Search results for: metabolic networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3552

Search results for: metabolic networks

2532 Privacy Preservation Concerns and Information Disclosure on Social Networks: An Ongoing Research

Authors: Aria Teimourzadeh, Marc Favier, Samaneh Kakavand

Abstract:

The emergence of social networks has revolutionized the exchange of information. Every behavior on these platforms contributes to the generation of data known as social network data that are processed, stored and published by the social network service providers. Hence, it is vital to investigate the role of these platforms in user data by considering the privacy measures, especially when we observe the increased number of individuals and organizations engaging with the current virtual platforms without being aware that the data related to their positioning, connections and behavior is uncovered and used by third parties. Performing analytics on social network datasets may result in the disclosure of confidential information about the individuals or organizations which are the members of these virtual environments. Analyzing separate datasets can reveal private information about relationships, interests and more, especially when the datasets are analyzed jointly. Intentional breaches of privacy is the result of such analysis. Addressing these privacy concerns requires an understanding of the nature of data being accumulated and relevant data privacy regulations, as well as motivations for disclosure of personal information on social network platforms. Some significant points about how user's online information is controlled by the influence of social factors and to what extent the users are concerned about future use of their personal information by the organizations, are highlighted in this paper. Firstly, this research presents a short literature review about the structure of a network and concept of privacy in Online Social Networks. Secondly, the factors of user behavior related to privacy protection and self-disclosure on these virtual communities are presented. In other words, we seek to demonstrates the impact of identified variables on user information disclosure that could be taken into account to explain the privacy preservation of individuals on social networking platforms. Thirdly, a few research directions are discussed to address this topic for new researchers.

Keywords: information disclosure, privacy measures, privacy preservation, social network analysis, user experience

Procedia PDF Downloads 283
2531 Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth

Authors: Elif Gencturk, Ekin Yurdakul, Ahmet Y. Celik, Senol Mutlu, Kutlu O. Ulgen

Abstract:

Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.  

Keywords: COP, HMF, ribosome biogenesis, thermoplastic microbioreactor, yeast

Procedia PDF Downloads 171
2530 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 172
2529 Hematologic Inflammatory Markers and Inflammation-Related Hepatokines in Pediatric Obesity

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Obesity in children particularly draws attention because it may threaten the individual’s future life due to many chronic diseases it may lead to. Most of these diseases, including obesity itself altogether are related to inflammation. For this reason, inflammation-related parameters gain importance. Within this context, complete blood cell counts, ratios or indices derived from these counts have recently found some platform to be used as inflammatory markers. So far, mostly adipokines were investigated within the field of obesity. The liver is at the center of the metabolic pathways network. Metabolic inflammation is closely associated with cellular dysfunction. In this study, hematologic inflammatory markers and two major hepatokines, cytokines produced predominantly by the liver, fibroblast growth factor-21 (FGF-21) and fetuin A were investigated in pediatric obesity. Two groups were constituted from seventy-six obese children based on World Health Organization criteria. Group 1 was composed of children whose age- and sex-adjusted body mass index (BMI) percentiles were between 95 and 99. Group 2 consists of children who are above the 99ᵗʰ percentile. The first and the latter groups were defined as obese (OB) and morbid obese (MO). Anthropometric measurements of the children were performed. Informed consent forms and the approval of the institutional ethics committee were obtained. Blood cell counts and ratios were determined by an automated hematology analyzer. The related ratios and indexes were calculated. Statistical evaluation of the data was performed by the SPSS program. There was no statistically significant difference in terms of neutrophil-to lymphocyte ratio, monocyte-to-high density lipoprotein cholesterol ratio and the platelet-to-lymphocyte ratio between the groups. Mean platelet volume and platelet distribution width values were decreased (p<0.05), total platelet count, red cell distribution width (RDW) and systemic immune inflammation index values were increased (p<0.01) in MO group. Both hepatokines were increased in the same group; however, increases were not statistically significant. In this group, also a strong correlation was calculated between FGF-21 and RDW when controlled by age, hematocrit, iron and ferritin (r=0.425; p<0.01). In conclusion, the association between RDW, a hematologic inflammatory marker, and FGF-21, an inflammation-related hepatokine, found in MO group is an important finding discriminating between OB and MO children. This association is even more powerful when controlled by age and iron-related parameters.

