Search results for: friction panels
69 Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application
Authors: Ramesh P., Aby Joseph
Abstract:
Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented.Keywords: double line oscillation, micro inverter, MPPT, nano grid, power decoupling
Procedia PDF Downloads 13368 Numerical Modeling and Experimental Analysis of a Pallet Isolation Device to Protect Selective Type Industrial Storage Racks
Authors: Marcelo Sanhueza Cartes, Nelson Maureira Carsalade
Abstract:
This research evaluates the effectiveness of a pallet isolation device for the protection of selective-type industrial storage racks. The device works only in the longitudinal direction of the aisle, and it is made up of a platform installed on the rack beams. At both ends, the platform is connected to the rack structure by means of a spring-damper system working in parallel. A system of wheels is arranged between the isolation platform and the rack beams in order to reduce friction, decoupling of the movement and improve the effectiveness of the device. The latter is evaluated by the reduction of the maximum dynamic responses of basal shear load and story drift in relation to those corresponding to the same rack with the traditional construction system. In the first stage, numerical simulations of industrial storage racks were carried out with and without the pallet isolation device. The numerical results allowed us to identify the archetypes in which it would be more appropriate to carry out experimental tests, thus limiting the number of trials. In the second stage, experimental tests were carried out on a shaking table to a select group of full-scale racks with and without the proposed device. The movement simulated by the shaking table was based on the Mw 8.8 magnitude earthquake of February 27, 2010, in Chile, registered at the San Pedro de la Paz station. The peak ground acceleration (PGA) was scaled in the frequency domain to fit its response spectrum with the design spectrum of NCh433. The experimental setup contemplates the installation of sensors to measure relative displacement and absolute acceleration. The movement of the shaking table with respect to the ground, the inter-story drift of the rack and the pallets with respect to the rack structure were recorded. Accelerometers redundantly measured all of the above in order to corroborate measurements and adequately capture low and high-frequency vibrations, whereas displacement and acceleration sensors are respectively more reliable. The numerical and experimental results allowed us to identify that the pallet isolation period is the variable with the greatest influence on the dynamic responses considered. It was also possible to identify that the proposed device significantly reduces both the basal cut and the maximum inter-story drift by up to one order of magnitude.Keywords: pallet isolation system, industrial storage racks, basal shear load, interstory drift.
Procedia PDF Downloads 7367 Analysis of the Homogeneous Turbulence Structure in Uniformly Sheared Bubbly Flow Using First and Second Order Turbulence Closures
Authors: Hela Ayeb Mrabtini, Ghazi Bellakhal, Jamel Chahed
Abstract:
The presence of the dispersed phase in gas-liquid bubbly flow considerably alters the liquid turbulence. The bubbles induce turbulent fluctuations that enhance the global liquid turbulence level and alter the mechanisms of turbulence. RANS modeling of uniformly sheared flows on an isolated sphere centered in a control volume is performed using first and second order turbulence closures. The sphere is placed in the production-dissipation equilibrium zone where the liquid velocity is set equal to the relative velocity of the bubbles. The void fraction is determined by the ratio between the sphere volume and the control volume. The analysis of the turbulence statistics on the control volume provides numerical results that are interpreted with regard to the effect of the bubbles wakes on the turbulence structure in uniformly sheared bubbly flow. We assumed for this purpose that at low void fraction where there is no hydrodynamic interaction between the bubbles, the single-phase flow simulation on an isolated sphere is representative on statistical average of a sphere network. The numerical simulations were firstly validated against the experimental data of bubbly homogeneous turbulence with constant shear and then extended to produce numerical results for a wide range of shear rates from 0 to 10 s^-1. These results are compared with our turbulence closure proposed for gas-liquid bubbly flows. In this closure, the turbulent stress tensor in the liquid is split into a turbulent dissipative part produced by the gradient of the mean velocity which also contains the turbulence generated in the bubble wakes and a pseudo-turbulent non-dissipative part induced by the bubbles displacements. Each part is determined by a specific transport equation. The simulations of uniformly sheared flows on an isolated sphere reproduce the mechanisms related to the turbulent part, and the numerical results are in perfect accordance with the modeling of the transport equation of the turbulent part. The reduction of second order turbulence closure provides a description of the modification of turbulence structure by the bubbles presence using a dimensionless number expressed in terms of two-time scales characterizing the turbulence induced by the shear and that induced by bubbles displacements. The numerical simulations carried out in the framework of a comprehensive analysis reproduce particularly the attenuation of the turbulent friction showed in the experimental results of bubbly homogeneous turbulence subjected to a constant shear.Keywords: gas-liquid bubbly flows, homogeneous turbulence, turbulence closure, uniform shear
Procedia PDF Downloads 46066 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1
Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.
