Search results for: traditional techniques
10106 Evaluation of Bagh Printing Motifs and Processes of Madhya Pradesh: From Past to Contemporary
Authors: Kaveri Dutta, Ratna Sharma
Abstract:
Indian traditional textile is a synthesis of various cultures. Art and crafts of a country showcases the rich cultural and artistic history of that nation. Prehistorically Indian handicrafts were basically made for day to day use; the yearning for aesthetic application soon saw the development of flooding designs and motifs. Similarly, Bagh print a traditional hand block Print with natural colours an Indian handicraft practiced in Bagh, Madhya Pradesh(India). Bagh print has its roots in Sindh, which is now a part of Pakistan. The present form of Bagh printing actually started in 1962 when the craftsmen migrated from Manavar to the neighboring town of Bagh situated in Madhya Pradesh and hence Bagh has always been associated with this printing style. Bagh printing basically involved blocks that are carved onto motifs that represent flora such as Jasmine, Mushroom leheriya and so on. There are some prints that were inspired by the jaali work that embellished the Taj Mahal and various other forts. Inspiration is also drawn from the landscapes and geometrical figures. The motifs evoke various moods in the serenity of the prints and that is the catchy element of Bagh prints. The development in this traditional textile is as essential as in another field. Nowadays fashion trends are fragile and innovative changes over existing fashion field in the short span is the demand of times. We must make efforts to preserve this cultural heritage of arts and crafts and this is done either by documenting the various ancient traditions or by making a blend of it. Since this craft is well known over the world, but the need is to document the original motif, fabric, technology and colors used in contemporary fashion. Hence keeping above points in mind this study on bagh print textiles of Madhya Pradesh work has been formulated. The information incorporated in the paper was based on secondary data taken from relevant books, journals, museum visit and articles. Besides for the demographic details and working profile of the artisans dealt with printing, an interview schedule was carried out in three regions of Madhya Pradesh. This work of art was expressed in Cotton fabric. For this study selected traditional motifs for Bang printing was used. Some of the popular traditional Bagh motifs are Jasmine, Mushroom leheriya, geometrical figures and jaali work. The Bagh printed cotton fabrics were developed into a range of men’s ethic wear in combination with embroideries from Rajasthan. Products developed were bandhgala jackets, kurtas, serwani and dupattas. From the present study, it can be observed that the embellished traditional Bang printed range of ethnic men’s wear resulted in the fresh and colourful pattern. The embroidered Bagh printed cotton fabric also created a huge change in a positive way among artisans of the three regions.Keywords: art and craft of Madhya Pradesh, evolution of printing in India, history of Bagh printing, sources of inspiration
Procedia PDF Downloads 35510105 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 41810104 On the Influence of the Covid-19 Pandemic on Tunisian Stock Market: By Sector Analysis
Authors: Nadia Sghaier
Abstract:
In this paper, we examine the influence of the COVID-19 pandemic on the performance of the Tunisian stock market and 12 sectors over a recent period from 23 March 2020 to 18 August 2021, including several waves and the introduction of vaccination. The empirical study is conducted using cointegration techniques which allows for long and short-run relationships. The obtained results indicate that both daily growth in confirmed cases and deaths have a negative and significant effect on the stock market returns. In particular, this effect differs across sectors. It seems more pronounced in financial, consumer goods and industrials sectors. These findings have important implications for investors to predict the behavior of the stock market or sectors returns and to implement hedging strategies during the COVID-19 pandemic.Keywords: Tunisian stock market, sectors, COVID-19 pandemic, cointegration techniques
Procedia PDF Downloads 20110103 Calculate Product Carbon Footprint through the Internet of Things from Network Science
Authors: Jing Zhang
Abstract:
To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment
Procedia PDF Downloads 11610102 A Study on Big Data Analytics, Applications and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 8510101 A Study on Big Data Analytics, Applications, and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 9510100 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques
Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas
Abstract:
This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.Keywords: hit song science, product life cycle, machine learning, radio
Procedia PDF Downloads 15710099 Control the Flow of Big Data
Authors: Shizra Waris, Saleem Akhtar
Abstract:
Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.Keywords: computer, it community, industry, big data
Procedia PDF Downloads 19410098 Ozone Therapy and Pulsed Electromagnetic Fields Interplay in Controlling Tumor Growth, Symptom and Pain Management: A Case Report
Authors: J. F. Pollo Gaspary, F. Peron Gaspary, E. M. Simão, R. Concatto Beltrame, G. Orengo de Oliveira, M. S. Ristow Ferreira, F. Sartori Thies, I. F. Minello, F. dos Santos de Oliveira
