Search results for: perceived image
3559 Substitution Effects of Baijiu and Cigarette Consumption on Anti-Corruption Campaigns: Evidence from China
Authors: Xiaohan Gu
Abstract:
China is perceived as one of the most politically corrupt countries in the world. The 2021 Transparency International Corruption Perceptions Index China (RPC) ranks the country in 66th place out of 180 countries in the Index, where the 180 countries are perceived to have the most corrupt public sector. This paper proposes a theory on the impact of corruption on the consumption of luxury goods. We test the theory and evaluate the effectiveness of China’s anti-corruption campaign in 2012 by conducting a difference-in-differences analysis of product-city-level alcohol and cigarette consumption from 2013 to 2022. We find that the campaign increased sales of middle-end baijiu and cigarettes but decreased sales of luxury baijiu and cigarettes, contrasting with the trend for low-end products. This substitution pattern may be attributable to decreased public spending on luxury goods. This substitution pattern is moderated by officials’ wages and anti-corruption efforts, which supports the theoretical predictions.Keywords: substitution effect, baijiu, corruption, anti-corruption, chinese political connection
Procedia PDF Downloads 833558 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 743557 Nostalgia in Photographed Books for Children – the Case of Photography Books of Children in the Kibbutz
Authors: Ayala Amir
Abstract:
The paper presents interdisciplinary research which draws on the literary study and the cultural study of photography to explore a literary genre defined by nostalgia – the photographed book for children. This genre, which was popular in the second half of the 20th century, presents the romantic, nostalgic image of childhood created in the visual arts in the 18th century (as suggested by Ann Higonnet). At the same time, it capitalizes on the nostalgia inherent in the event of photography as formulated by Jennifer Green-Lewis: photography frames a moment in the present while transforming it into a past longed for in the future. Unlike Freudian melancholy, nostalgia is an effect that enables representation by acknowledging the loss and containing it in the very experience of the object. The representation and preservation of the lost object (nature, childhood, innocence) are in the center of the genre of children's photography books – a modern version of ancient pastoral. In it, the unique synergia of word and image results in a nostalgic image of childhood in an era already conquered by modernization. The nostalgic effect works both in the representation of space – an Edenic image of nature already shadowed by its demise, and of time – an image of childhood imbued by what Gill Bartholnyes calls the "looking backward aesthetics" – under the sign of loss. Little critical attention has been devoted to this genre with the exception of the work of Bettina Kümmerling-Meibauer, who noted the nostalgic effect of the well-known series of photography books by Astrid Lindgren and Anna Riwkin-Brick. This research aims to elaborate Kümmerling-Meibauer's approach using the theories of the study of photography, word-image studies, as well as current studies of childhood. The theoretical perspectives are implemented in the case study of photography books created in one of the most innovative social structures in our time – the Israeli Kibbutz. This communal way of life designed a society where children will experience their childhood in a parentless rural environment that will save them from the fate of the Oedipal fall. It is suggested that in documenting these children in a fictional format, photographers and writers, images and words cooperated in creating nostalgic works situated on the border between nature and culture, imagination and reality, utopia and its realization in history.Keywords: nostalgia, photography , childhood, children's books, kibutz
Procedia PDF Downloads 1423556 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption
Authors: Ashish Ashish
Abstract:
In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption
Procedia PDF Downloads 1513555 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1713554 A New 3D Shape Descriptor Based on Multi-Resolution and Multi-Block CS-LBP
Authors: Nihad Karim Chowdhury, Mohammad Sanaullah Chowdhury, Muhammed Jamshed Alam Patwary, Rubel Biswas
Abstract:
In content-based 3D shape retrieval system, achieving high search performance has become an important research problem. A challenging aspect of this problem is to find an effective shape descriptor which can discriminate similar shapes adequately. To address this problem, we propose a new shape descriptor for 3D shape models by combining multi-resolution with multi-block center-symmetric local binary pattern operator. Given an arbitrary 3D shape, we first apply pose normalization, and generate a set of multi-viewed 2D rendered images. Second, we apply Gaussian multi-resolution filter to generate several levels of images from each of 2D rendered image. Then, overlapped sub-images are computed for each image level of a multi-resolution image. Our unique multi-block CS-LBP comes next. It allows the center to be composed of m-by-n rectangular pixels, instead of a single pixel. This process is repeated for all the 2D rendered images, derived from both ‘depth-buffer’ and ‘silhouette’ rendering. Finally, we concatenate all the features vectors into one dimensional histogram as our proposed 3D shape descriptor. Through several experiments, we demonstrate that our proposed 3D shape descriptor outperform the previous methods by using a benchmark dataset.Keywords: 3D shape retrieval, 3D shape descriptor, CS-LBP, overlapped sub-images
