Search results for: polymer hybrid nanocomposites
2219 Development of Mixed Matrix Membranes by Using NH₂-Functionalized UiO-66 and [APTMS][AC] Ionic Liquid for the Separation of CO₂
Authors: Hafiza Mamoona Khalid, Afshan Mujahid, Asif Ali, Asim Laeeq Khan, Mahmood Saleem, Rafael M. Santos
Abstract:
The ever-escalating CO₂ concentration in the atmosphere calls for accelerated development and deployment of carbon capture processes to reduce emissions. Mixed matrix membranes (MMMs), which are fabricated by incorporating the beneficial properties of highly selective inorganic fillers into a polymer matrix, have exhibited significant progress and the ability to enhance the performance of a membrane for gas separation. In this research, an amine-based ionic liquid (IL) [APTMS][AC] was prepared, which has greater CO₂ affinity and greater solubility due to its amine moiety. The metal–organic framework (MOF) UiO-66 with a multidimensional crystalline structure was used as a filler due to its appropriate porosity and tunable properties, and it was functionalized with NH₂. MOFs were further modified with an IL to prepare UiO-66@IL and UiO-66-NH₂@IL, and MMMs incorporating each MOF were fabricated with the polymer Pebax-1657. All the prepared membranes and MOFs were characterized to predict their separation efficiency. Several characterization techniques, namely, FTIR spectroscopy, XRD, and SEM, were used to successfully synthesize UiO-66@IL and UiO-66-NH₂@IL composites and confirmed proper dispersion and excellent polymer‒ filler compatibility at filler loadings ranging from 0 to 30 wt.%. The separation performances were investigated, and the results showed that the incorporation of RTIL with the highly crystalline structure and large surface area of UiO-66 enhanced the separation efficiency of the membrane. The permeability of CO₂ for all fabricated membranes continuously increased with increasing filler concentration, wherein the permeability was comparatively high for the UiO-66-NH₂ MMMs. The CO₂/CH₄ selectivity improved by 35%, 54%, and 60%, respectively, for UiO-66@IL, UiO-66-NH₂, and UiO-66-NH₂@IL MMMs compared to simple UiO-66 for CO₂/CH₄ and by 28%, 36%, and 63%, respectively, for CO₂/N₂, with an increase in filler loading in the MMMs.Keywords: gas separation, mixed matrix membranes, CO₂ sequestration, climate change, global warming
Procedia PDF Downloads 132218 New Results on Stability of Hybrid Stochastic Systems
Authors: Manlika Rajchakit
Abstract:
This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, lyapunov functional, linear matrix inequalities
Procedia PDF Downloads 4292217 Corrosion Behaviour of Al-Mg-Si Alloy Matrix Hybrid Composite Reinforced with Cassava Peel Ash and Silicon Carbide
Authors: B. Oji, O. Olaniran
Abstract:
The prospect of improving the corrosion property of Al 6063 alloy based hybrid composites reinforced with cassava peel ash (CPA) and silicon carbide (SiC) is the target of this research. It seeks to determine the viability of using locally sourced material (CPA) as a complimentary reinforcement for SiC to produce low cost high performance aluminum matrix composite. The CPA was mixed with the SiC in the ratios 0:1, 1:3, 1:1, 3:1 and 1:0 for 8 wt % reinforcement in the produced composites by double stir-casting method. The microstructures of the composites were studied before and after corrosion using the scanning electron microscopy which reveals the matrix (dark region) and eutectic phase (lamellar region). The corrosion rate was studied in accordance with ASTM G59-97 (2014) using an AutoLab potentiostat (Versa STAT 400) with versaSTUDIO electrochemical software which analyses the results obtained. The result showed that Al 6063 alloy exhibited good corrosion resistance in 0.3M H₂SO₄ and 3.5 wt. % NaCl solutions with sample C containing the 25% wt CPA showing the highest resistance to corrosion with corrosion rate of 0.0046 mmpy as compared to the control sample which has a value of 13.233 mmpy. Sample B, D, E, and F also showed a corrosion rate of 3.9502, 2.6903, 2.1223, and 5.7344 mmpy which indicated a better corrosion rate than the control in the acidic environment. The corrosion rate in the saline medium shows that sample E with 75% wt CPA has the lowest corrosion rate of 0.0422 mmpy as compared to the control sample with 0.0873 mmpy corrosion rate.Keywords: Al-Mg-Si alloy, AutoLab potentiostat, Cassava Peel Ash, CPA, hybrid composite, stir-cast method