Abstract:
In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.Keywords: biochip, herpes virus, SPR
Procedia PDF Downloads 41765 Tuning the Surface Roughness of Patterned Nanocellulose Films: An Alternative to Plastic Based Substrates for Circuit Priniting in High-Performance Electronics
Authors: Kunal Bhardwaj, Christine Browne
Abstract:
With the increase in global awareness of the environmental impacts of plastic-based products, there has been a massive drive to reduce our use of these products. Use of plastic-based substrates in electronic circuits has been a matter of concern recently. Plastics provide a very smooth and cheap surface for printing high-performance electronics due to their non-permeability to ink and easy mouldability. In this research, we explore the use of nano cellulose (NC) films in electronics as they provide an advantage of being 100% recyclable and eco-friendly. The main hindrance in the mass adoption of NC film as a substitute for plastic is its higher surface roughness which leads to ink penetration, and dispersion in the channels on the film. This research was conducted to tune the RMS roughness of NC films to a range where they can replace plastics in electronics(310-470nm). We studied the dependence of the surface roughness of the NC film on the following tunable aspects: 1) composition by weight of the NC suspension that is sprayed on a silicon wafer 2) the width and the depth of the channels on the silicon wafer used as a base. Various silicon wafers with channel depths ranging from 6 to 18 um and channel widths ranging from 5 to 500um were used as a base. Spray coating method for NC film production was used and two solutions namely, 1.5wt% NC and a 50-50 NC-CNC (cellulose nanocrystal) mixture in distilled water, were sprayed through a Wagner sprayer system model 117 at an angle of 90 degrees. The silicon wafer was kept on a conveyor moving at a velocity of 1.3+-0.1 cm/sec. Once the suspension was uniformly sprayed, the mould was left to dry in an oven at 50°C overnight. The images of the films were taken with the help of an optical profilometer, Olympus OLS 5000. These images were converted into a ‘.lext’ format and analyzed using Gwyddion, a data and image analysis software. Lowest measured RMS roughness of 291nm was with a 50-50 CNC-NC mixture, sprayed on a silicon wafer with a channel width of 5 µm and a channel depth of 12 µm. Surface roughness values of 320+-17nm were achieved at lower (5 to 10 µm) channel widths on a silicon wafer. This research opened the possibility of the usage of 100% recyclable NC films with an additive (50% CNC) in high-performance electronics. Possibility of using additives like Carboxymethyl Cellulose (CMC) is also being explored due to the hypothesis that CMC would reduce friction amongst fibers, which in turn would lead to better conformations amongst the NC fibers. CMC addition would thus be able to help tune the surface roughness of the NC film to an even greater extent in future.Keywords: nano cellulose films, electronic circuits, nanocrystals and surface roughness
Procedia PDF Downloads 12464 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 17763 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors
Authors: Galatee Levadoux, Trevor Benson, Chris Worrall
Abstract:
With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades
Procedia PDF Downloads 16662 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 35061 Effect of Carbide Precipitates in Tool Steel on Material Transfer: A Molecular Dynamics Study
Authors: Ahmed Tamer AlMotasem, Jens Bergström, Anders Gåård, Pavel Krakhmalev, Thijs Jan Holleboom
Abstract:
In sheet metal forming processes, accumulation and transfer of sheet material to tool surfaces, often referred to as galling, is the major cause of tool failure. Initiation of galling is assumed to occur due to local adhesive wear between two surfaces. Therefore, reducing adhesion between the tool and the work sheet has a great potential to improve the tool materials galling resistance. Experimental observations and theoretical studies show that the presence of primary micro-sized carbides and/or nitrides in alloyed steels may significantly improve galling resistance. Generally, decreased adhesion between the ceramic precipitates and the sheet material counter-surface are attributed as main reason to the latter observations. On the other hand, adhesion processes occur at an atomic scale and, hence, fundamental understanding of galling can be obtained via atomic scale simulations. In the present study, molecular dynamics simulations are used, with utilizing second nearest neighbor embedded atom method potential to investigate the influence of nano-sized cementite precipitates embedded in tool atoms. The main aim of the simulations is to gain new fundamental knowledge on galling initiation mechanisms. Two tool/work piece configurations, iron/iron and iron-cementite/iron, are studied under dry sliding conditions. We find that the average frictional force decreases whereas the normal force increases for the iron-cementite/iron system, in comparison to the iron/iron configuration. Moreover, the average friction coefficient between the tool/work-piece decreases by about 10 % for the iron-cementite/iron case. The increase of the normal force in the case of iron-cementite/iron system may be attributed to the high stiffness of cementite compared to bcc iron. In order to qualitatively explain the effect of cementite on adhesion, the adhesion force between self-mated iron/iron and cementite/iron surfaces has been determined and we found that iron/cementite surface exhibits lower adhesive force than that of iron-iron surface. The variation of adhesion force with temperature was investigated up to 600 K and we found that the adhesive force, generally, decreases with increasing temperature. Structural analyses show that plastic deformation is the main deformation mechanism of the work-piece, accompanied with dislocations generation.Keywords: adhesion, cementite, galling, molecular dynamics
Procedia PDF Downloads 30160 The Côa Valley Ecosystem (Douro, Portugal) as a Cultural Landscape. Approach to the Management Challenges
Authors: Mariana Durana Pinto, Thierry Aubry, Eduarda Vieira
Abstract:
The Côa River is one of the tributaries of the Douro River, which in turn connects two Portuguese regions: Beira-Alta (Serra das Mesas, Sabugal) and Trás-os-Montes (Douro River, Vila Nova de Foz Côa). The river, which is approximately 140 kilometres in length, is surrounded by characteristic Northern-Estearn Portugal landscape. The dominant flora in the region includes olive and almond trees and vines, which provide habitat for a diverse range of native species. These include mammals such as the lynx and Iberian wolf, as well as birds of prey such as the Egyptian vulture and the griffon vulture. Additionally, herbivorous species such as red deer and roe deer also inhabit the region. However, the Vale Côa is inextricably linked with the rocky outcrops bearing the emblematic open-air Upper Palaeolithic rock art, indeed, it houses the world's largest collection of prehistoric open-air rock art, inscribed on the World Heritage list by UNESCO in 1998. From the initial discovery of the first engravings in 1991 to the present day, approximally 1,500 panels with rock art, mostly engravings and carving, but also some paintings, have been discovered, inventoried and recorded spanning from earlu Upper Paleolithic to the 20th century. The study and interpretation of the engravings and its geoarchaeological context, allow the construction of a chronological timeline of the human occupation and graphical production in this region. The area has been inhabited since the Early Palaeolithic, with human communities exploiting the diversity of the natural resources of the environment and adapting it to their needs. This led to the creation of an archaeological and historical cultural landscape.The region is currently inhabited by rural communities whose primary source of income is derived from agricultural activities, with a particular focus on olive oil and wine production, including the emblematic Vinho do Porto. Additionally, the region is distinguished by activities such as stone exploration and extraction (e.g. schist and granite quarries) and tourism. The latter has progressively assumed a role in the promotion and development of the region, primarily due to the engravings of the Côa Valley itself, as well as the Alto Douro Wine Region. Furthermore, this cultural landscape has been inscribed in the UNESCO World Heritage Site in 2001. The aforementioned factors give rise to a series of challenges and issues pertaining to the management and safeguarding of rock art on a daily basis. These include: I) the management of conflicts between cultural heritage and economic activity (between Rock art and vineyards, both classified as World Heritage Sites); II) the management of land-use planning in areas where the engravings are located (since the areas with engravings are larger than those identified as buffer zones by UNESCO); III) the absence of the legal figure of an 'archaeological park' and the need to solve this issue; IV) the management of tourist pressure and unauthorised visits; and V) the management of vandalism (as a consequence of misinformation and denial).Keywords: Douro and Côa Valleys, archaeological cultural landscapes, rock art, Douro wine, conservation challenges
Procedia PDF Downloads 1059 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring
Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh
Abstract:
Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness
Procedia PDF Downloads 34058 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher
Abstract:
Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture
Procedia PDF Downloads 15757 Identifying Areas on the Pavement Where Rain Water Runoff Affects Motorcycle Behavior
Authors: Panagiotis Lemonakis, Theodoros Αlimonakis, George Kaliabetsos, Nikos Eliou
Abstract:
It is very well known that certain vertical and longitudinal slopes have to be assured in order to achieve adequate rainwater runoff from the pavement. The selection of longitudinal slopes, between the turning points of the vertical curves that meet the afore-mentioned requirement does not ensure adequate drainage because the same condition must also be applied at the transition curves. In this way none of the pavement edges’ slopes (as well as any other spot that lie on the pavement) will be opposite to the longitudinal slope of the rotation axis. Horizontal and vertical alignment must be properly combined in order to form a road which resultant slope does not take small values and hence, checks must be performed in every cross section and every chainage of the road. The present research investigates the rain water runoff from the road surface in order to identify the conditions under which, areas of inadequate drainage are being created, to analyze the rainwater behavior in such areas, to provide design examples of good and bad drainage zones and to track down certain motorcycle types which might encounter hazardous situations due to the presence of water film between the pavement and both of their tires resulting loss of traction. Moreover, it investigates the combination of longitudinal and cross slope values in critical pavement areas. It should be pointed out that the drainage gradient is analytically calculated for the whole road width and not just for an oblique slope per chainage (combination of longitudinal grade and cross slope). Lastly, various combinations of horizontal and vertical design are presented, indicating the crucial zones of bad pavement drainage. The key conclusion of the study is that any type of motorcycle will travel for some time inside the area of improper runoff for a certain time frame which depends on the speed and the trajectory that the rider chooses along the transition curve. Taking into account that on this section the rider will have to lean his motorcycle and hence reduce the contact area of his tire with the pavement it is apparent that any variations on the friction value due to the presence of a water film may lead to serious problems regarding his safety. The water runoff from the road pavement is improved when between reverse longitudinal slopes, crest instead of sag curve is chosen and particularly when its edges coincide with the edges of the horizontal curve. Lastly, the results of the investigation have shown that the variation of the longitudinal slope involves the vertical shift of the center of the poor water runoff area. The magnitude of this area increases as the length of the transition curve increases.Keywords: drainage, motorcycle safety, superelevation, transition curves, vertical grade
