Search results for: features engineering methods for forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20922

Search results for: features engineering methods for forecasting

19872 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours

Authors: Charlotte Entwistle, Ryan Boyd

Abstract:

Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.

Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data

Procedia PDF Downloads 349
19871 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 149
19870 Experimental Research on Neck Thinning Dynamics of Droplets in Cross Junction Microchannels

Authors: Yilin Ma, Zhaomiao Liu, Xiang Wang, Yan Pang

Abstract:

Microscale droplets play an increasingly important role in various applications, including medical diagnostics, material synthesis, chemical engineering, and cell research due to features of high surface-to-volume ratio and tiny scale, which can significantly improve reaction rates, enhance heat transfer efficiency, enable high-throughput parallel studies as well as reduce reagent usage. As a mature technique to manipulate small amounts of liquids, droplet microfluidics could achieve the precise control of droplet parameters such as size, uniformity, structure, and thus has been widely adopted in the engineering and scientific research of multiple fields. Necking processes of the droplet in the cross junction microchannels are experimentally and theoretically investigated and dynamic mechanisms of the neck thinning in two different regimes are revealed. According to evolutions of the minimum neck width and the thinning rate, the necking process is further divided into different stages and the main driving force during each stage is confirmed. Effects of the flow rates and the cross-sectional aspect ratio on the necking process as well as the neck profile at different stages are provided in detail. The distinct features of the two regimes in the squeezing stage are well captured by the theoretical estimations of the effective flow rate and the variations of the actual flow rates in different channels are reasonably reflected by the channel width ratio. In the collapsing stage, the quantitative relation between the minimum neck width and the remaining time is constructed to identify the physical mechanism.

Keywords: cross junction, neck thinning, force analysis, inertial mechanism

Procedia PDF Downloads 110
19869 Some Imaginative Geomorphosites in Malaysia: Study on Their Formations and Geotourism Potentials

Authors: Dony Adriansyah Nazaruddin, Mohammad Muqtada Ali Khan

Abstract:

This paper aims to present some imaginative geomorphological sites in Malaysia. This study comprises desk study and field study. Desk study was conducted by reviewing some literatures related to the topic and some geomorphosites in Malaysia. Field study was organized in 2013 and 2014 to investigate the recent situation of these sites and to take some measurements, photographs and rock samples. Some examples of imaginative geomorphosites all over Malaysia have been identified for this purpose. In Peninsular Malaysia, some geomorphosites in Langkawi Islands (the state of Kedah) have imaginative features such as a “turtle” atop the limestone hill of Setul Formation at the Kilim Geoforest Park, a “shoe” at the Kasut island of the Kilim Geoforest Park, a “lying pregnant lady” at the Dayang Bunting island of the Dayang Bunting Marble Geoforest Park, and a “ship” of the Singa Kecil island. Meanwhile, some other examples are from the state of Kelantan, such as a mogote hill with a “human face looking upward” at Gunung Reng, Jeli District and a “boat rock” at Mount Chamah, Gua Musang District. In East Malaysia, there is only one example can be identified, it is the “Abraham Lincoln’s face” at the Deer Cave, Gunung Mulu National Park, Sarawak. Karst landforms dominate the imaginative geomorphosites in Malaysia. The formations of these features are affected by some endogenic and exogenic processes, such as tectonic uplift, weathering (including solution), erosion, and so on. This study will recommend that these imaginative features should be conserved and developed for some purposes, such as research, education, and geotourism development in Malaysia.

Keywords: geomorphosite, geotourism, earth processes, karst landforms, Malaysia

Procedia PDF Downloads 626
19868 Vertebral Pain Features in Women of Different Age Depending on Body Mass Index

Authors: Vladyslav Povoroznyuk, Tetiana Orlуk, Nataliia Dzerovych

Abstract:

Introduction: Back pain is an extremely common health care problem worldwide. Many studies show a link between an obesity and risk of lower back pain. The aim is to study correlation and peculiarities of vertebral pain in women of different age depending on their anthropometric indicators. Materials: 1886 women aged 25-89 years were examined. The patients were divided into groups according to age (25-44, 45-59, 60-74, 75-89 years old) and body mass index (BMI: to 18.4 kg/m2 (underweight), 18.5-24.9 kg/m2 (normal), 25-30 kg/m2 (overweight) and more than 30.1 kg/m2 (obese). Methods: The presence and intensity of pain was evaluated in the thoracic and lumbar spine using a visual analogue scale (VAS). BMI is calculated by the standard formula based on body weight and height measurements. Statistical analysis was performed using parametric and nonparametric methods. Significant changes were considered as p <0.05. Results: The intensity of pain in the thoracic spine was significantly higher in the underweight women in the age groups of 25-44 years (p = 0.04) and 60-74 years (p=0.005). The intensity of pain in the lumbar spine was significantly higher in the women of 45-59 years (p = 0.001) and 60-74 years (p = 0.0003) with obesity. In the women of 45-74 years BMI was significantly positively correlated with the level of pain in the lumbar spine. Obesity significantly increases the relative risk of pain in the lumbar region (RR=0.07 (95% CI: 1.03-1.12; p=0.002)), while underweight significantly increases the risk of pain in the thoracic region (RR=1.21 (95% CI: 1.00-1.46; p=0.05)). Conclusion: In women, vertebral pain syndrome may be related to the anthropometric characteristics (e.g., BMI). Underweight may indirectly influence the development of pain in the thoracic spine and increase the risk of pain in this part by 1.21 times. Obesity influences the development of pain in the lumbar spine increasing the risk by 1.07 times.

Keywords: body mass index, age, pain in thoracic and lumbar spine, women

Procedia PDF Downloads 365
19867 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 239
19866 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation

Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga

Abstract:

Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.

Keywords: classification, coastline, color, sea-land segmentation

Procedia PDF Downloads 247
19865 An End-to-end Piping and Instrumentation Diagram Information Recognition System

Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha

Abstract:

Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.

Keywords: object recognition system, P&ID, symbol recognition, text recognition

Procedia PDF Downloads 153
19864 [Keynote Talk]: Production Flow Coordination on Supply Chains: Brazilian Case Studies

Authors: Maico R. Severino, Laura G. Caixeta, Nadine M. Costa, Raísa L. T. Napoleão, Éverton F. V. Valle, Diego D. Calixto, Danielle Oliveira

Abstract:

One of the biggest barriers that companies find nowadays is the coordination of production flow in their Supply Chains (SC). In this study, coordination is understood as a mechanism for incorporating the entire production channel, with everyone involved focused on achieving the same goals. Sometimes, this coordination is attempted by the use of logistics practices or production plan and control methods. No papers were found in the literature that presented the combined use of logistics practices and production plan and control methods. The main objective of this paper is to propose solutions for six case studies combining logistics practices and Ordering Systems (OS). The methodology used in this study was a conceptual model of decision making. This model contains six phases: a) the analysis the types and characteristics of relationships in the SC; b) the choice of the OS; c) the choice of the logistics practices; d) the development of alternative proposals of combined use; e) the analysis of the consistency of the chosen alternative; f) the qualitative and quantitative assessment of the impact on the coordination of the production flow and the verification of applicability of the proposal in the real case. This study was conducted on six Brazilian SC of different sectors: footwear, food and beverages, garment, sugarcane, mineral and metal mechanical. The results from this study showed that there was improvement in the coordination of the production flow through the following proposals: a) for the footwear industry the use of Period Bath Control (PBC), Quick Response (QR) and Enterprise Resource Planning (ERP); b) for the food and beverage sector firstly the use of Electronic Data Interchange (EDI), ERP, Continuous Replenishment (CR) and Drum-Buffer-Rope Order (DBR) (for situations in which the plants of both companies are distant), and secondly EDI, ERP, Milk-Run and Review System Continues (for situations in which the plants of both companies are close); c) for the garment industry the use of Collaborative Planning, Forecasting, and Replenishment (CPFR) and Constant Work-In-Process (CONWIP) System; d) for the sugarcane sector the use of EDI, ERP and CONWIP System; e) for the mineral processes industry the use of Vendor Managed Inventory (VMI), EDI and MaxMin Control System; f) for the metal mechanical sector the use of CONWIP System and Continuous Replenishment (CR). It should be emphasized that the proposals are exclusively recommended for the relationship between client and supplier studied. Therefore, it cannot be generalized to other cases. However, what can be generalized is the methodology used to choose the best practices for each case. Based on the study, it can be concluded that the combined use of OS and logistics practices enable a better coordination of flow production on SC.