Procedia PDF Downloads 1272216 Preparation and Properties of Gelatin-Bamboo Fibres Foams for Packaging Applications
Authors: Luo Guidong, Song Hang, Jim Song, Virginia Martin Torrejon
Abstract:
Due to their excellent properties, polymer packaging foams have become increasingly essential in our current lifestyles. They are cost-effective and lightweight, with excellent mechanical and thermal insulation properties. However, they constitute a major environmental and health concern due to litter generation, ocean pollution, and microplastic contamination of the food chain. In recent years, considerable efforts have been made to develop more sustainable alternatives to conventional polymer packaging foams. As a result, biobased and compostable foams are increasingly becoming commercially available, such as starch-based loose-fill or PLA trays. However, there is still a need for bulk manufacturing of bio-foams planks for packaging applications as a viable alternative to their fossil fuel counterparts (i.e., polystyrene, polyethylene, and polyurethane). Gelatin is a promising biopolymer for packaging applications due to its biodegradability, availability, and biocompatibility, but its mechanical properties are poor compared to conventional plastics. However, as widely reported for other biopolymers, such as starch, the mechanical properties of gelatin-based bioplastics can be enhanced by formulation optimization, such as the incorporation of fibres from different crops, such as bamboo. This research aimed to produce gelatin-bamboo fibre foams by mechanical foaming and to study the effect of fibre content on the foams' properties and structure. As a result, foams with virtually no shrinkage, low density (<40 kg/m³), low thermal conductivity (<0.044 W/m•K), and mechanical properties comparable to conventional plastics were produced. Further work should focus on developing formulations suitable for the packaging of water-sensitive products and processing optimization, especially the reduction of the drying time.Keywords: biobased and compostable foam, sustainable packaging, natural polymer hydrogel, cold chain packaging
Procedia PDF Downloads 1052215 In-Vitro Evaluation of the Long-Term Stability of PEDOT:PSS Coated Microelectrodes for Chronic Recording and Electrical Stimulation
Authors: A. Schander, T. Tessmann, H. Stemmann, S. Strokov, A. Kreiter, W. Lang
Abstract:
For the chronic application of neural prostheses and other brain-computer interfaces, long-term stable microelectrodes for electrical stimulation are essential. In recent years many developments were done to investigate different appropriate materials for these electrodes. One of these materials is the electrical conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), which has lower impedance and higher charge injection capacity compared to noble metals like gold and platinum. However the long-term stability of this polymer is still unclear. Thus this paper reports on the in-vitro evaluation of the long-term stability of PEDOT coated gold microelectrodes. For this purpose a highly flexible electrocorticography (ECoG) electrode array, based on the polymer polyimide, is used. This array consists of circular gold electrodes with a diameter of 560 µm (0.25 mm2). In total 25 electrodes of this array were coated simultaneously with the polymer PEDOT:PSS in a cleanroom environment using a galvanostatic electropolymerization process. After the coating the array is additionally sterilized using a steam sterilization process (121°C, 1 bar, 20.5 min) to simulate autoclaving prior to the implantation of such an electrode array. The long-term measurements were performed in phosphate-buffered saline solution (PBS, pH 7.4) at the constant body temperature of 37°C. For the in-vitro electrical stimulation a one channel bipolar current stimulator is used. The stimulation protocol consists of a bipolar current amplitude of 5 mA (cathodal phase first), a pulse duration of 100 µs per phase, a pulse pause of 50 µs and a frequency of 1 kHz. A PEDOT:PSS coated gold electrode with an area of 1 cm2 serves as the counter electrode. The electrical stimulation is performed continuously with a total amount of 86.4 million bipolar current pulses per day. The condition of the PEDOT coated electrodes is monitored in between with electrical impedance spectroscopy measurements. The results of this study demonstrate that the PEDOT coated electrodes are stable for more than 3.6 billion bipolar current pulses. Also the unstimulated electrodes show currently no degradation after the time period of 5 months. These results indicate an appropriate long-term stability of this electrode coating for chronic recording and electrical stimulation. The long-term measurements are still continuing to investigate the life limit of this electrode coating.Keywords: chronic recording, electrical stimulation, long-term stability, microelectrodes, PEDOT
