Search results for: neural interface
2118 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores
Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi
Abstract:
In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.Keywords: drug synergy, clustering, prediction, machine learning., deep learning
Procedia PDF Downloads 862117 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill
Authors: Jagdish Prasad Sahoo
Abstract:
The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.Keywords: active, finite elements, limit analysis, presudo-static, reinforcement
Procedia PDF Downloads 3702116 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 1512115 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam
Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee
Abstract:
In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model
Procedia PDF Downloads 4772114 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 452113 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 612112 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities
Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su
Abstract:
The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient
Procedia PDF Downloads 4762111 Seismic Behavior of Masonry Reinforced Concrete Composite Columns
Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki
Abstract:
To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing
Procedia PDF Downloads 2212110 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.Keywords: QFN packages, exposed pads, junction temperature, thermal management and measurements
Procedia PDF Downloads 2602109 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 962108 Review and Evaluation of Trending Canonical Correlation Analyses-Based Brain Computer Interface Methods
Authors: Bayar Shahab
Abstract:
The fast development of technology that has advanced neuroscience and human interaction with computers has enabled solutions to various problems, and issues of this new era have been found and are being found like no other time in history. Brain-computer interface so-called BCI has opened the door to several new research areas and have been able to provide solutions to critical and important issues such as supporting a paralyzed patient to interact with the outside world, controlling a robot arm, playing games in VR with the brain, driving a wheelchair or even a car and neurotechnology enabled the rehabilitation of the lost memory, etc. This review work presents state-of-the-art methods and improvements of canonical correlation analyses (CCA), which is an SSVEP-based BCI method. These are the methods used to extract EEG signal features or, to be said in a different way, the features of interest that we are looking for in the EEG analyses. Each of the methods from oldest to newest has been discussed while comparing their advantages and disadvantages. This would create a great context and help researchers to understand the most state-of-the-art methods available in this field with their pros and cons, along with their mathematical representations and usage. This work makes a vital contribution to the existing field of study. It differs from other similar recently published works by providing the following: (1) stating most of the prominent methods used in this field in a hierarchical way (2) explaining pros and cons of each method and their performance (3) presenting the gaps that exist at the end of each method that can open the understanding and doors to new research and/or improvements.Keywords: BCI, CCA, SSVEP, EEG
Procedia PDF Downloads 1472107 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 1292106 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 802105 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1992104 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System
Authors: J. K. Adedeji, M. O. Oyekanmi
Abstract:
This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.Keywords: biometric characters, facial recognition, neural network, OpenCV
Procedia PDF Downloads 2592103 The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience
Authors: Parisa Mansour
Abstract:
Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration.Keywords: glial activity, manganese-enhanced magnetic resonance imaging, neuroarchitecture, neuronal activity, neuronal tract tracing, visual pathway, eye
Procedia PDF Downloads 452102 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method
Authors: Laheeb M. Ibrahim, Ibrahim A. Salih
Abstract:
Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO
Procedia PDF Downloads 5352101 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1872100 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress
Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang
Abstract:
The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology
Procedia PDF Downloads 972099 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy
Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua
Abstract:
Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may have damaged ToM due to impact on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks; (1)each patient group performed worse than HC; (2)there were no significant differences between LTLE and RTLE groups; (3)the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.Keywords: cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind
Procedia PDF Downloads 4222098 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 762097 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.Keywords: soft jar test, jar test, water treatment plant process, artificial neural network
Procedia PDF Downloads 1692096 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2672095 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 1372094 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network
Authors: Gajaanuja Megalathan, Banuka Athuraliya
Abstract:
Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.Keywords: arima model, ANN, crime prediction, data analysis
Procedia PDF Downloads 1412093 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 1492092 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1332091 Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films
Authors: Guo Lei, Wang Yue, Nakamura Yoshio, Shi Ji
Abstract:
Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films.Keywords: perpendicular exchange bias, magnetoelastically induced perpendicular magnetic anisotropy, CoO5nm/CoPt5nm]5 multilayer film with in-plane stress, perpendicular magnetic tunneling junction
Procedia PDF Downloads 4652090 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances
Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm
Abstract:
ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances
Procedia PDF Downloads 3772089 Modelling and Optimisation of Floating Drum Biogas Reactor
Authors: L. Rakesh, T. Y. Heblekar
Abstract:
This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.Keywords: biogas, floating drum reactor, neural network model, optimization
Procedia PDF Downloads 147