Abstract:
Background: The immune system has evolved several mechanisms to protect the host against cancer, and it has now been suggested that the expansion of its functions may prevent tumor growth and control the symptoms of cancer patients. Two techniques, ozone therapy and pulsed electromagnetic fields (PEMF), are independently associated with an increase in the immune system functions and they maybe help palliative care of patients in these conditions. Case Report: A patient with rectal adenocarcinoma with metastases decides to interrupt the clinical chemotherapy protocol due to refractoriness and side effects. As a palliative care alternative treatment it is suggested to the patient the use of ozone therapy associated with PEMF techniques. Results: The patient reports an improvement in well-being, in autonomy and in pain control. Imaging tests confirm a pause in tumor growth despite more than 60 days without using classic treatment. These results associated with palliative care alternative treatment stimulate the return to the chemotherapy protocol. Discussion: This case illustrates that these two techniques can contribute to the control of tumor growth and refractory symptoms, such as pain, probably by enhancing the immune system. Conclusions: The potential use of the combination of these two therapies, ozone therapy and PEMF therapy, can contribute to palliation of cancer patients, alone or in combination with pharmacological therapies. The conduct of future investigations on this paradigm can elucidate how much these techniques contribute to the survival and well-being of these patients.Keywords: cancer, complementary and alternative medicine , ozone therapy, palliative care, PEMF therapy
Procedia PDF Downloads 15610097 Development of Enhanced Data Encryption Standard
Authors: Benjamin Okike
Abstract:
There is a need to hide information along the superhighway. Today, information relating to the survival of individuals, organizations, or government agencies is transmitted from one point to another. Adversaries are always on the watch along the superhighway to intercept any information that would enable them to inflict psychological ‘injuries’ to their victims. But with information encryption, this can be prevented completely or at worst reduced to the barest minimum. There is no doubt that so many encryption techniques have been proposed, and some of them are already being implemented. However, adversaries always discover loopholes on them to perpetuate their evil plans. In this work, we propose the enhanced data encryption standard (EDES) that would deploy randomly generated numbers as an encryption method. Each time encryption is to be carried out, a new set of random numbers would be generated, thereby making it almost impossible for cryptanalysts to decrypt any information encrypted with this newly proposed method.Keywords: encryption, enhanced data encryption, encryption techniques, information security
Procedia PDF Downloads 15110096 A Relational Case-Based Reasoning Framework for Project Delivery System Selection
Authors: Yang Cui, Yong Qiang Chen
Abstract:
An appropriate project delivery system (PDS) is crucial to the success of a construction project. Case-based reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the relational case-based reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then, feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.Keywords: relational cased-based reasoning, case-based reasoning, project delivery system, PDS selection
Procedia PDF Downloads 43210095 Secure Data Sharing of Electronic Health Records With Blockchain
Authors: Kenneth Harper
Abstract:
The secure sharing of Electronic Health Records (EHRs) is a critical challenge in modern healthcare, demanding solutions to enhance interoperability, privacy, and data integrity. Traditional standards like Health Information Exchange (HIE) and HL7 have made significant strides in facilitating data exchange between healthcare entities. However, these approaches rely on centralized architectures that are often vulnerable to data breaches, lack sufficient privacy measures, and have scalability issues. This paper proposes a framework for secure, decentralized sharing of EHRs using blockchain technology, cryptographic tokens, and Non-Fungible Tokens (NFTs). The blockchain's immutable ledger, decentralized control, and inherent security mechanisms are leveraged to improve transparency, accountability, and auditability in healthcare data exchanges. Furthermore, we introduce the concept of tokenizing patient data through NFTs, creating unique digital identifiers for each record, which allows for granular data access controls and proof of data ownership. These NFTs can also be employed to grant access to authorized parties, establishing a secure and transparent data sharing model that empowers both healthcare providers and patients. The proposed approach addresses common privacy concerns by employing privacy-preserving techniques such as zero-knowledge proofs (ZKPs) and homomorphic encryption to ensure that sensitive patient information can be shared without exposing the actual content of the data. This ensures compliance with regulations like HIPAA and GDPR. Additionally, the integration of Fast Healthcare Interoperability Resources (FHIR) with blockchain technology allows for enhanced interoperability, enabling healthcare organizations to exchange data seamlessly and securely across various systems while maintaining data governance and regulatory compliance. Through real-world case studies and simulations, this paper demonstrates how blockchain-based EHR sharing can reduce operational costs, improve patient outcomes, and enhance the security and privacy of healthcare data. This decentralized framework holds great potential for revolutionizing healthcare information exchange, providing a transparent, scalable, and secure method for managing patient data in a highly regulated environment.Keywords: blockchain, electronic health records (ehrs), fast healthcare interoperability resources (fhir), health information exchange (hie), hl7, interoperability, non-fungible tokens (nfts), privacy-preserving techniques, tokens, secure data sharing,