Keywords: supply chain management, production flow coordination, logistics practices, ordering systems

Procedia PDF Downloads 208
19863 Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah

Authors: N. Bolong, J. Makinda, I. Saad

Abstract:

Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via hands-on by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.

Keywords: engineering education, open-ended laboratory, environmental engineering lab

Procedia PDF Downloads 316
19862 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study

Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost

Abstract:

The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.

Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones

Procedia PDF Downloads 148
19861 Forecasting of the Mobility of Rainfall-Induced Slow-Moving Landslides Using a Two-Block Model

Authors: Antonello Troncone, Luigi Pugliese, Andrea Parise, Enrico Conte

Abstract:

The present study deals with the landslides periodically reactivated by groundwater level fluctuations owing to rainfall. The main type of movement which generally characterizes these landslides consists in sliding with quite small-displacement rates. Another peculiar characteristic of these landslides is that soil deformations are essentially concentrated within a thin shear band located below the body of the landslide, which, consequently, undergoes an approximately rigid sliding. In this context, a simple method is proposed in the present study to forecast the movements of this type of landslides owing to rainfall. To this purpose, the landslide body is schematized by means of a two-block model. Some analytical solutions are derived to relate rainfall measurements with groundwater level oscillations and these latter, in turn, to landslide mobility. The proposed method is attractive for engineering applications since it requires few parameters as input data, many of which can be obtained from conventional geotechnical tests. To demonstrate the predictive capability of the proposed method, the application to a well-documented landslide periodically reactivated by rainfall is shown.

Keywords: rainfall, water level fluctuations, landslide mobility, two-block model

Procedia PDF Downloads 121
19860 Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process

Authors: G. Schuh, S. Woelk, D. Schraknepper, A. Such

Abstract:

The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbo machinery components.

Keywords: manufacturing, product design, production, technology assessment, technology management

Procedia PDF Downloads 534
19859 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions

Authors: Mikhail O. Eremin

Abstract:

Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.

Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault

Procedia PDF Downloads 141
19858 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases

Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha

Abstract:

Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.

Keywords: feature fusion, image retrieval, membership function, normalization

Procedia PDF Downloads 345
19857 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia PDF Downloads 161
19856 Parallel Multisplitting Methods for Differential Systems

Authors: Malika El Kyal, Ahmed Machmoum

Abstract:

We prove the superlinear convergence of asynchronous multi-splitting methods applied to differential equations. This study is based on the technique of nested sets. It permits to specify kind of the convergence in the asynchronous mode.The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.

Keywords: parallel methods, asynchronous mode, multisplitting, ODE

Procedia PDF Downloads 526
19855 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 210
19854 Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap

Authors: Mathieu Bourdeau, Philippe Basset, Julien Waeytens, Elyes Nefzaoui

Abstract:

As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases.

Keywords: calibration, building energy modeling, performance gap, sensor network

Procedia PDF Downloads 160
19853 Discriminating Between Energy Drinks and Sports Drinks Based on Their Chemical Properties Using Chemometric Methods

Authors: Robert Cazar, Nathaly Maza

Abstract:

Energy drinks and sports drinks are quite popular among young adults and teenagers worldwide. Some concerns regarding their health effects – particularly those of the energy drinks - have been raised based on scientific findings. Differentiating between these two types of drinks by means of their chemical properties seems to be an instructive task. Chemometrics provides the most appropriate strategy to do so. In this study, a discrimination analysis of the energy and sports drinks has been carried out applying chemometric methods. A set of eleven samples of available commercial brands of drinks – seven energy drinks and four sports drinks – were collected. Each sample was characterized by eight chemical variables (carbohydrates, energy, sugar, sodium, pH, degrees Brix, density, and citric acid). The data set was standardized and examined by exploratory chemometric techniques such as clustering and principal component analysis. As a preliminary step, a variable selection was carried out by inspecting the variable correlation matrix. It was detected that some variables are redundant, so they can be safely removed, leaving only five variables that are sufficient for this analysis. They are sugar, sodium, pH, density, and citric acid. Then, a hierarchical clustering `employing the average – linkage criterion and using the Euclidian distance metrics was performed. It perfectly separates the two types of drinks since the resultant dendogram, cut at the 25% similarity level, assorts the samples in two well defined groups, one of them containing the energy drinks and the other one the sports drinks. Further assurance of the complete discrimination is provided by the principal component analysis. The projection of the data set on the first two principal components – which retain the 71% of the data information – permits to visualize the distribution of the samples in the two groups identified in the clustering stage. Since the first principal component is the discriminating one, the inspection of its loadings consents to characterize such groups. The energy drinks group possesses medium to high values of density, citric acid, and sugar. The sports drinks group, on the other hand, exhibits low values of those variables. In conclusion, the application of chemometric methods on a data set that features some chemical properties of a number of energy and sports drinks provides an accurate, dependable way to discriminate between these two types of beverages.

Keywords: chemometrics, clustering, energy drinks, principal component analysis, sports drinks

Procedia PDF Downloads 109
19852 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech

Authors: Monica Gonzalez Machorro

Abstract:

Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.

Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment

Procedia PDF Downloads 127
19851 Influence of Morphology and Coatings in the Tribological Behavior of a Texturised Deterministic Surface by Photochemical Machining

Authors: Juan C. Sanchez, Jose L. Endrino, Alejandro Toro, Hugo A. Estupinan, Glenn Leighton

Abstract:

For years, the reduction of friction and wear has been a matter of interest in the engineering field. Several solutions have been proposed to address this issue, including the use of lubricants and coatings to reduce the frictional forces and to increase the surface wear resistance. Alternatively, texturing processes have been used in a wide variety of materials, in many cases inspired in natural surfaces. Nature has shown how species adapt to the environment and the engineers try to understand natural surfaces for particular applications by analyzing outstanding species such as gecko for high adhesion, lotus leaves for hydrophobicity, sharks for reduced flow resistance and snakes for optimized frictional response. Texturized surfaces have shown a superior performance in terms of the frictional response in many situations, and the control of its behavior greatly depends on the manufacturing process. The focus of this work is to evaluate the tribological behavior of AISI 52100 steel samples texturized by Photochemical Machining (PCM). The surface texture was inspired by several features of the snakeskin such as aspect ratio of fibrils and mean fibril spacing. Two coatings were applied on the texturized surface, namely Diamond-like Carbon (DLC) and Molybdenum Disulphide (MoS₂), and their tribological behavior after pin-on-disk tests were compared with that of the non-texturized and uncovered surfaces. The samples were characterised through Stereoscopic Microscope (SM), Scanning Electron Microscope (SEM), Optical Microscope (OM), Profilometer, Raman Spectrometer (RS) and X-Ray Diffractometer (XRD). The Coefficient of Friction (COF) measured in pin-on-disk tests showed correlations with the sliding direction (relative to the texture features) and the aspect ratio of the texture features. Regarding the coated surfaces, the DLC and MoS₂ coating had a good performance in terms of wear rate and coefficient of friction compared with the uncoated and non-texturized surfaces. On the other hand, for the uncoated surfaces, the texture showed an influence in the tribological performance with respect to the non-texturized surface.

Keywords: coating, coefficient of friction, deterministic surface, photochemical machining

Procedia PDF Downloads 149
19850 A Fuzzy Linear Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.

Keywords: dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming

Procedia PDF Downloads 439
19849 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents

Authors: Prasanna Haddela

Abstract:

Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.

Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm

Procedia PDF Downloads 114
19848 Testing for Endogeneity of Foreign Direct Investment: Implications for Economic Policy

Authors: Liwiusz Wojciechowski

Abstract:

Research background: The current knowledge does not give a clear answer to the question of the impact of FDI on productivity. Results of the empirical studies are still inconclusive, no matter how extensive and diverse in terms of research approaches or groups of countries analyzed they are. It should also take into account the possibility that FDI and productivity are linked and that there is a bidirectional relationship between them. This issue is particularly important because on one hand FDI can contribute to changes in productivity in the host country, but on the other hand its level and dynamics may imply that FDI should be undertaken in a given country. As already mentioned, a two-way relationship between the presence of foreign capital and productivity in the host country should be assumed, taking into consideration the endogenous nature of FDI. Purpose of the article: The overall objective of this study is to determine the causality between foreign direct investment and total factor productivity in host county in terms of different relative absorptive capacity across countries. In the classic sense causality among variables is not always obvious and requires for testing, which would facilitate proper specification of FDI models. The aim of this article is to study endogeneity of selected macroeconomic variables commonly being used in FDI models in case of Visegrad countries: main recipients of FDI in CEE. The findings may be helpful in determining the structure of the actual relationship between variables, in appropriate models estimation and in forecasting as well as economic policymaking. Methodology/methods: Panel and time-series data techniques including GMM estimator, VEC models and causality tests were utilized in this study. Findings & Value added: The obtained results allow to confirm the hypothesis states the bi-directional causality between FDI and total factor productivity. Although results differ from among countries and data level of aggregation implications may be useful for policymakers in case of providing foreign capital attracting policy.

Keywords: endogeneity, foreign direct investment, multi-equation models, total factor productivity

Procedia PDF Downloads 197
19847 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model

Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi

Abstract:

Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.

Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models

Procedia PDF Downloads 127
19846 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation

Procedia PDF Downloads 386
19845 Evaluation of Wheat Sowing and Fertilizer Application Methods in Wheat Weeds Management

Authors: Ebrahim Izadi-Darbandi

Abstract:

In order to investigation the effects of sowing methods, nitrogen and phosphorus application methods in wheat weeds management, an experiment was performed as split plot, based on randomized completely block design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, in 2010. Treatments included, wheat sowing methods (single-row with 30 cm distance and twine row on 50 cm width ridges) as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots. In this experiment, phosphorus and nitrogen sources for fertilization were super phosphate triple (150 kg ha-1) applied before wheat sowing and incorporated with soil and urea (200 kg ha-1) respectively, applied in 2 phases (pre-plant 50%) and near wheat shooting (50%). Results showed that the effect of fertilizers application methods and wheat sowing methods were significant (p≤0.01) on wheat yield increasing and reducing weed-wheat competition. Wheat twine row sowing method, reduced weeds biomass for 25% compared wheat single-row sowing method and increased wheat seed yield and biomass for 60% and 30% respectively. Phosphorus and nitrogen band application reduced weeds biomass for 46% and 53% respectively and increased wheat seed yield for 22% and 33% compared to their broadcast application. The effects of wheat sowing method plus phosphorus and nitrogen application methods interactions, showed that the fertilizers band application and wheat twine-row sowing method were the best methods in wheat yield improvement and reducing wheat-weeds interaction. These results shows that modifying of fertilization methods and wheat sowing method can have important role in fertilizers use efficiency and improving of weeds managements.

Keywords: competition, wheat yield, fertilizer management, biomass

Procedia PDF Downloads 368
19844 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan

Abstract:

Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.

Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy

Procedia PDF Downloads 309
19843 Detecting Characters as Objects Towards Character Recognition on Licence Plates

Authors: Alden Boby, Dane Brown, James Connan

Abstract:

Character recognition is a well-researched topic across disciplines. Regardless, creating a solution that can cater to multiple situations is still challenging. Vehicle licence plates lack an international standard, meaning that different countries and regions have their own licence plate format. A problem that arises from this is that the typefaces and designs from different regions make it difficult to create a solution that can cater to a wide range of licence plates. The main issue concerning detection is the character recognition stage. This paper aims to create an object detection-based character recognition model trained on a custom dataset that consists of typefaces of licence plates from various regions. Given that characters have featured consistently maintained across an array of fonts, YOLO can be trained to recognise characters based on these features, which may provide better performance than OCR methods such as Tesseract OCR.

Keywords: computer vision, character recognition, licence plate recognition, object detection

Procedia PDF Downloads 121