Procedia PDF Downloads 10056 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study
Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis
Abstract:
The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand
Procedia PDF Downloads 19255 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter
Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott
Abstract:
Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM
Procedia PDF Downloads 39554 Criticality of Adiabatic Length for a Single Branch Pulsating Heat Pipe
Authors: Utsav Bhardwaj, Shyama Prasad Das
Abstract:
To meet the extensive requirements of thermal management of the circuit card assemblies (CCAs), satellites, PCBs, microprocessors, any other electronic circuitry, pulsating heat pipes (PHPs) have emerged in the recent past as one of the best solutions technically. But industrial application of PHPs is still unexplored up to a large extent due to their poor reliability. There are several systems as well as operational parameters which not only affect the performance of an operating PHP, but also decide whether the PHP can operate sustainably or not. Functioning may completely be halted for some particular combinations of the values of system and operational parameters. Among the system parameters, adiabatic length is one of the important ones. In the present work, a simplest single branch PHP system with an adiabatic section has been considered. It is assumed to have only one vapour bubble and one liquid plug. First, the system has been mathematically modeled using film evaporation/condensation model, followed by the steps of recognition of equilibrium zone, non-dimensionalization and linearization. Then proceeding with a periodical solution of the linearized and reduced differential equations, stability analysis has been performed. Slow and fast variables have been identified, and averaging approach has been used for the slow ones. Ultimately, temporal evolution of the PHP is predicted by numerically solving the averaged equations, to know whether the oscillations are likely to sustain/decay temporally. Stability threshold has also been determined in terms of some non-dimensional numbers formed by different groupings of system and operational parameters. A combined analytical and numerical approach has been used, and it has been found that for each combination of all other parameters, there exists a maximum length of the adiabatic section beyond which the PHP cannot function at all. This length has been called as “Critical Adiabatic Length (L_ac)”. For adiabatic lengths greater than “L_ac”, oscillations are found to be always decaying sooner or later. Dependence of “L_ac” on some other parameters has also been checked and correlated at certain evaporator & condenser section temperatures. “L_ac” has been found to be linearly increasing with increase in evaporator section length (L_e), whereas the condenser section length (L_c) has been found to have almost no effect on it upto a certain limit. But at considerably large condenser section lengths, “L_ac” is expected to decrease with increase in “L_c” due to increased wall friction. Rise in static pressure (p_r) exerted by the working fluid reservoir makes “L_ac” rise exponentially whereas it increases cubically with increase in the inner diameter (d) of PHP. Physics of all such variations has been given a good insight too. Thus, a methodology for quantification of the critical adiabatic length for any possible set of all other parameters of PHP has been established.Keywords: critical adiabatic length, evaporation/condensation, pulsating heat pipe (PHP), thermal management
Procedia PDF Downloads 22653 Tensile Behaviours of Sansevieria Ehrenbergii Fiber Reinforced Polyester Composites with Water Absorption Time
Authors: T. P. Sathishkumar, P. Navaneethakrishnan
Abstract:
The research work investigates the variation of tensile properties for the sansevieria ehrenbergii fiber (SEF) and SEF reinforced polyester composites respect to various water absorption time. The experiments were conducted according to ATSM D3379-75 and ASTM D570 standards. The percentage of water absorption for composite specimens was measured according to ASTM D570 standard. The fiber of SE was cut in to 30 mm length for preparation of the composites. The simple hand lay-up method followed by compression moulding process adopted to prepare the randomly oriented SEF reinforced polyester composites at constant fiber weight fraction of 40%. The surface treatment was done on the SEFs with various chemicals such as NaOH, KMnO4, Benzoyl Peroxide, Benzoyl Chloride and Stearic Acid before preparing the composites. NaOH was used for pre-treatment of all other chemical treatments. The morphology of the tensile fractured specimens studied using the Scanning Electron Microscopic. The tensile strength of the SEF and SEF reinforced polymer composites were carried out with various water absorption time such as 4, 8, 12, 16, 20 and 24 hours respectively. The result shows that the tensile strength was drop off with increase in water absorption time for all composites. The highest tensile property of raw fiber was found due to lowest moistures content. Also the chemical bond between the cellulose and cementic materials such as lignin and wax was highest due to lowest moisture content. Tensile load was lowest and elongation was highest for the water absorbed fibers at various water absorption time ranges. During this process, the fiber cellulose inhales the water and expands the primary and secondary fibers walls. This increases the moisture content in the fibers. Ultimately this increases the hydrogen cation and the hydroxide anion from the water. In tensile testing, the water absorbed fibers shows highest elongation by stretching of expanded cellulose walls and the bonding strength between the fiber cellulose is low. The load carrying capability was stable at 20 hours of water absorption time. This could be directly affecting the interfacial bonding between the fiber/matrix and composite strength. The chemically treated fibers carry higher load and lower elongation which is due to removal of lignin, hemicellulose and wax content. The water time absorption decreases the tensile strength of the composites. The chemically SEF reinforced composites shows highest tensile strength compared to untreated SEF reinforced