Procedia PDF Downloads 5852214 Multidrug Therapies For HIV: Hybrid On-Off, Hysteresis On-Off Control and Simple STI
Authors: Magno Enrique Mendoza Meza
Abstract:
This paper deals with the comparison of three control techniques: the hysteresis on-off control (HyOOC), the hybrid on-off control (HOOC) and the simple Structured Treatment Interruptions (sSTI). These techniques are applied to the mathematical model developed by Kirschner and Webb. To compare these techniques we use a cost functional that minimize the wild-type virus population and the mutant virus population, but the main objective is to minimize the systemic cost of treatment and maximize levels of healthy CD4+ T cells. HyOOC, HOOC, and sSTI are applied to the drug therapies using a reverse transcriptase and protease inhibitors; simulations show that these controls maintain the uninfected cells in a small, bounded neighborhood of a pre-specified level. The controller HyOOC and HOOC are designed by appropriate choice of virtual equilibrium points.Keywords: virus dynamics, on-off control, hysteresis, multi-drug therapies
Procedia PDF Downloads 3942213 Reducing Antimicrobial Resistance Using Biodegradable Polymer Composites of Mof-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole
Authors: Anoff Anim, Lila Mahmound, Maria Katsikogianni, Sanjit Nayak
Abstract:
Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs, and can be a potential strategy to integrate them in biomedical devices.Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA
Procedia PDF Downloads 852212 Hybrid Obfuscation Technique for Reverse Engineering Problem
Authors: Asma’a Mahfoud, Abu Bakar Md. Sultan, Abdul Azim Abd, Norhayati Mohd Ali, Novia Admodisastro
Abstract:
Obfuscation is a practice to make something difficult and complicated. Programming code is ordinarily obfuscated to protect the intellectual property (IP) and prevent the attacker from reverse engineering (RE) a copyrighted software program. Obfuscation may involve encrypting some or all the code, transforming out potentially revealing data, renaming useful classes and variables (identifiers) names to meaningless labels, or adding unused or meaningless code to an application binary. Obfuscation techniques were not performing effectively recently as the reversing tools are able to break the obfuscated code. We propose in this paper a hybrid obfuscation technique that contains three approaches of renaming. Experimentation was conducted to test the effectiveness of the proposed technique. The experimentation has presented a promising result, where the reversing tools were not able to read the code.Keywords: intellectual property, obfuscation, software security, reverse engineering
Procedia PDF Downloads 1462211 Charge Carrier Mobility Dependent Open-Circuit Voltage in Organic and Hybrid Solar Cells
Authors: David Ompong, Jai Singh
Abstract:
A better understanding of the open-circuit voltage (Voc) related losses in organic solar cells (OSCs) is desirable in order to assess the photovoltaic performance of these devices. We have derived Voc as a function of charge carrier mobilities (μe and μh) for organic and hybrid solar cells by optimizing the drift-diffusion current density. The optimum Voc thus obtained depends on the energy difference between the highest occupied molecular orbital (HOMO) level and the quasi-Fermi level of holes of the donor material. We have found that the Voc depends on the ratio of the electron (μe) and hole (μh) mobilities and when μh > μe the Voc increases. The most important loss term in the Voc arises from the energetics of the donor and acceptor materials, which will be discussed in detail in this paper.Keywords: charge carrier mobility, open-circuit voltage, organic solar cells, quasi-fermi levels
Procedia PDF Downloads 4492210 Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study
Authors: Daly M. J, Condron C, Mulhall C, Eppich W, O'Neill J.
