interpretation of state actions and nuclear identity construction.Keywords: nuclear identity, India, constructivism, international stakeholder
Procedia PDF Downloads 4406972 Clustering Performance Analysis using New Correlation-Based Cluster Validity Indices
Authors: Nathakhun Wiroonsri
Abstract:
There are various cluster validity measures used for evaluating clustering results. One of the main objectives of using these measures is to seek the optimal unknown number of clusters. Some measures work well for clusters with different densities, sizes and shapes. Yet, one of the weaknesses that those validity measures share is that they sometimes provide only one clear optimal number of clusters. That number is actually unknown and there might be more than one potential sub-optimal option that a user may wish to choose based on different applications. We develop two new cluster validity indices based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points are located in. Our proposed indices constantly yield several peaks at different numbers of clusters which overcome the weakness previously stated. Furthermore, the introduced correlation can also be used for evaluating the quality of a selected clustering result. Several experiments in different scenarios, including the well-known iris data set and a real-world marketing application, have been conducted to compare the proposed validity indices with several well-known ones.Keywords: clustering algorithm, cluster validity measure, correlation, data partitions, iris data set, marketing, pattern recognition
Procedia PDF Downloads 1036971 Symmetry of Performance across Lower Limb Tests between the Dominant and Non-Dominant Legs
Authors: Ghulam Hussain, Herrington Lee, Comfort Paul, Jones Richard
Abstract:
Background: To determine the functional limitations of the lower limbs or readiness to return to sport, most rehabilitation programs use some form of testing; however, it is still unknown what the pass criteria is. This study aims to investigate the differences between the dominant and non-dominant leg performances across several lower limb tasks, which are hop tests, two-dimensional (2D) frontal plane projection angle (FPPA) tests, and isokinetic muscle tests. This study also provides the reference values for the limb symmetry index (LSI) for the hop and isokinetic muscle strength tests. Twenty recreationally active participants were recruited, 11 males and 9 females (age 23.65±2.79 years; height 169.9±3.74 cm; and body mass 74.72±5.81 kg. All tests were undertaken on the dominant and non-dominant legs. These tests are (1) Hop tests, which include horizontal hop for distance and crossover hop tests, (2) Frontal plane projection angle (FPPA): 2D capturing from two different tasks, which are forward hop landing and squatting, and (3) Isokinetic muscle strength tests: four different muscles were tested: quadriceps, hamstring, ankle plantar flexor, and hip extensor muscles. The main outcome measurements were, for the (1) hop tests: maximum distance was taken when undertaking single/crossover hop for distance using a standard tape measure, (2) for the FPPA: the knee valgus angle was measured from the maximum knee flexion position using a single 2D camera, and (3) for the isokinetic muscle strength tests: three different variables were measured: peak torque, peak torque to body weight, and the total work to body weight. All the muscle strength tests have been applied in both concentric and eccentric muscle actions at a speed of 60°/sec. This study revealed no differences between the dominant and non-dominant leg performance, and 85% of LSI was achieved by the majority of the subjects in both hop and isokinetic muscle tests, and; therefore, one leg’s hop performance can define the other.Keywords: 2D FPPA, hop tests, isokinetic testing, LSI
Procedia PDF Downloads 676970 Despiking of Turbulent Flow Data in Gravel Bed Stream
Authors: Ratul Das
Abstract:
The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.Keywords: acoustic doppler velocimeter, gravel-bed, spike removal, reynolds shear stress, near-bed turbulence, velocity power spectra
Procedia PDF Downloads 3006969 Selection of Appropriate Classification Technique for Lithological Mapping of Gali Jagir Area, Pakistan
Authors: Khunsa Fatima, Umar K. Khattak, Allah Bakhsh Kausar
Abstract:
Satellite images interpretation and analysis assist geologists by providing valuable information about geology and minerals of an area to be surveyed. A test site in Fatejang of district Attock has been studied using Landsat ETM+ and ASTER satellite images for lithological mapping. Five different supervised image classification techniques namely maximum likelihood, parallelepiped, minimum distance to mean, mahalanobis distance and spectral angle mapper have been performed on both satellite data images to find out the suitable classification technique for lithological mapping in the study area. Results of these five image classification techniques were compared with the geological map produced by Geological Survey of Pakistan. The result of maximum likelihood classification technique applied on ASTER satellite image has the highest correlation of 0.66 with the geological map. Field observations and XRD spectra of field samples also verified the results. A lithological map was then prepared based on the maximum likelihood classification of ASTER satellite image.Keywords: ASTER, Landsat-ETM+, satellite, image classification
Procedia PDF Downloads 3966968 Advanced Electric Motor Design Using Hollow Conductors for Maximizing Power, Density and Degree of Efficiency
Authors: Michael Naderer, Manuel Hartong, Raad Al-Kinani
Abstract:
The use of hollow conductors is known in electric generators of large MW scale. The application of motors of small scale between 50 and 200kW is new. The latest results in the practical application and set up of machines show that the power density can be raised significantly and the common problem of derating of the motors is prevented. Furthermore, new design dimensions can be realised as continuous current densities up to 75A/mm² are achievable. This paper shows the results of the application of hollow conductors for a motor design used for automotive traction machines comparing common coolings with hollow conductor cooling.Keywords: degree of efficiency, electric motor design, hollow conductors, power density
Procedia PDF Downloads 1996967 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.Keywords: coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator
Procedia PDF Downloads 1756966 Efficacy of Microwave against Oryzaephilus Mercator Pest Infesting Dried Figs and Evaluation of the Product Color Changes Using an Image Processing Technique
Authors: Reza Sadeghi
Abstract:
In this study, microwave heating was employed for controlling Oryzaephilus mercator. adults infesting stored Iranian dried fig. For this purpose, the dried fig samples were artificially infested with O. mercator and then heated in a microwave oven (2450 MHz) at the power outputs of 450, 720, and 900 W for 10, 20, 30, and 40 s, respectively. Subsequently, changes in the colors of the product samples under the effects of the varied microwave applications were investigated in terms of lightness (ΔL*), redness (Δa*), and yellowness (Δb*) using an image processing technique. The results revealed that both parameters of microwave power and exposure time had significant impacts on the pest mortality rates (p<0.01). In fact, a direct positive relationship was obtained between the mortality rate and microwave irradiation power. Complete mortality was achieved for the pest at the power of 900 W and exposure time of 40 s. The dried fig samples experienced fewer changes in their color parameters. Considering the successful pest control and acceptable changes in the product quality, microwave irradiation can be introduced as an appropriate alternative to chemical fumigants.Keywords: colorimetric assay, microwave heating, Oryzaephilus mercator, mortality
Procedia PDF Downloads 89