composites. This was due to highest bonding area between the fiber/matrix. This was proven in the morphology at the fracture zone of the composites. The intra-fiber debonding was occurred by water capsulation in the fiber cellulose. Among all, the tensile strength was found to be highest for KMnO4 treated SEF reinforced composite compared to other composites. This was due to better interfacial bonding between the fiber-matrix compared to other treated fiber composites. The percentage of water absorption of composites increased with time of water absorption. The percentage weight gain of chemically treated SEF composites at 4 hours to zero water absorption are 9, 9, 10, 10.8 and 9.5 for NaOH, BP, BC, KMnO4 and SA respectively. The percentage weight gain of chemically treated SEF composites at 24 hours to zero water absorption 5.2, 7.3, 12.5, 16.7 and 13.5 for NaOH, BP, BC, KMnO4 and SA respectively. Hence the lowest weight gain was found for KMnO4 treated SEF composites by highest percentage with lowest water uptake. However the chemically treated SEF reinforced composites is possible materials for automotive application like body panels, bumpers and interior parts, and household application like tables and racks etc.Keywords: fibres, polymer-matrix composites (PMCs), mechanical properties, scanning electron microscopy (SEM)
Procedia PDF Downloads 41052 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks
Authors: Nicholas Aerne, John P. Parmigiani
Abstract:
There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply
Procedia PDF Downloads 20451 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.Keywords: hardness, powder metallurgy, spark plasma sintering, wear
Procedia PDF Downloads 27350 Non-Linear Transformation of Bulk Acoustic Waves at Oblique Incidence on Plane Solid Boundary
Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy
Abstract:
The transformation of two types of acoustic waves can occur on a flat interface between two solids at oblique incidence of longitudinal and shear bulk acoustic waves (BAW). This paper presents the results of experimental studies of the properties of reflection and propagation of longitudinal wave and generation of second and third longitudinal and shear harmonics of BAW at oblique incidence of longitudinal BAW on a flat rough boundary between two solids. The experimental sample was a rectangular isosceles pyramid made of D16 aluminum alloy with the plane parallel bases cylinder made of D16 aluminum alloy pressed to the base. The piezoelectric lithium niobate transducer with a resonance frequency of 5 MHz was secured to one face of the pyramid to generate a longitudinal wave. Longitudinal waves emitted by this transducer felt at an angle of 45° to the interface between two solids and reflected at the same angle. On the opposite face of the pyramid, and on the flat side of the cylinder was attached longitudinal transducer with resonance frequency of 10 MHz or the shear transducer with resonance frequency of 15 MHz. These transducers also effectively received signal at a frequency of 5 MHz. In the spectrum of the transmitted and reflected BAW was observed shear and longitudinal waves at a frequency of 5 MHz, as well as longitudinal harmonic at a frequency harmonic of 10 MHz and a shear harmonic at frequency of 15 MHz. The effect of reversing changing of external pressure applied to the rough interface between two solids on the value of the first and higher harmonics of the BAW at oblique incidence on the interface of the longitudinal BAW was experimentally investigated. In the spectrum of the reflected signal from the interface, there was a decrease of amplitudes of the first harmonics of the signal, and non-monotonic dependence of the second and third harmonics of shear wave with an increase of the static pressure applied to the interface. In the spectrum of the transmitted signal growth of the first longitudinal and shear harmonic amplitude and non-monotonic dependence - first increase and then decrease in the amplitude of the second and third longitudinal shear harmonic with increasing external static pressure was observed. These dependencies were hysteresis at reversing changing of external pressure. When pressure applied to the border increased, acoustic contact between the surfaces improves. This increases the energy of the transmitted elastic wave and decreases the energy of the reflected wave. The second longitudinal acoustic harmonics generation was associated with the Hertz nonlinearity on the interface of two pressed rough surfaces, the generation of the third harmonic was caused by shear hysteresis nonlinearity due to dry friction on a rough interface. This study was supported by the Russian Science Foundation (project №14-22-00042).Keywords: generation of acoustic harmonics, hysteresis nonlinearity, Hertz nonlinearity, transformation of acoustic waves
Procedia PDF Downloads 37849 Green Building for Positive Energy Districts in European Cities
Authors: Paola Clerici Maestosi
Abstract:
Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency
Procedia PDF Downloads 4848 Comparative Analysis of the Expansion Rate and Soil Erodibility Factor (K) of Some Gullies in Nnewi and Nnobi, Anambra State Southeastern Nigeria
Authors: Nzereogu Stella Kosi, Igwe Ogbonnaya, Emeh Chukwuebuka Odinaka
Abstract:
A comparative analysis of the expansion rate and soil erodibility of some gullies in Nnewi and Nnobi both of Nanka Formation were studied. The study involved an integration of field observations, geotechnical analysis, slope stability analysis, multivariate statistical analysis, gully expansion rate analysis, and determination of the soil erodibility factor (K) from Revised Universal Soil Loss Equation (RUSLE). Fifteen representative gullies were studied extensively, and results reveal that the geotechnical properties of the soil, topography, vegetation cover, rainfall intensity, and the anthropogenic activities in the study area were major factors propagating and influencing the erodibility of the soils. The specific gravity of the soils ranged from 2.45-2.66 and 2.54-2.78 for Nnewi and Nnobi, respectively. Grain size distribution analysis revealed that the soils are composed of gravel (5.77-17.67%), sand (79.90-91.01%), and fines (2.36-4.05%) for Nnewi and gravel (7.01-13.65%), sand (82.47-88.67%), and fines (3.78-5.02%) for Nnobi. The soils are