Abstract:
Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology.Keywords: cardiology, clinical skills, long case examination, hybrid simulation, checklist
Procedia PDF Downloads 1102209 Design of a Controlled BHJ Solar Cell Using Modified Organic Vapor Spray Deposition Technique
Authors: F. Stephen Joe, V. Sathya Narayanan, V. R. Sanal Kumar
Abstract:
A comprehensive review of the literature on photovoltaic cells has been carried out for exploring the better options for cost efficient technologies for future solar cell applications. Literature review reveals that the Bulk Heterojunction (BHJ) Polymer Solar cells offer special opportunities as renewable energy resources. It is evident from the previous studies that the device fabricated with TiOx layer shows better power conversion efficiency than that of the device without TiOx layer. In this paper, authors designed a controlled BHJ solar cell using a modified organic vapor spray deposition technique facilitated with a vertical-moving gun named as 'Stephen Joe Technique' for getting a desirable surface pattern over the substrate to improving its efficiency over the years for industrial applications. We comprehended that the efficient processing and the interface engineering of these solar cells could increase the efficiency up to 5-10 %.Keywords: BHJ polymer solar cell, photovoltaic cell, solar cell, Stephen Joe technique
Procedia PDF Downloads 5432208 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics
Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim
Abstract:
A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic
Procedia PDF Downloads 1292207 Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass
Authors: Diana Rymuszka, Konrad Terpiłowski, Lucyna Hołysz, Elena Goncharuk, Iryna Sulym
Abstract:
Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection.Keywords: contact angle, plasma, superhydrophobic, surface free energy
Procedia PDF Downloads 4812206 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation
Procedia PDF Downloads 982205 Modeling and Characterization of Organic LED
Authors: Bouanati Sidi Mohammed, N. E. Chabane Sari, Mostefa Kara Selma
Abstract:
It is well-known that Organic light emitting diodes (OLEDs) are attracting great interest in the display technology industry due to their many advantages, such as low price of manufacturing, large-area of electroluminescent display, various colors of emission included white light. Recently, there has been much progress in understanding the device physics of OLEDs and their basic operating principles. In OLEDs, Light emitting is the result of the recombination of electron and hole in light emitting layer, which are injected from cathode and anode. For improve luminescence efficiency, it is needed that hole and electron pairs exist affluently and equally and recombine swiftly in the emitting layer. The aim of this paper is to modeling polymer LED and OLED made with small molecules for studying the electrical and optical characteristics. The first simulation structures used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2’-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode usually an indium tin oxide (ITO) substrate, and a cathode, such as Al. In the second structure we replace MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). We choose MEH-PPV because of it's solubility in common organic solvents, in conjunction with a low operating voltage for light emission and relatively high conversion efficiency and Alq3 because it is one of the most important host materials used in OLEDs. In this simulation, the Poole-Frenkel- like mobility model and the Langevin bimolecular recombination model have been used as the transport and recombination mechanism. These models are enabled in ATLAS -SILVACO software. The influence of doping and thickness on I(V) characteristics and luminescence, are reported.Keywords: organic light emitting diode, polymer lignt emitting diode, organic materials, hexoxy-phenylenevinylene
Procedia PDF Downloads 5542204 Optimization and Operation of Charging and Discharging Stations for Hybrid Cars and their Effects on the Electricity Distribution Network
Authors: Ali Heydarimoghim
Abstract:
In this paper, the optimal placement of charging and discharging stations is done to determine the location and capacity of the stations, reducing the cost of electric vehicle owners' losses, reducing the cost of distribution system losses, and reducing the costs associated with the stations. Also, observing the permissible limits of the bus voltage and the capacity of the stations and their distance are considered as constraints of the problem. Given the traffic situation in different areas of a city, we estimate the amount of energy required to charge and the amount of energy provided to discharge electric vehicles in each area. We then introduce the electricity distribution system of the city in question. Following are the scenarios for introducing the problem and introducing the objective and constraint functions. Finally, the simulation results for different scenarios are compared.Keywords: charging & discharging stations, hybrid vehicles, optimization, replacement
Procedia PDF Downloads 1382203 Ferroelectricity in Fused Potassium Nitrate-Polymer Composite Films
Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal
Abstract:
The ferroelectric properties of fused potassium nitrate (KNO3)- polyvinyl alcohol (PVA) composite films have been investigated. The composite films of KNO3-PVA have been prepared by solvant cast technique and then fused over the brass substrate. The ferroelectric hysteresis loops (P-E) have been obtained at room temperature using modified Sawyer-Tower circuit. Percentage of back switching and differential dielectric constant has been derived from P-V loops. The x-ray diffraction (XRD) studies confirm the formation of ferroelectric phase (phase III) in these composite films. The AFM and FE-SEM studies have been used to study the surface morphology of these composite films. The values of remanemt polarization, coercive field, back switching, crystallite size, lattice parameters, and surface roughness have been estimated and correlated.Keywords: ferroelectric polymer composite, remanemt polarization, back switching, crystallite size, lattice parameters and surface roughness
Procedia PDF Downloads 3982202 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 762201 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 1872200 3D Linear and Cyclic Homo-Peptide Crystals Forged by Supramolecular Swelling Self-Assembly
Authors: Wenliang Song, Yu Zhang, Hua Jin, Il Kim
Abstract:
The self-assembly of the polypeptide (PP) into well-defined structures at different length scales is both biomimetic relevant and fundamentally interesting. Although there are various reports of nanostructures fabricated by the self-assembly of various PPs, directed self-assembly of PP into three-dimensional (3D) hierarchical structure has proven to be difficult, despite their importance for biological applications. Herein, an efficient method has been developed through living polymerization of phenylalanine N-Carboxy anhydride (NCA) towards the linear and cyclic polyphenylalanine, and the new invented swelling methodology can form diverse hierarchical polypeptide crystals. The solvent-dependent self-assembly behaviors of these homopolymers were characterized by high-resolution imaging tools such as atomic force microscopy, transmission electron microscopy, scanning electron microscope. The linear and cyclic polypeptide formed 3D nano hierarchical shapes, such as a sphere, cubic, stratiform and hexagonal star in different solvents. Notably, a crystalline packing model was proposed to explain the formation of 3D nanostructures based on the various diffraction patterns, looking forward to give an insight for their dissimilar shape inflection during the self-assembly process.Keywords: self-assembly, polypeptide, bio-polymer, crystalline polymer
Procedia PDF Downloads 2402199 Prediction For DC-AC PWM Inverters DC Pulsed Current Sharing From Passive Parallel Battery-Supercapacitor Energy Storage Systems
Authors: Andreas Helwig, John Bell, Wangmo
Abstract:
Hybrid energy storage systems (HESS) are gaining popularity for grid energy storage (ESS) driven by the increasingly dynamic nature of energy demands, requiring both high energy and high power density. Particularly the ability of energy storage systems via inverters to respond to increasing fluctuation in energy demands, the combination of lithium Iron Phosphate (LFP) battery and supercapacitor (SC) is a particular example of complex electro-chemical devices that may provide benefit to each other for pulse width modulated DC to AC inverter application. This is due to SC’s ability to respond to instantaneous, high-current demands and batteries' long-term energy delivery. However, there is a knowledge gap on the current sharing mechanism within a HESS supplying a load powered by high-frequency pulse-width modulation (PWM) switching to understand the mechanism of aging in such HESS. This paper investigates the prediction of current utilizing various equivalent circuits for SC to investigate sharing between battery and SC in MATLAB/Simulink simulation environment. The findings predict a significant reduction of battery current when the battery is used in a hybrid combination with a supercapacitor as compared to a battery-only model. The impact of PWM inverter carrier switching frequency on current requirements was analyzed between 500Hz and 31kHz. While no clear trend emerged, models predicted optimal frequencies for minimized current needs.Keywords: hybrid energy storage, carrier frequency, PWM switching, equivalent circuit models