Keywords: childhood obesity, fetuin A , fibroblast growth factor-21, hematologic markers, red cell distribution width

Procedia PDF Downloads 198
2528 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 513
2527 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL

Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani

Abstract:

In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.

Keywords: islanding, under-frequency load shedding, frequency rate of change, static UFLS

Procedia PDF Downloads 488
2526 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 55
2525 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation

Authors: Virendra Nath, Vipin Kumar

Abstract:

Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.

Keywords: computational, diabetes, PPAR, simulation

Procedia PDF Downloads 103
2524 Finding the Optimal Meeting Point Based on Travel Plans in Road Networks

Authors: Mohammad H. Ahmadi, Vahid Haghighatdoost

Abstract:

Given a set of source locations for a group of friends, and a set of trip plans for each group member as a sequence of Categories-of-Interests (COIs) (e.g., restaurant), and finally a specific COI as a common destination that all group members will gather together, in Meeting Point Based on Trip Plans (MPTPs) queries our goal is to find a Point-of-Interest (POI) from different COIs, such that the aggregate travel distance for the group is minimized. In this work, we considered two cases for aggregate function as Sum and Max. For solving this query, we propose an efficient pruning technique for shrinking the search space. Our approach contains three steps. In the first step, it prunes the search space around the source locations. In the second step, it prunes the search space around the centroid of source locations. Finally, we compute the intersection of all pruned areas as the final refined search space. We prove that the POIs beyond the refined area cannot be part of optimal answer set. The paper also covers an extensive performance study of the proposed technique.

Keywords: meeting point, trip plans, road networks, spatial databases

Procedia PDF Downloads 186
2523 Consumption and Diffusion Based Model of Tissue Organoid Development

Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov

Abstract:

In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.

Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid

Procedia PDF Downloads 308
2522 Using the Weakest Precondition to Achieve Self-Stabilization in Critical Networks

Authors: Antonio Pizzarello, Oris Friesen

Abstract:

Networks, such as the electric power grid, must demonstrate exemplary performance and integrity. Integrity depends on the quality of both the system design model and the deployed software. Integrity of the deployed software is key, for both the original versions and the many that occur throughout numerous maintenance activity. Current software engineering technology and practice do not produce adequate integrity. Distributed systems utilize networks where each node is an independent computer system. The connections between them is realized via a network that is normally redundantly connected to guarantee the presence of a path between two nodes in the case of failure of some branch. Furthermore, at each node, there is software which may fail. Self-stabilizing protocols are usually present that recognize failure in the network and perform a repair action that will bring the node back to a correct state. These protocols first introduced by E. W. Dijkstra are currently present in almost all Ethernets. Super stabilization protocols capable of reacting to a change in the network topology due to the removal or addition of a branch in the network are less common but are theoretically defined and available. This paper describes how to use the Software Integrity Assessment (SIA) methodology to analyze self-stabilizing software. SIA is based on the UNITY formalism for parallel and distributed programming, which allows the analysis of code for verifying the progress property p leads-to q that describes the progress of all computations starting in a state satisfying p to a state satisfying q via the execution of one or more system modules. As opposed to demonstrably inadequate test and evaluation methods SIA allows the analysis and verification of any network self-stabilizing software as well as any other software that is designed to recover from failure without external intervention of maintenance personnel. The model to be analyzed is obtained by automatic translation of the system code to a transition system that is based on the use of the weakest precondition.

Keywords: network, power grid, self-stabilization, software integrity assessment, UNITY, weakest precondition

Procedia PDF Downloads 225
2521 Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species

Authors: Christian A. Romero, Tanja Grkovic, John. R. J. French, D. İpek Kurtböke, Ronald J. Quinn

Abstract:

A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogs isolated from a termite gut-associated Streptomyces species.