moderately permeable with values ranging from 2.92 x 10-5 - 6.80 x 10-4 m/sec and 2.35 x 10-6 - 3.84 x 10⁻⁴m/sec for Nnewi and Nnobi respectively. All have low cohesion values ranging from 1–5kPa and 2-5kPa and internal friction angle ranging from 29-38° and 30-34° for Nnewi and Nnobi, respectively, which suggests that the soils have low shear strength and are susceptible to shear failure. Furthermore, the compaction test revealed that the soils were loose and easily erodible with values of maximum dry density (MDD) and optimum moisture content (OMC) ranging from 1.82-2.11g/cm³ and 8.20-17.81% for Nnewi and 1.98-2.13g/cm³ and 6.00-17.80% respectively. The plasticity index (PI) of the fines showed that they are nonplastic to low plastic soils and highly liquefiable with values ranging from 0-10% and 0-9% for Nnewi and Nnobi, respectively. Multivariate statistical analyses were used to establish relationship among the determined parameters. Slope stability analysis gave factor of safety (FoS) values in the range of 0.50-0.76 and 0.82-0.95 for saturated condition and 0.73-0.98 and 0.87-1.04 for unsaturated condition for both Nnewi and Nnobi, respectively indicating that the slopes are generally unstable to critically stable. The erosion expansion rate analysis for a fifteen-year period (2005-2020) revealed an average longitudinal expansion rate of 36.05m/yr, 10.76m/yr, and 183m/yr for Nnewi, Nnobi, and Nanka type gullies, respectively. The soil erodibility factor (K) are 8.57x10⁻² and 1.62x10-4 for Nnewi and Nnobi, respectively, indicating that the soils in Nnewi have higher erodibility potentials than those of Nnobi. From the study, both the Nnewi and Nnobi areas are highly prone to erosion. However, based on the relatively lower fine content of the soil, relatively lower topography, steeper slope angle, and sparsely vegetated terrain in Nnewi, soil erodibility and gully intensity are more profound in Nnewi than Nnobi.Keywords: soil erodibility, gully expansion, nnewi-nnobi, slope stability, factor of safety
Procedia PDF Downloads 13047 Numerical Analysis and Parametric Study of Granular Anchor Pile on Expansive Soil Using Finite Element Method: Case of Addis Ababa, Bole Sub-City
Authors: Abdurahman Anwar Shfa
Abstract:
Addis Ababa is among the fastest-growing urban areas in the country. There are many new constructions of public and private condominiums and large new low rising residential buildings for residents. But the wide range of heaving problems of expansive soil in the city become a major difficulty for the construction sector, especially in low rising buildings, by causing different problems such as distortion and cracking of floor slabs, cracks in grade beams, and walls, jammed or misaligned Doors and Windows; failure of blocks supporting grade beams. Hence an attractive and economical design solution may be required for such type of problem. Therefore, this research works to publicize a recent innovation called the Granular Anchor Pile system for the reduction of the heave effect of expansive soil. This research is written for the objective of numerical investigation of the behavior of Granular Anchor Pile under the heave using Finite element analysis PLAXIS 3D program by means of studying the effect of different parameters like length of the pile, diameter of pile, and pile group by applying prescribed displacement of 10% of pile diameter at the center of granular pile anchor. An additional objective is examining the suitability of Granular Anchor Pile as an alternative solution for heave problems in expansive soils mostly for low rising buildings found in Addis Ababa City, especially in Bole Sub-City, by considering different factors such as the local availability of construction materials, economy for the construction, installation process condition, environmental benefit, time consumption and performance of the pile. Accordingly, the performance of the pile improves when the length of the pile increases. This is due to an increase in the self-weight of the pile and friction mobilized between the pile and soil interface. Additionally, the uplift capacity of the pile decreases when increasing the pile diameter and spacing between the piles in the group due to a reduction in the number of piles in the group. But, few cases show that the uplift capacity of the pile increases with increasing the pile diameter for a constant number of piles in the group and increasing the spacing between the pile and in the case of single pile capacity. This is due to the increment of piles' self-weight and surface area of the pile group and also the decrement of stress overlap in the soil caused by piles respectively. According to the suitability analysis, it is observed that Granular Anchor Pile is sensible or practical to apply for the actual problem of Expansive soil in a low rising building constructed in the country because of its convenience for all considerations.Keywords: expansive soil, granular anchor pile, PLAXIS, suitability analysis
Procedia PDF Downloads 3546 Subway Ridership Estimation at a Station-Level: Focus on the Impact of Bus Demand, Commercial Business Characteristics and Network Topology
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The primary purpose of this study is to develop a methodological framework to predict daily subway ridership at a station-level and to examine the association between subway ridership and bus demand incorporating commercial business facility in the vicinity of each subway station. The socio-economic characteristics, land-use, and built environment as factors may have an impact on subway ridership. However, it should be considered not only the endogenous relationship between bus and subway demand but also the characteristics of commercial business within a subway station’s sphere of influence, and integrated transit network topology. Regarding a statistical approach to estimate subway ridership at a station level, therefore it should be considered endogeneity and heteroscedastic issues which might have in the subway ridership prediction model. This study focused on both discovering the impacts of bus demand, commercial business characteristics, and network topology on subway ridership and developing more precise subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers entire Seoul city in South Korea and includes 243 stations with the temporal scope