Procedia PDF Downloads 4453553 Enhancing Organizational Performance through Adaptive Learning: A Case Study of ASML
Authors: Ramin Shadani
Abstract:
This study introduces adaptive performance as a key organizational performance dimension and explores the relationship between the dimensions of a learning organization and adaptive performance. A survey was therefore conducted using the dimensions of the Learning Organization Questionnaire (DLOQ), followed by factor analysis and structural equation modeling in order to investigate the dynamics between learning organization practices and adaptive performance. Results confirm that adaptive performance is indeed one important dimension of organizational performance. The study also shows that perceived knowledge and adaptive performance mediate the positive relationship between the practices of a learning organization with perceived financial performance. We extend existing DLOQ research by demonstrating that adaptive performance, as a nonfinancial organizational learning outcome, has a significant impact on financial performance. Our study also provides additional validation of the measures of DLOQ's performance. Indeed, organizations need to take a glance at how the activities of learning and development can provide better overall improvement in performance, especially in enhancing adaptive capability. The study has provided requisite empirical support that activities of learning and development within organizations allow much-improved intangible performance outcomes, especially through adaptive performance.Keywords: adaptive performance, continuous learning, financial performance, leadership style, organizational learning, organizational performance
Procedia PDF Downloads 283552 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 2803551 Correlation Mapping for Measuring Platelet Adhesion
Authors: Eunseop Yeom
Abstract:
Platelets can be activated by the surrounding blood flows where a blood vessel is narrowed as a result of atherosclerosis. Numerous studies have been conducted to identify the relation between platelets activation and thrombus formation. To measure platelet adhesion, this study proposes an image analysis technique. Blood samples are delivered in the microfluidic channel, and then platelets are activated by a stenotic micro-channel with 90% severity. By applying proposed correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) was estimated without labeling platelets. In order to evaluate the performance of correlation mapping on the detection of platelet adhesion, the effect of tile size was investigated by calculating 2D correlation coefficients with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient is observed with the optimum tile size of 5×5 pixels. As the area of the platelet adhesion increases, the platelets plug the channel and there is only a small amount of blood flows. This image analysis could provide new insights for better understanding of the interactions between platelet aggregation and blood flows in various physiological conditions.Keywords: platelet activation, correlation coefficient, image analysis, shear rate
Procedia PDF Downloads 3353550 Teaching and Doing Research in Higher Education Settings: An Exploratory Study of Vietnamese Overseas-Trained Returnees
Authors: Bao Trang Thi Nguyen, Stephen Moore
Abstract:
A large number of Vietnamese lecturers leave their home institutions every year to pursue an education in Australia and in other countries and most of whom return home to careers back in the Vietnamese work context. However, to the authors’ best knowledge, there is little empirical knowledge about these Vietnamese returnees. Much less is about how these overseas-trained returnees continue doing research while taking a lecturing role, though research has recently received growing heightened attention in Vietnamese Higher Education institutions and returnees are an important source of human resources. The research is mixed-methods in nature with questionnaires and interviews as the main instruments of data collection. Seven-six Vietnamese returnees working from a broad range of disciplines from different higher education institutions in central Vietnam completed a questionnaire on their perceived constraints and affordances in teaching and continuing doing research upon return from their overseas education. Twenty-five of these returnees took part in a subsequent in-depth interview which lasted from 30 minutes to an hour, which further seeks understanding of their lived individual experiences and stories. The overall results show that time constraint, heavy teaching loads, and varied administrative and familial roles are among inhibiting factors. However, these factors were more constraining for some returnees more than others. Their motivations to do research varied, from passion to work pressure and self-perceived responsibilities. Above all, these were mediated by personal, institutional and disciplinary contexts. The paper argues for a nuanced understanding of returnee academics’ life as complex and layered with the multiple identities they associated themselves with and the differing trajectories they embarked on as to what they perceived important as a university lecturer. Implications for Higher Education management and administration and professional development are addressed.Keywords: Vietnamese overseas-trained returnees, higher education, teaching, doing research, constraints, affordances