Procedia PDF Downloads 2310094 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 13510093 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques
Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai
Abstract:
In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor
Procedia PDF Downloads 27010092 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago
Authors: Tyler Gill, Sophia Daniels
Abstract:
The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis
Procedia PDF Downloads 24510091 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer
Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca
Abstract:
Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography
Procedia PDF Downloads 23010090 Automated Java Testing: JUnit versus AspectJ
Authors: Manish Jain, Dinesh Gopalani
Abstract:
Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.Keywords: aspect oriented programming, AspectJ, aspects, JU-nit, software testing
Procedia PDF Downloads 33110089 A Neural Network Approach to Understanding Turbulent Jet Formations
Authors: Nurul Bin Ibrahim
Abstract:
Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence
Procedia PDF Downloads 7110088 Use of Virtual Reality to Manage Anxiety in Patients on Neuro-Rehabilitation Unit
Authors: Anthony Cogrove, Shagun Saikia, Pradeep Deshpande
Abstract:
Introduction: Management of anxiety in rehabilitation setting often is a challenge and is usually done by using medication. The role of psychology and the creation of a quite environment in order to reduce stimulation helps in the process. We have a hypothesis that feedback from a calm visual imagery with soothing music help in reducing anxiety in these setting Aim-To explore the possibility of using virtual reality in the management of anxiety in a setting of neuro-rehabilitation unit. Method: Six patients in an inpatient rehabilitation unit with acquired brain injury subjected to a low stimulation calming visual motion picture with calm music. Six sessions were conducted over 6 weeks. All sessions were performed in a separate purpose built room in the unit. . A cohort of 6 people with various neurological conditions were involved in 6 sessions of 30 minutes during their inpatient rehabilitation. They reported benefit from using the virtual reality environment in reducing their anxiety. Results: All reported improvement in their anxiety levels. They felt there was a calming effect of the session. There was a sense of feeling of self empowerment on direct questioning. Conclusion: Virtual reality environment can aid the traditional rehabilitation techniques used to manage the levels of anxiety experienced by people with acquired brain injury undergoing inpatient rehabilitation.Keywords: neurological rehabilitation, virtual reality, anxiety, calming environment
Procedia PDF Downloads 11510087 Parallel Coordinates on a Spiral Surface for Visualizing High-Dimensional Data
Authors: Chris Suma, Yingcai Xiao
Abstract:
This paper presents Parallel Coordinates on a Spiral Surface (PCoSS), a parallel coordinate based interactive visualization method for high-dimensional data, and a test implementation of the method. Plots generated by the test system are compared with those generated by XDAT, a software implementing traditional parallel coordinates. Traditional parallel coordinate plots can be cluttered when the number of data points is large or when the dimensionality of the data is high. PCoSS plots display multivariate data on a 3D spiral surface and allow users to see the whole picture of high-dimensional data with less cluttering. Taking advantage of the 3D display environment in PCoSS, users can further reduce cluttering by zooming into an axis of interest for a closer view or by moving vantage points and by reorienting the viewing angle to obtain a desired view of the plots.Keywords: human computer interaction, parallel coordinates, spiral surface, visualization
Procedia PDF Downloads 1410086 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 5310085 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer A. Aljohani
Abstract:
COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network
Procedia PDF Downloads 9410084 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 34010083 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment
Procedia PDF Downloads 43510082 Wait-Optimized Scheduler Algorithm for Efficient Process Scheduling in Computer Systems
Authors: Md Habibur Rahman, Jaeho Kim
Abstract:
Efficient process scheduling is a crucial factor in ensuring optimal system performance and resource utilization in computer systems. While various algorithms have been proposed over the years, there are still limitations to their effectiveness. This paper introduces a new Wait-Optimized Scheduler (WOS) algorithm that aims to minimize process waiting time by dividing them into two layers and considering both process time and waiting time. The WOS algorithm is non-preemptive and prioritizes processes with the shortest WOS. In the first layer, each process runs for a predetermined duration, and any unfinished process is subsequently moved to the second layer, resulting in a decrease in response time. Whenever the first layer is free or the number of processes in the second layer is twice that of the first layer, the algorithm sorts all the processes in the second layer based on their remaining time minus waiting time and sends one process to the first layer to run. This ensures that all processes eventually run, optimizing waiting time. To evaluate the performance of the WOS algorithm, we conducted experiments comparing its performance with traditional scheduling algorithms such as First-Come-First-Serve (FCFS) and Shortest-Job-First (SJF). The results showed that the WOS algorithm outperformed the traditional algorithms in reducing the waiting time of processes, particularly in scenarios with a large number of short tasks with long wait times. Our study highlights the effectiveness of the WOS algorithm in improving process scheduling efficiency in computer systems. By reducing process waiting time, the WOS algorithm can improve system performance and resource utilization. The findings of this study provide valuable insights for researchers and practitioners in developing and implementing efficient process scheduling algorithms.Keywords: process scheduling, wait-optimized scheduler, response time, non-preemptive, waiting time, traditional scheduling algorithms, first-come-first-serve, shortest-job-first, system performance, resource utilization
Procedia PDF Downloads 9310081 KAP Study on Breast Cancer Among Women in Nirmala Educational Institutions-A Prospective Observational Study
Authors: Shaik Asha Begum, S. Joshna Rani, Shaik Abdul Rahaman
Abstract:
INTRODUCTION: Breast cancer is a disease that creates in breast cells. "KAP" study estimates the Knowledge, Attitude, and Practices of a local area. More than 1.5 million ladies (25% of all ladies with malignancy) are determined to have bosom disease consistently all through the world. Understanding the degrees of Knowledge, Attitude and Practice will empower a more effective cycle of mindfulness creation as it will permit the program to be custom-made all the more properly to the necessities of the local area. OBJECTIVES: The objective of this study is to assess the knowledge on signs and symptoms, risk factors, provide awareness on the practicing of the early detection techniques of breast cancer and provide knowledge on the overall breast cancer including preventive techniques. METHODOLOGY: This is an expressive cross-sectional investigation. This investigation of KAP was done in the Nirmala Educational Institutions from January to April 2021. A total of 300 participants are included from women students in pharmacy graduates & lecturers, and also from graduates other than the pharmacy. The examiners are taken from the BCAM (Breast Cancer Awareness Measure), tool compartment (Version 2). RESULT: According to the findings of the study, the majority of the participants were not well informed about breast cancer. A lump in the breast was the most commonly mentioned sign of breast cancer, followed by pain in the breast or nipple. The percentage of knowledge related to the breast cancer risk factors was also very less. The correct answers for breast cancer risk factors were radiation exposure (58.20 percent), a positive family history (47.6 percent), obesity (46.9 percent), a lack of physical activity (43.6 percent), and smoking (43.2 percent). Breast cancer screening, on the other hand, was uncommon (only 30 and 11.3 percent practiced clinical breast examination and mammography respectively). CONCLUSION: In this study, the knowledge on the signs and symptoms, risk factors of breast cancer - pharmacy graduates have more knowledge than the non-pharmacy graduates but in the preventive techniques and early detective tools of breast cancer -had poor knowledge in the pharmacy and non-pharmacy graduate. After the awareness program, pharmacy and non-pharmacy graduates got supportive knowledge on the preventive techniques and also practiced the early detective techniques of breast cancer.Keywords: breast cancer, mammography, KAP study, early detection
Procedia PDF Downloads 13810080 Internet Shopping: A Study Based On Hedonic Value and Flow Theory
Authors: Pui-Lai To, E-Ping Sung
Abstract:
With the flourishing development of online shopping, an increasing number of customers see online shopping as an entertaining experience. Because the online consumer has a double identity as a shopper and an Internet user, online shopping should offer hedonic values of shopping and Internet usage. The purpose of this study is to investigate hedonic online shopping motivations from the perspectives of traditional hedonic value and flow theory. The study adopted a focus group interview method, including two online and two offline interviews. Four focus groups of shoppers consisted of online professionals, online college students, offline professionals and offline college students. The results of the study indicate that traditional hedonic values and dimensions of flow theory exist in the online shopping environment. The study indicated that online shoppers seem to appreciate being able to learn things and grow to become competitive achievers online. Comparisons of online hedonic motivations between groups are conducted. This study serves as a basis for the future growth of Internet marketing.Keywords: flow theory, hedonic motivation, internet shopping