set at twenty-four hours with one-hour interval time panels each. The data for subway and bus ridership was collected Seoul Smart Card data from 2015 and 2016. Three-Stage Least Square(3SLS) approach was applied to develop daily subway ridership model as capturing the endogeneity and heteroscedasticity between bus and subway demand. Independent variables incorporating in the modeling process were commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. As a result, it was found that bus ridership and subway ridership were endogenous each other and they had a significantly positive sign of coefficients which means one transit mode could increase another transportation mode’s ridership. In other words, two transit modes of subway and bus have a mutual relationship instead of the competitive relationship. The commercial business characteristics are the most critical dimension among the independent variables. The variables of commercial business facility rate in the paper containing six types; medical, educational, recreational, financial, food service, and shopping. From the model result, a higher rate in medical, financial buildings, shopping, and food service facility lead to increment of subway ridership at a station, while recreational and educational facility shows lower subway ridership. The complex network theory was applied for estimating integrated network topology measures that cover the entire Seoul transit network system, and a framework for seeking an impact on subway ridership. The centrality measures were found to be significant and showed a positive sign indicating higher centrality led to more subway ridership at a station level. The results of model accuracy tests by out of samples provided that 3SLS model has less mean square error rather than OLS and showed the methodological approach for the 3SLS model was plausible to estimate more accurate subway ridership. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2017R1C1B2010175).Keywords: subway ridership, bus ridership, commercial business characteristic, endogeneity, network topology
Procedia PDF Downloads 14445 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator
Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov
Abstract:
The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator
Procedia PDF Downloads 37844 Placement Characteristics of Major Stream Vehicular Traffic at Median Openings
Authors: Tathagatha Khan, Smruti Sourava Mohapatra
Abstract:
Median openings are provided in raised median of multilane roads to facilitate U-turn movement. The U-turn movement is a highly complex and risky maneuver because U-turning vehicle (minor stream) makes 180° turns at median openings and merge with the approaching through traffic (major stream). A U-turning vehicle requires a suitable gap in the major stream to merge, and during this process, the possibility of merging conflict develops. Therefore, these median openings are potential hot spot of conflict and posses concern pertaining to safety. The traffic at the median openings could be managed efficiently with enhanced safety when the capacity of a traffic facility has been estimated correctly. The capacity of U-turns at median openings is estimated by Harder’s formula, which requires three basic parameters namely critical gap, follow up time and conflict flow rate. The estimation of conflicting flow rate under mixed traffic condition is very much complicated due to absence of lane discipline and discourteous behavior of the drivers. The understanding of placement of major stream vehicles at median opening is very much important for the estimation of conflicting traffic faced by U-turning movement. The placement data of major stream vehicles at different section in 4-lane and 6-lane divided multilane roads were collected. All the test sections were free from the effect of intersection, bus stop, parked vehicles, curvature, pedestrian movements or any other side friction. For the purpose of analysis, all the vehicles were divided into 6 categories such as motorized 2W, autorickshaw (3-W), small car, big car, light commercial vehicle, and heavy vehicle. For the collection of placement data of major stream vehicles, the entire road width was divided into sections of 25 cm each and these were numbered seriatim from the pavement edge (curbside) to the end of the road. The placement major stream vehicle crossing the reference line was recorded by video graphic technique on various weekdays. The collected data for individual category of vehicles at all the test sections were converted into a frequency table with a class interval of 25 cm each and the placement frequency curve. Separate distribution fittings were tried for 4- lane and 6-lane divided roads. The variation of major stream traffic volume on the placement characteristics of major stream vehicles has also been explored. The findings of this study will be helpful to determine the conflict volume at the median openings. So, the present work holds significance in traffic planning, operation and design to alleviate the bottleneck, prospect of collision and delay at median opening in general and at median opening in developing countries in particular.Keywords: median opening, U-turn, conflicting traffic, placement, mixed traffic
Procedia PDF Downloads 13843 Testing a Dose-Response Model of Intergenerational Transmission of Family Violence
Authors: Katherine Maurer
Abstract:
Background and purpose: Violence that occurs within families is a global social problem. Children who are victims or witness to family violence are at risk for many negative effects both proximally and distally. One of the most disconcerting long-term effects occurs when child victims become adult perpetrators: the intergenerational transmission of family violence (ITFV). Early identification of those children most at risk for ITFV is needed to inform interventions to prevent future family violence perpetration and victimization. Only about 25-30% of child family violence victims become perpetrators of adult family violence (either child abuse, partner abuse, or both). Prior research has primarily been conducted using dichotomous measures of exposure (yes; no) to predict ITFV, given the low incidence rate in community samples. It is often assumed that exposure to greater amounts of violence predicts greater risk of ITFV. However, no previous longitudinal