Procedia PDF Downloads 1093549 Factors Affecting Students' Attitude to Adapt E-Learning: A Case from Iran How to Develop Virtual Universities in Iran: Using Technology Acceptance Model
Authors: Fatemeh Keivanifard
Abstract:
E-learning is becoming increasingly prominent in higher education, with universities increasing provision and more students signing up. This paper examines factors that predict students' attitudes to adapt e-learning at the Khuzestan province Iran. Understanding the nature of these factors may assist these universities in promoting the use of information and communication technology in teaching and learning. The main focus of the paper is on the university students, whose decision supports effective implementation of e-learning. Data was collected through a survey of 300 post graduate students at the University of dezful, shooshtar and chamran in Khuzestan. The technology adoption model put forward by Davis is utilized in this study. Two more independent variables are added to the original model, namely, the pressure to act and resources availability. The results show that there are five factors that can be used in modeling students' attitudes to adapt e-learning. These factors are intention toward e-learning, perceived usefulness of e-learning, perceived ease of e-learning use, pressure to use e-learning, and the availability of resources needed to use e-learning.Keywords: e-learning, intention, ease of use, pressure to use, usefulness
Procedia PDF Downloads 3683548 An Experimental Study of Bolt Inclination in a Composite Single Bolted Joint
Authors: Youcef Faci, Djillali Allou, Ahmed Mebtouche, Badredine Maalem
Abstract:
The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during load. Digital image correlation techniques permit to obtain the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.Keywords: damage, digital image correlation, bolt inclination angle, joint
Procedia PDF Downloads 683547 Iris Recognition Based on the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric
Procedia PDF Downloads 3343546 Adverse Childhood Experiences (ACES) and Later-Life Depression: Perceived Social Support as a Potential Protective Factor
Authors: E. Von Cheong, Carol Sinnott, Darren Dahly, Patricia M. Kearney
Abstract:
Introduction and Aim: Adverse childhood experiences (ACEs) are all too common and have been linked to poorer health and wellbeing across the life course. While the prevention of ACEs is a worthy goal, it is important that we also try to lessen the impact of ACEs for those who do experience them. This study aims to investigate associations between adverse childhood experiences (ACEs) and later-life depressive symptoms; and to explore whether perceived social support (PSS) moderates these. Method: We analysed baseline data from the Mitchelstown (Ireland) 2010-11 cohort involving 2047 men and women aged 50–69 years. Self-reported assessments included ACEs (Centre for Disease Control ACE questionnaire), PSS (Oslo Social Support Scale), and depressive symptoms (CES-D). The primary exposure was self-report of at least one ACE. We also investigated the effects of ACE exposure by the subtypes abuse, neglect, and household dysfunction. Associations between each of these exposures and depressive symptoms were estimated using logistic regression, adjusted for socio-demographic factors that were selected using the Directed Acyclic Graph (DAG) approach. We also tested whether the estimated associations varied across levels of PSS (poor, moderate, and good). Results: 23.7% of participants reported at least one ACE (95% CI: 21.9% to 25.6%). ACE exposures (overall or subtype) were associated with a higher odds of depressive symptoms, but only among individuals with poor PSS. For example, exposure to any ACE (vs. none) was associated with 3 times the odds of depressive symptoms (Adjusted OR 2.97; 95% CI 1.63 to 5.40) among individuals reporting poor PSS, while among those reporting moderate PSS, the adjusted OR was 1.18 (95% CI 0.72 to 1.94). Discussion: ACEs are common among older adults in Ireland and are associated with higher odds of later-life depressive symptoms among those also reporting poor PSS. Interventions that enhance perception of social support following ACE exposure may help reduce the burden of depression in older populations.Keywords: adverse childhood experiences, depression, later-life, perceived social support
Procedia PDF Downloads 2403545 Geographical Data Visualization Using Video Games Technologies
Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material
Procedia PDF Downloads 2463544 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees
Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine
Procedia PDF Downloads 2043543 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation
Authors: Djallel Bouamama, Yasser R. Haddadi
Abstract:
Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.Keywords: brain tumor classification, image segmentation, CNN, U-NET
Procedia PDF Downloads 333542 Students’ Perception and Patterns of Listening Behaviour in an Online Forum Discussion
Authors: K. L. Wong, I. N. Umar
Abstract:
Online forum is part of a Learning Management System (LMS) environment in which students share opinions. This study attempts to investigate the perceptions of students towards online forum and their patterns of listening behaviour during the forum interaction. The students’ perceptions were measured using a questionnaire, in which seven dimensions were used including online experience, benefits of forum participation, cost of participation, perceived ease of use, usefulness, attitude and intention. Meanwhile, their patterns of listening behaviours were obtained using the log file extracted from the LMS. A total of 25 postgraduate students undertaking a course were involved in this study, and their activities in the forum session were recorded by the LMS and used as a log file. The results from the questionnaire analysis indicated that the students perceived that the forum is easy to use, useful, and bring benefits to them. Also, they showed positive attitude towards online forum, and they have the intention to use it in future. Based on the log data, the participants were also divided into six clusters of listening behaviour, in which they are different in terms of temporality, breadth, depth and speaking level. The findings were compared to previous clusters grouping and future recommendations are also discussed.Keywords: e-learning, learning management system, listening behavior, online forum
Procedia PDF Downloads 4323541 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars
Procedia PDF Downloads 1383540 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 1023539 Exploring the Relationship between Organisational Identity and Value Systems: Reflecting on the Values-Crafting Process in a Multi-National Organisation within the Entertainment Industry
Authors: Dieter Veldsman, Theo Heyns Veldsman
Abstract:
The knowledge economy demands an organisation that is flexible, adaptable and able to navigate the ever-changing environment. This fast-paced environment has however resulted in an organizational landscape that battles to engage employees, retain top talent and create meaningful work for its members. In the knowledge economy, the concept of organizational identity has become an important consideration as organisations aim to create a compelling and inviting narrative for all stakeholders across the business value chain. Values are often seen as the behavioural framework that informs organisational culture, yet often values are perceived to be inauthentic and misaligned with the true character or identity of the organisation and how it is perceived by different role players. This paper focuses on exploring the relationship between organisational identity and value systems by focusing on a case study within a multi-national organisation within South Africa. The paper evaluates the implementation of mixed methods OD approach that gathered collaborative inputs of more than 4500 employees who participated in crafting the newly established values system post a retrenchment process. The paper will evaluate the relationship between the newly crafted value system and the identity of the organisation as described by various internal and external stakeholders in order to explore potential alignment, dissonance and key insights into understanding the relationship between organisational identity and values. The case study will be reported from the perspective of an OD consultant who supported the transformation process over a period of 8 months and aims to provide key insights into values and identity alignment within knowledge economy organisations. From a practical perspective, the paper provides insights into how values are created, perceived and lived within organisations and the impact on employee engagement and culture.Keywords: culture, organisational development, organisational identity, values
Procedia PDF Downloads 3103538 The Impact of Research Anxiety on Research Orientation and Interest in Research Courses in Social Work Students
Authors: Daniel Gredig, Annabelle Bartelsen-Raemy
Abstract:
Social work professionals should underpin their decisions with scientific knowledge and research findings. Hence, research is used as a framework for social work education and research courses have become a taken-for-granted component of study programmes. However, it has been acknowledged that social work students have negative beliefs and attitudes as well as frequently feelings of fear of research courses. Against this background, the present study aimed to establish the relationship between student’s fear of research courses, their research orientation and interest in research courses. We hypothesized that fear predicts the interest in research courses. Further, we hypothesized that research orientation (perceived importance and attributed usefulness for research for social work practice and perceived unbiased nature of research) was a mediating variable. In the years 2014, 2015 and 2016, we invited students enrolled for a bachelor programme in social work in Switzerland to participate in the study during their introduction day to the school taking place two weeks before their programme started. For data collection, we used an anonymous self-administered on-line questionnaire filled in on site. Data were analysed using descriptive statistics and structural equation modelling (generalized least squares estimates method). The sample included 708 students enrolled in a social work bachelor-programme, 501 being female, 184 male, and 5 intersexual, aged 19–56, having various entitlements to study, and registered for three different types of programme modes (full time programme; part time study with field placements in blocks; part time study involving concurrent field placement). Analysis showed that the interest in research courses was predicted by fear of research courses (β = -0.29) as well as by the perceived importance (β = 0.27), attributed usefulness of research (β = 0.15) and perceived unbiased nature of research (β = 0.08). These variables were predicted, in turn, by fear of research courses (β = -0.10, β = -0.23, and β = -0.13). Moreover, interest was predicted by age (β = 0.13). Fear of research courses was predicted by age (β = -0.10) female gender (β = 0.28) and having completed a general baccalaureate (β = -0.09). (GFI = 0.997, AGFI = 0.988, SRMR = 0.016, CMIN/df = 0.946, adj. R2 = 0.312). Findings evidence a direct as well as a mediated impact of fear on the interest in research courses in entering first-year students in a social work bachelor-programme. It highlights one of the challenges social work education in a research framework has to meet with. It seems, there have been considerable efforts to address the research orientation of students. However, these findings point out that, additionally, research anxiety in terms of fear of research courses should be considered and addressed by teachers when conceptualizing research courses.Keywords: research anxiety, research courses, research interest, research orientation, social work students, teaching
Procedia PDF Downloads 1883537 Automatic Segmentation of Lung Pleura Based On Curvature Analysis
Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.
Abstract:
Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).Keywords: curvature analysis, image segmentation, morphological operators, thresholding
Procedia PDF Downloads 5963536 Exploring the Barriers Regarding Safe Discussions about Menopausal Symptom Management, as Perceived or Experienced by Pre-menopausal and Menopausal Women.
Authors: Karish Thavabalan, Alistair Ovenell, Aman Sutaria, Annabelle Parkhouse, Numan Baydemir, Theodore Lally
Abstract:
Background: Open discussions surrounding menopause are often associated with stigma, with many women feeling uncomfortable to engage in them with friends, colleagues, and healthcare professionals. Though the barriers regarding safe discussions of symptom management experienced by menopausal women are well documented, existing research offers little insight into whether these were shared by pre-menopausal women. This study aimed to explore the barriers regarding safe discussions about menopausal symptom management as perceived or experienced by pre-menopausal and menopausal women. Methods: This qualitative study was conducted over a 2-month period (March 2022 - April 2022) under the auspices of Imperial College Business School, London, UK. Snowball sampling was used to recruit both menopausal (age 45-70) and pre-menopausal participants (age <45), and sampling continued until data saturation was achieved. 16 semi-structured online interviews were conducted, and transcripts were thematically analyzed following Braun and Clarke’s six-step methodology. Results: A total of 7 higher themes regarding safe discussion of menopausal symptom management were identified by both pre-menopausal and menopausal women, including: “ineffective coping mechanisms”, “perceived onus to self-endure”, “lack of workplace support”, “poor knowledge of management approaches”, “poor healthcare infrastructure”, “poor support from friends and family”, “lack of knowledge and interest from a young age”. Conclusion: Identifying the barriers regarding safe discussion helped to highlight which areas require most significant intervention. Alongside tackling the barriers, menopausal women face, ultimately, there is a pertinent need to and address the lack of insight into menopause from a younger age and to encourage earlier discussions so as to not propagate the cycle of stigma.Keywords: menopause, stigma, safe discussions, symptom management
Procedia PDF Downloads 1103535 Pushover Experiment of Traditional Dieh-Dou Timber Frame
Authors: Ren Zuo Wang
Abstract:
In this paper, in order to investigate the joint behaviors of the Dieh-Dou structure. A pushover experiment of Dieh-Dou Jia-Dong is implemented. NDI, LVDT and image measurement system are used to measure displacements of joints and deformations of Dieh-Dou Jia-Dong. In addition, joint rotation-moment relationships of column restoring force, purlin-supporting, Dou-Shu, Dou-Gong brackets, primary beam-Gua Tong, secondary beam-Gua Tong, Tertiary beam are builied. From Jia-Dong experiments, formulations of joint rotation are proposed.Keywords: pushover experiment, Dieh-Dou timber frame, image measurement system, joint rotation-moment relationships
Procedia PDF Downloads 4443534 Actual and Perceived Financial Sophistication and Wealth Accumulation: The Role of Education and Gender
Authors: Christina E. Bannier, Milena Neubert
Abstract:
This study examines the role of actual and perceived financial sophistication (i.e., financial literacy and confidence) for individuals’ wealth accumulation. Using survey data from the German SAVE initiative, we find strong gender- and education-related differences in the distribution of the two variables: Whereas financial literacy rises in formal education, confidence increases in education for men but decreases for women. As a consequence, highly-educated women become strongly underconfident, while men remain overconfident. We show that these differences influence wealth accumulation: The positive effect of financial literacy is stronger for women than for men and is increasing in women’s education but decreasing in men’s. For highly-educated men, however, overconfidence closes this gap by increasing wealth via stronger financial engagement. Interestingly, female underconfidence does not reduce current wealth levels though it weakens future-oriented financial engagement and may thus impair future wealth accumulation.Keywords: financial literacy, financial sophistication, confidence, wealth, household finance, behavioral finance, gender, formal education
Procedia PDF Downloads 2683533 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3793532 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM
Authors: Rajpal Kaur, Pooja Choudhary
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM
Procedia PDF Downloads 3843531 Credibility and Personal Social Media Use of Health Professionals: A Field Study
Authors: Abrar Al-Hasan
Abstract:
Objectives: There is ongoing discourse regarding the potential risks to health professionals' reputations and credibility arising from their personal social media use. However, the specific impacts on professional credibility and the health professional-client relationship remain largely unexplored. This study aims to investigate the type and frequency of the content posted by health professionals on their Instagram accounts and its influence on their credibility and the professional-client relationship. Methodology: In a controlled field study, participants reviewed randomly assigned mock Instagram profiles of health professionals. Mock profiles were constructed according to gender (female/male), social media usage (high/low), and social media richness (high/ low), with richness increasing from posts to stories to reels and personal content type (high /low). Participants then rated the profile owners’ credibility on a visual analog scale. An analysis of variance compared these ratings, and mediation analyses assessed the influence of credibility ratings on participants' willingness to become clients of the mock health professional. Results: Results from 315 participants showed that health professionals with personal Instagram profiles displaying high social media richness were perceived as more credible than those with lower social media richness. Low social media usage is perceived as more credible than high social media usage. Personal content type is perceived as less credible as compared to those with low personal content type. Contributions: These findings provide initial evidence of the impact of health professionals' personal online disclosures on credibility and the health professional-client relationship. Understanding public perceptions of professionalism and credibility is essential for informing e-professionalism guidelines and promoting best practices in social media use among health professionals.Keywords: credibility, consumer behavior, social media, media richness, healthcare professionals
Procedia PDF Downloads 413530 Biimodal Biometrics System Using Fusion of Iris and Fingerprint
Authors: Attallah Bilal, Hendel Fatiha
Abstract:
This paper proposes the bimodal biometrics system for identity verification iris and fingerprint, at matching score level architecture using weighted sum of score technique. The features are extracted from the pre processed images of iris and fingerprint. These features of a query image are compared with those of a database image to obtain matching scores. The individual scores generated after matching are passed to the fusion module. This module consists of three major steps i.e., normalization, generation of similarity score and fusion of weighted scores. The final score is then used to declare the person as genuine or an impostor. The system is tested on CASIA database and gives an overall accuracy of 91.04% with FAR of 2.58% and FRR of 8.34%.Keywords: iris, fingerprint, sum rule, fusion
Procedia PDF Downloads 368