Procedia PDF Downloads 262198 Effect of TEOS Electrospun Nanofiber Modified Resin on Interlaminar Shear Strength of Glass Fiber/Epoxy Composite
Authors: Dattaji K. Shinde, Ajit D. Kelkar
Abstract:
Interlaminar shear strength (ILSS) of fiber reinforced polymer composite is an important property for most of the structural applications. Matrix modification is an effective method used to improve the interlaminar shear strength of composite. In this paper, EPON 862/w epoxy system was modified using Tetraethyl orthosilicate (TEOS) electrospun nanofibers (ENFs) which were produced using electrospinning method. Unmodified and nanofibers modified resins were used to fabricate glass fiber reinforced polymer composite (GFRP) using H-VARTM method. The ILSS of the Glass Fiber Reinforced Polymeric Composites (GFRP) was investigated. The study shows that introduction of TEOS ENFs in the epoxy resin enhanced the ILSS of GFRPby 15% with 0.6% wt. fraction of TEOS ENFs.Keywords: electrospun nanofibers, H-VARTM, interlaminar shear strength, matrix modification
Procedia PDF Downloads 2202197 BaFe12O19/Polythiophene Nanocomposite as Electrochemical Supercapacitor Electrode
Authors: H. Farokhi, A. Bahadoran
Abstract:
This paper is focused on the absorbance and magnetic properties of a novel nanocomposite based on conducting polymer, carbon black and barium hexaferrite in epoxy resin on the E-glass fibre substrate. The highly conductive nanocomposite was provided by in-situ polymerization of aniline in the presence of carbon black (C) and barium hexaferrite (BaFe12O19) as electromagnetic absorbance material. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). SEM images showed the uniformly coated PAni on the surface of carbon black and barium hexaferrite. XRD peaks also verified the presence of carbon black and barium hexaferrite in the nanocomposite. The microwave characteristics determined from the magnetic and dielectric properties of the elastomeric composites obtained from scattering data by fitting the samples in a waveguide, where measured in the frequency in X-band frequency range, the range of 8 to 12 GHz. The reflection losses were evaluated to be less than −5dB over the whole X-band frequency (8–12 GHz) for the thickness of 1.4mm.Keywords: conductive polymer, magnetic materials, capacitance, electrochemical cell
Procedia PDF Downloads 2482196 Ni-W-P Alloy Coating as an Alternate to Electroplated Hard Cr Coating
Authors: S. K. Ghosh, C. Srivastava, P. K. Limaye, V. Kain
Abstract:
Electroplated hard chromium is widely known in coatings and surface finishing, automobile and aerospace industries because of its excellent hardness, wear resistance and corrosion properties. However, its precursor, Cr+6 is highly carcinogenic in nature and a consensus has been adopted internationally to eradicate this coating technology with an alternative one. The search for alternate coatings to electroplated hard chrome is continuing worldwide. Various alloys and nanocomposites like Co-W alloys, Ni-Graphene, Ni-diamond nanocomposites etc. have already shown promising results in this regard. Basically, in this study, electroless Ni-P alloys with excellent corrosion resistance was taken as the base matrix and incorporation of tungsten as third alloying element was considered to improve the hardness and wear resistance of the resultant alloy coating. The present work is focused on the preparation of Ni–W–P coatings by electrodeposition with different content of phosphorous and its effect on the electrochemical, mechanical and tribological performances. The results were also compared with Ni-W alloys. Composition analysis by EDS showed deposition of Ni-32.85 wt% W-3.84 wt% P (designated as Ni-W-LP) and Ni-18.55 wt% W-8.73 wt% P (designated as Ni-W-HP) alloy coatings from electrolytes containing of 0.006 and 0.01M sodium hypophosphite respectively. Inhibition of tungsten deposition in the presence of phosphorous was noted. SEM investigation showed cauliflower like growth along with few microcracks. The as-deposited