Keywords: actinomycetes, actinofuranosin, antibiotics, arglecins, NMR spectroscopy

Procedia PDF Downloads 62
2520 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
2519 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 103
2518 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays

Authors: Swati Tyagi, Syed Abbas

Abstract:

Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.

Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability

Procedia PDF Downloads 366
2517 Synchronization of Two Mobile Robots

Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez

Abstract:

It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.

Keywords: robots, synchronization, bidirectional, coordinate navigation

Procedia PDF Downloads 359
2516 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks

Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai

Abstract:

To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.

Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation

Procedia PDF Downloads 123
2515 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection

Authors: Mohsen Hasirian, Amir Shahab Shahabi

Abstract:

Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.

Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks

Procedia PDF Downloads 36
2514 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 89
2513 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 94
2512 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)

Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat

Abstract:

The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.

Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring

Procedia PDF Downloads 399
2511 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation

Authors: Ksenia Meshkova

Abstract:

With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.

Keywords: neural networks, computer vision, representation learning, autoencoders

Procedia PDF Downloads 128
2510 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands

Authors: Ilham S. M. Elsayed

Abstract:

The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.

Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station

Procedia PDF Downloads 254
2509 Disaster Management Using Wireless Sensor Networks

Authors: Akila Murali, Prithika Manivel

Abstract:

Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.

Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology

Procedia PDF Downloads 405
2508 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris

Abstract:

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Keywords: energy efficiency, handover, HetNets, MADM, small cells

Procedia PDF Downloads 117
2507 A Theoretical Framework on International Voluntary Health Networks

Authors: Benet Reid, Nina Laurie, Matt Baillie-Smith

Abstract:

Trans-national and tropical medicine, historically associated with colonial power and missionary activity, is now central to discourses of global health and development, thrust into mainstream media by events like the 2014 Ebola crisis and enshrined in the Sustainable Development Goals. Research in this area remains primarily the province of health professional disciplines, and tends to be framed within a simple North-to-South model of development. The continued role of voluntary work in this field is bound up with a rhetoric of partnering and partnership. We propose, instead, the idea of International Voluntary Health Networks (IVHNs) as a means to de-centre global-North institutions in these debates. Drawing on our empirical work with IVHNs in countries both North and South, we explore geographical and sociological theories for mapping the multiple spatial and conceptual dynamics of power manifested in these phenomena. We make a radical break from conventional views of health as a de-politicised symptom or corollary of social development. In studying health work as it crosses between cultures and contexts, we demonstrate the inextricably political nature of health and health work everywhere.

Keywords: development, global health, power, volunteering

Procedia PDF Downloads 328
2506 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 32
2505 Analyzing the Impact of Bariatric Surgery in Obesity Associated Chronic Kidney Disease: A 2-Year Observational Study

Authors: Daniela Magalhaes, Jorge Pedro, Pedro Souteiro, Joao S. Neves, Sofia Castro-Oliveira, Vanessa Guerreiro, Rita Bettencourt- Silva, Maria M. Costa, Ana Varela, Joana Queiros, Paula Freitas, Davide Carvalho

Abstract:

Introduction: Obesity is an independent risk factor for renal dysfunction. Our aims were: (1) evaluate the impact of bariatric surgery (BS) on renal function; (2) clarify the factors determining the postoperative evolution of the glomerular filtration rate (GFR); (3) access the occurrence of oxalate-mediated renal complications. Methods: We investigated a cohort of 1448 obese patients who underwent bariatric surgery. Those with basal GFR (GFR0) < 30mL/min or without information about the GFR 2-year post-surgery (GFR2) were excluded. Results: We included 725 patients, of whom 647 (89.2%) women, with 41 (IQR 34-51) years, a median weight of 112.4 (IQR 103.0-125.0) kg and a median BMI of 43.4 (IQR 40.6-46.9) kg/m2. Of these, 459 (63.3%) performed gastric bypass (RYGB), 144 (19.9%) placed an adjustable gastric band (AGB) and 122 (16.8%) underwent vertical gastrectomy (VG). At 2-year post-surgery, excess weight loss (EWL) was 60.1 (IQR 43.7-72.4) %. There was a significant improve of metabolic and inflammatory status, as well as a significant decrease in the proportion of patients with diabetes, arterial hypertension and dyslipidemia (p < 0.0001). At baseline, 38 (5.2%) of subjects had hyperfiltration with a GFR0 ≥ 125mL/min/1.73m2, 492 (67.9%) had a GFR0 90-124 mL/min/1.73m2, 178 (24.6%) had a GFR0 60-89 mL/min/1.73m2, and 17 (2.3%) had a GFR0 < 60 mL/min/1.73m2. GFR decreased in 63.2% of patients with hyperfiltration (ΔGFR=-2.5±7.6), and increased in 96.6% (ΔGFR=22.2±12.0) and 82.4% (ΔGFR=24.3±30.0) of the subjects with GFR0 60-89 and < 60 mL/min/1.73m2, respectively ( p < 0.0001). This trend was maintained when adjustment was made for the type of surgery performed. Of 321 patients, 10 (3.3%) had a urinary albumin excretion (UAE) > 300 mg/dL (A3), 44 (14.6%) had a UAE 30-300 mg/dL (A2) and 247 (82.1%) has a UAE < 30 mg/dL (A1). Albuminuria decreased after surgery and at 2-year follow-up only 1 (0.3%) patient had A3, 17 (5.6%) had A2 and 283 (94%) had A1 (p < 0,0001). In multivariate analysis, the variables independently associated with ΔGFR were BMI (positively) and fasting plasma glucose (negatively). During the 2-year follow-up, only 57 of the 725 patients had transient urinary excretion of calcium oxalate crystals. None has records of oxalate-mediated renal complications at our center. Conclusions: The evolution of GFR after BS seems to depend on the initial renal function, as it decreases in subjects with hyperfiltration, but tends to increase in those with renal dysfunction. Our results suggest that BS is associated with improvement of renal outcomes, without significant increase of renal complications. So, apart the clear benefits in metabolic and inflammatory status, maybe obese adults with nondialysis-dependent CKD should be referred for bariatric surgery evaluation.

Keywords: albuminuria, bariatric surgery, glomerular filtration rate, renal function

Procedia PDF Downloads 362
2504 Knowledge State of Medical Students in Morocco Regarding Metabolic Dysfunction Associated with Non-alcoholic Fatty Liver Disease (MASLD)

Authors: Elidrissi Laila, El Rhaoussi Fatima-Zahra, Haddad Fouad, Tahiri Mohamed, Hliwa Wafaa, Bellabah Ahmed, Badre Wafaa

Abstract:

Introduction: Metabolic Dysfunction Associated with Non-Alcoholic Fatty Liver Disease (MASLD), formerly known as Non-Alcoholic Fatty Liver Disease (NAFLD), is the leading cause of chronic liver disease. The cardiometabolic risk factors associated with MASLD represent common health issues and significant public health challenges. Medical students, being active participants in the healthcare system and a young demographic, are particularly relevant for understanding this entity to prevent its occurrence on a personal and collective level. The objective of our study is to assess the level of knowledge among medical students regarding MASLD, its risk factors, and its long-term consequences. Materials and Methods: We conducted a descriptive cross-sectional study using an anonymous questionnaire distributed through social media over a period of 2 weeks. Medical students from various faculties in Morocco answered 22 questions about MASLD, its etiological factors, diagnosis, complications, and principles of treatment. All responses were analyzed using the Jamovi software. Results: A total of 124 students voluntarily provided complete responses. 59% of our participants were in their 3rd year, with a median age of 21 years. Among the respondents, 27% were overweight, obese, or diabetic. 83% correctly answered more than half of the questions, and 77% believed they knew about MASLD. However, 84% of students were unaware that MASLD is the leading cause of chronic liver disease, and 12% even considered it a rare condition. Regarding etiological factors, overweight and obesity were mentioned in 93% of responses, and type 2 diabetes in 84%. 62% of participants believed that type 1 diabetes could not be implicated in MASLD. For 83 students, MASLD was considered a diagnosis of exclusion, while 41 students believed that a biopsy was mandatory for diagnosis. 12% believed that MASLD did not lead to long-term complications, and 44% were unaware that MASLD could progress to hepatocellular carcinoma. Regarding treatment, 85% included weight loss, and 19% did not consider diabetes management as a therapeutic approach for MASLD. At the end of the questionnaire, 89% of the students expressed a desire to learn more about MASLD and were invited to access an informative sheet through a hyperlink. Conclusion: MASLD represents a significant public health concern due to the prevalence of its risk factors, notably the obesity pandemic, which is widespread among the young population. There is a need for awareness about the seriousness of this emerging and long-underestimated condition among young future physicians.

Keywords: MASLD, medical students, obesity, diabetes

Procedia PDF Downloads 76
2503 Refractory Visceral Leishmaniasis Responding to Second-Line Therapy

Authors: Preet Shah, Om Shrivastav

Abstract:

Introduction : In India, Leishmania donovani is the only parasite causing Leishmaniasis. The parasite infects the reticuloendothelial system and is found in the bone marrow, spleen and liver. Treatment of choice is amphotericin-B with sodium stibogluconate being an alternative. Miltefosine is useful in refractory cases. In our case, Leishmaniasis occurred in a person residing in western India (which is quite rare) and it failed to respond to two different drugs (again an uncommon feature) before it finally responded to a third one. Description: A 50 year old lady, a resident of western India, with no history of recent travel, presented with an ulcer on the left side of the nose since 8 months. She was apparently alright 8 months back, when she noticed a small ulcerated lesion on the left ala of the nose which was immediately biopsied. The biopsy revealed amastigotes of Leishmania for which she was administered intra-lesional sodium stibogluconate for 1 month (4 doses every 8 days).Despite this, there was no regression of the ulcer and hence she presented to us for further management. On examination, her vital parameters were normal. Barring an ulcer on the left side of the nose, rest of the examination findings were unremarkable. Complete blood count was normal. Ultrasound abdomen showed hepatomegaly. PET-CT scan showed increased metabolic activity in left ala of nose, hepatosplenomegaly and increased metabolic activity in spleen and bone marrow. Bone marrow biopsy was done which showed hypercellular marrow with erythroid preponderance. Considering a diagnosis of leishmaniasis which had so far been unresponsive to sodium stibogluconate, she was started on liposomal amphotericin-B. At the time of admission, her creatinine level was normal, but it started rising with the administration of liposomal amphotericin-B, hence the dose was reduced. Despite this, creatinine levels did not improve, and she started developing hypokalemia and hypomagnesemia as side effects of the drug, hence further reductions in the dosage were made. Despite a total of 3 weeks of liposomal amphotericin-B, there was no improvement in the ulcer. As had so far failed to respond to sodium stibogluconate and liposomal amphotericin-B, it was decided to start her on miltefosine. She received the miltefosine for a total of 12 weeks. At the end of this duration, there was a marked regression of the cutaneous lesion. Conclusion: Refractoriness to amphotericin-B in leishmaniasis may be seen in up to 5 % cases. Here, an alternative drug such as miltefosine is useful and hence we decided to use it, to which she responded adequately. Furthermore, although leishmaniasis is common in the eastern part of India, it is a relatively unknown entity in the western part of the country with the occurrence being very rare. Because of these 2 reasons, we consider our case to be a unique one.

Keywords: amphotericin-b, leishmaniasis, miltefosine, tropical diseases

Procedia PDF Downloads 139