Procedia PDF Downloads 28210079 The Impact of Generative AI Illustrations on Aesthetic Symbol Consumption among Consumers: A Case Study of Japanese Anime Style
Authors: Han-Yu Cheng
Abstract:
This study aims to explore the impact of AI-generated illustration works on the aesthetic symbol consumption of consumers in Taiwan. The advancement of artificial intelligence drawing has lowered the barriers to entry, enabling more individuals to easily enter the field of illustration. Using Japanese anime style as an example, with the development of Generative Artificial Intelligence (Generative AI), an increasing number of illustration works are being generated by machines, sparking discussions about aesthetics and art consumption. Through surveys and the analysis of consumer perspectives, this research investigates how this influences consumers' aesthetic experiences and the resulting changes in the traditional art market and among creators. The study reveals that among consumers in Taiwan, particularly those interested in Japanese anime style, there is a pronounced interest and curiosity surrounding the emergence of Generative AI. This curiosity is particularly notable among individuals interested in this style but lacking the technical skills required for creating such artworks. These works, rooted in elements of Japanese anime style, find ready acceptance among enthusiasts of this style due to their stylistic alignment. Consequently, they have garnered a substantial following. Furthermore, with the reduction in entry barriers, more individuals interested in this style but lacking traditional drawing skills have been able to participate in producing such works. Against the backdrop of ongoing debates about artistic value since the advent of artificial intelligence (AI), Generative AI-generated illustration works, while not entirely displacing traditional art, to a certain extent, fulfill the aesthetic demands of this consumer group, providing a similar or analogous aesthetic consumption experience. Additionally, this research underscores the advantages and limitations of Generative AI-generated illustration works within this consumption environment.Keywords: generative AI, anime aesthetics, Japanese anime illustration, art consumption
Procedia PDF Downloads 7410078 Social Business Process Management and Business Process Management Maturity
Authors: Dalia Suša Vugec, Vesna Bosilj Vukšić, Ljubica Milanović Glavan
Abstract:
Business process management (BPM) is a well-known holistic discipline focused on managing business processes with the intention of achieving higher level of BPM maturity and better organizational performance. In recent period, traditional BPM faced some of its limitations like model-reality divide and lost innovation. Following latest trends, as an attempt to overcome the issues of traditional BPM, there has been an introduction of applying the principles of social software in managing business processes which led to the development of social BPM. However, there are not many authors or studies dealing with this topic so this study aims to contribute to that literature gap and to examine the link between the level of BPM maturity and the usage of social BPM. To meet these objectives, a survey within the companies with more than 50 employees has been conducted. The results reveal that the usage of social BPM is higher within the companies which achieved higher level of BPM maturity. This paper provides an overview, analysis and discussion of collected data regarding BPM maturity and social BPM within the observed companies and identifies the main social BPM principles.Keywords: business process management, BPM maturity, process performance index, social BPM
Procedia PDF Downloads 32510077 Kinetic and Mechanistic Study on the Degradation of Typical Pharmaceutical and Personal Care Products in Water by Using Carbon Nanodots/C₃N₄ Composite and Ultrasonic Irradiation
Authors: Miao Yang
Abstract:
PPCPs (pharmaceutical and personal care products) in water, as an environmental pollutant, becomes an issue of increasing concern. Therefore, the techniques for degradation of PPCPs has been a hotspot in water pollution control field. Since there are several disadvantages for common degradation techniques of PPCPs, such as low degradation efficiency for certain PPCPs (ibuprofen and Carbamazepine) this proposal will adopt a combined technique by using CDs (carbon nanodots)/C₃N₄ composite and ultrasonic irradiation to mitigate or overcome these shortages. There is a significant scientific problem that the mechanism including PPCPs, major reactants, and interfacial active sites is not clear yet in the study of PPCPs degradation. This work aims to solve this problem by using both theoretical and experimental methodologies. Firstly, optimized parameters will be obtained by evaluating the kinetics and oxidation efficiency under different conditions. The competition between H₂O₂ and PPCPs with HO• will be elucidated, after which the degradation mechanism of PPCPs by the synergy of CDs/C₃N₄ composite and ultrasonic irradiation will be proposed. Finally, a sonolysis-adsorption-catalysis coupling mechanism will be established which is the theoretical basis and technical support for developing new efficient degradation techniques for PPCPs in the future.Keywords: carbon nanodots/C₃N₄, pharmaceutical and personal care products, ultrasonic irradiation, hydroxyl radical, heterogeneous catalysis
Procedia PDF Downloads 180