Ni-W-P alloy coating was amorphous in nature as confirmed by XRD investigation and step-wise crystallization was noticed upon annealing at higher temperatures. For all the coatings, the nanohardness was found to increase after heat-treatment and typical nanonahardness values obtained for 400°C annealed samples were 18.65±0.20 GPa, 20.03±0.25 GPa, and 19.17±0.25 for alloy coatings Ni-W, Ni-W-LP and Ni-W-HP respectively. Therefore, the nanohardness data show very promising results. Wear and coefficient of friction data were recorded by applying a different normal load in reciprocating motion using a ball on plate geometry. Post experiment, the wear mechanism was established by detail investigation of wear-scar morphology. Potentiodynamic measurements showed coating with a high content of phosphorous was most corrosion resistant in 3.5wt% NaCl solution.Keywords: corrosion, electrodeposition, nanohardness, Ni-W-P alloy coating
Procedia PDF Downloads 3482195 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image
Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche
Abstract:
The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter
Procedia PDF Downloads 1632194 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6252193 Valorization of Plastic and Cork Wastes in Design of Composite Materials
Authors: Svetlana Petlitckaia, Toussaint Barboni, Paul-Antoine Santoni
Abstract:
Plastic is a revolutionary material. However, the pollution caused by plastics damages the environment, human health and the economy of different countries. It is important to find new ways to recycle and reuse plastic material. The use of waste materials as filler and as a matrix for composite materials is receiving increasing attention as an approach to increasing the economic value of streams. In this study, a new composite material based on high-density polyethylene (HDPE) and polypropylene (PP) wastes from bottle caps and cork powder from unused cork (virgin cork), which has a high capacity for thermal insulation, was developed. The composites were prepared with virgin and modified cork. The composite materials were obtained through twin-screw extrusion and injection molding. The composites were produced with proportions of 0 %, 5 %, 10 %, 15 %, and 20 % of cork powder in a polymer matrix with and without coupling agent and flame retardant. These composites were investigated in terms of mechanical, structural and thermal properties. The effect of cork fraction, particle size and the use of flame retardant on the properties of composites were investigated. The properties of samples elaborated with the polymer and the cork were compared to them with the coupling agent and commercial flame retardant. It was observed that the morphology of HDPE/cork and PP/cork composites revealed good distribution and dispersion of cork particles without agglomeration. The results showed that the addition of cork powder in the polymer matrix reduced the density of the composites. However, the incorporation of natural additives doesn’t have a significant effect on water adsorption. Regarding the mechanical properties, the value of tensile strength decreases with the addition of cork powder, ranging from 30 MPa to 19 MPa for PP composites and from 19 MPa to 17 MPa for HDPE composites. The value of thermal conductivity of composites HDPE/cork and PP/ cork is about 0.230 W/mK and 0.170 W/mK, respectively. Evaluation of the flammability of the composites was performed using a cone calorimeter. The results of thermal analysis and fire tests show that it is important to add flame retardants to improve fire resistance. The samples elaborated with the coupling agent and flame retardant have better mechanical properties and fire resistance. The feasibility of the composites based on cork and PP and HDPE wastes opens new ways of valorizing plastic waste and virgin cork. The formulation of composite materials must be optimized.Keywords: composite materials, cork and polymer wastes, flammability, modificated cork
Procedia PDF Downloads 882192 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication
Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi
Abstract:
Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.Keywords: hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress
Procedia PDF Downloads 3042191 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics
Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou
Abstract:
Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle
Procedia PDF Downloads 3252190 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 155