study with a community sample has tested a dose-response model of exposure to physical child abuse and parental physical intimate partner violence (IPV) using count data of frequency and severity of violence to predict adult ITFV. The current study used advanced statistical methods to test if increased childhood exposure would predict greater risk of ITFV. Methods: The study utilized 3 panels of prospective data from a cohort of 15 year olds (N=338) from the Project on Human Development in Chicago Neighborhoods longitudinal study. The data were comprised of a stratified probability sample of seven ethnic/racial categories and three socio-economic status levels. Structural equation modeling was employed to test a hurdle regression model of dose-response to predict ITFV. A version of the Conflict Tactics Scale was used to measure physical violence victimization, witnessing parental IPV and young adult IPV perpetration and victimization. Results: Consistent with previous findings, past 12 months incidence rates severity and frequency of interpersonal violence were highly skewed. While rates of parental and young adult IPV were about 40%, an unusually high rate of physical child abuse (57%) was reported. The vast majority of a number of acts of violence, whether minor or severe, were in the 1-3 range in the past 12 months. Reported frequencies of more than 5 times in the past year were rare, with less than 10% of those reporting more than six acts of minor or severe physical violence. As expected, minor acts of violence were much more common than acts of severe violence. Overall, regression analyses were not significant for the dose-response model of ITFV. Conclusions and implications: The results of the dose-response model were not significant due to a lack of power in the final sample (N=338). Nonetheless, the value of the approach was confirmed for the future research given the bi-modal nature of the distributions which suggest that in the context of both child physical abuse and physical IPV, there are at least two classes when frequency of acts is considered. Taking frequency into account in predictive models may help to better understand the relationship of exposure to ITFV outcomes. Further testing using hurdle regression models is suggested.Keywords: intergenerational transmission of family violence, physical child abuse, intimate partner violence, structural equation modeling
Procedia PDF Downloads 24342 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells
Authors: Salvatore Brischetto, Domenico Cesare
Abstract:
Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach
Procedia PDF Downloads 6741 Perception of the End of a Same Sex Relationship and Preparation towards It: A Qualitative Research about Anticipation, Coping and Conflict Management against the Backdrop of Partial Legal Recognition
Authors: Merav Meiron-Goren, Orna Braun-Lewensohn, Tal Litvak-Hirsh
Abstract:
In recent years, there has been an increasing tendency towards separation and divorce in relationships. Nevertheless, many couples in a first marriage do not anticipate this as a probable possibility and do not make any preparation for it. Same sex couples establishing a family encounter a much more complicated situation than do heterosexual couples. Although there is a trend towards legal recognition of same sex marriage, many countries, including Israel, do not recognize it. The absence of legal recognition or the existence of partial recognition creates complexity for these couples. They have to fight for their right to establish a family, like the recognition of the biological child of a woman, as a child of her woman spouse too, or the option of surrogacy for a male couple who want children, and more. The lack of legal recognition is burden on the lives of these couples. In the absence of clear norms regarding the conduct of the family unit, the couples must define for themselves the family structure, and deal with everyday dilemmas that lack institutional solutions. This may increase the friction between the two couple members, and it is one of the factors that make it difficult for them to maintain the relationship. This complexity exists, perhaps even more so, in separation. The end of relationship is often accompanied by a deep crisis, causing pain and stress. In most cases, there are also other conflicts that must be settled. These are more complicated when rights are in doubt or do not exist at all. Complex issues for separating same sex couples may include matters of property, recognition of parenthood, and care and support for the children. The significance of the study is based on the fact that same sex relationships are becoming more and more widespread, and are an integral part of the society. Even so, there is still an absence of research focusing on such relationships and their ending. The objective of the study is to research the perceptions of same sex couples regarding the possibility of separation, preparing for it, conflict management and resolving disputes through the separation process. It is also important to understand the point of view of couples that have gone through separation, how they coped with the emotional and practical difficulties involved in the separation process. The doctoral research will use a qualitative research method in a phenomenological approach, based on semi-structured in-depth interviews. The interviewees will be divided into three groups- at the beginning of a relationship, during the separation crisis and after separation, with a time perspective, with about 10 couples from each group. The main theoretical model serving as the basis of the study will be the Lazarus and Folkman theory of coping with stress. This model deals with the coping process, including cognitive appraisal of an experience as stressful, appraisal of the coping resources, and using strategies of coping. The strategies are divided into two main groups, emotion-focused forms of coping and problem-focused forms of coping.Keywords: conflict management, coping, legal recognition, same-sex relationship, separation
Procedia PDF Downloads 14240 An Integrated Framework for Wind-Wave Study in Lakes
Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung
Abstract:
The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.Keywords: wave modelling, wind-wave, extreme value analysis, marina
Procedia PDF Downloads 84