Search results for: supervised machine learning algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11219

Search results for: supervised machine learning algorithm

779 The Effect of Speech-Shaped Noise and Speaker’s Voice Quality on First-Grade Children’s Speech Perception and Listening Comprehension

Authors: I. Schiller, D. Morsomme, A. Remacle

Abstract:

Children’s ability to process spoken language develops until the late teenage years. At school, where efficient spoken language processing is key to academic achievement, listening conditions are often unfavorable. High background noise and poor teacher’s voice represent typical sources of interference. It can be assumed that these factors particularly affect primary school children, because their language and literacy skills are still low. While it is generally accepted that background noise and impaired voice impede spoken language processing, there is an increasing need for analyzing impacts within specific linguistic areas. Against this background, the aim of the study was to investigate the effect of speech-shaped noise and imitated dysphonic voice on first-grade primary school children’s speech perception and sentence comprehension. Via headphones, 5 to 6-year-old children, recruited within the French-speaking community of Belgium, listened to and performed a minimal-pair discrimination task and a sentence-picture matching task. Stimuli were randomly presented according to four experimental conditions: (1) normal voice / no noise, (2) normal voice / noise, (3) impaired voice / no noise, and (4) impaired voice / noise. The primary outcome measure was task score. How did performance vary with respect to listening condition? Preliminary results will be presented with respect to speech perception and sentence comprehension and carefully interpreted in the light of past findings. This study helps to support our understanding of children’s language processing skills under adverse conditions. Results shall serve as a starting point for probing new measures to optimize children’s learning environment.

Keywords: impaired voice, sentence comprehension, speech perception, speech-shaped noise, spoken language processing

Procedia PDF Downloads 172
778 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 261
777 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 22
776 Evaluation of Pragmatic Information in an English Textbook: Focus on Requests

Authors: Israa A. Qari

Abstract:

Learning to request in a foreign language is a key ability within pragmatics language teaching. This paper examines how requests are taught in English Unlimited Book 3 (Cambridge University Press), an EFL textbook series employed by King Abdulaziz University in Jeddah, Saudi Arabia to teach advanced foundation year students English. The focus of analysis is the evaluation of the request linguistic strategies present in the textbook, frequency of the use of these strategies, and the contextual information provided on the use of these linguistic forms. The researcher collected all the linguistic forms which consisted of the request speech act and divided them into levels employing the CCSARP request coding manual. Findings demonstrated that simple and commonly employed request strategies are introduced. Looking closely at the exercises throughout the chapters, it was noticeable that the book exclusively employed the most direct form of requesting (the imperative) when giving learners instructions: e.g. listen, write, ask, answer, read, look, complete, choose, talk, think, etc. The book also made use of some other request strategies such as ‘hedged performatives’ and ‘query preparatory’. However, it was also found that many strategies were not dealt with in the book, specifically strategies with combined functions (e.g. possibility, ability). On a sociopragmatic level, a strong focus was found to exist on standard situations in which relations between the requester and requestee are clear. In general, contextual information was communicated implicitly only. The textbook did not seem to differentiate between formal and informal request contexts (register) which might consequently impel students to overgeneralize. The paper closes with some recommendations for textbook and curriculum designers. Findings are also contrasted with previous results from similar body of research on EFL requests.

Keywords: EFL, requests, saudi, speech acts, textbook evaluation

Procedia PDF Downloads 124
775 An Experiment Research on the Effect of Brain-Break in the Classroom on Elementary School Students’ Selective Attention

Authors: Hui Liu, Xiaozan Wang, Jiarong Zhong, Ziming Shao

Abstract:

Introduction: Related research shows that students don’t concentrate on teacher’s speaking in the classroom. The d2 attention test is a time-limited test about selective attention. The d2 attention test can be used to evaluate individual selective attention. Purpose: To use the d2 attention test tool to measure the difference between the attention level of the experimental class and the control class before and after Brain-Break and to explore the effect of Brain-Break in the classroom on students' selective attention. Methods: According to the principle of no difference in pre-test data, two classes in the fourth- grade of Shenzhen Longhua Central Primary School were selected. After 20 minutes of class in the third class in the morning and the third class in the afternoon, about 3-minute Brain-Break intervention was performed in the experimental class for 10 weeks. The normal class in the control class did not intervene. Before and after the experiment, the d2 attention test tool was used to test the attention level of the two-class students. The paired sample t-test and independent sample t-test in SPSS 23.0 was used to test the change in the attention level of the two-class classes around 10 weeks. This article only presents results with significant differences. Results: The independent sample t-test results showed that after ten-week of Brain-Break, the missed errors (E1 t = -2.165 p = 0.042), concentration performance (CP t = 1.866 p = 0.05), and the degree of omissions (Epercent t = -2.375 p = 0.029) in experimental class showed significant differences compared with control class. The students’ error level decreased and the concentration increased. Conclusions: Adding Brain-Break interventions in the classroom can effectively improve the attention level of fourth-grade primary school students to a certain extent, especially can improve the concentration of attention and decrease the error rate in the tasks. The new sport's learning model is worth promoting

Keywords: cultural class, micromotor, attention, D2 test

Procedia PDF Downloads 113
774 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19

Authors: Parisa Mansour

Abstract:

Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.

Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT

Procedia PDF Downloads 51
773 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance

Authors: Hirokatsu Kawashima

Abstract:

One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).

Keywords: auditory error recognition, intensive listening, interaction, investigation

Procedia PDF Downloads 497
772 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 119
771 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 50
770 A Pedagogical Approach of Children’s Learning by Toys, Perspective: Bangladesh

Authors: Muktadir Ahmed, Sayed Akhlakur Rahaman, Mridha Shihab Mahmud

Abstract:

The parents of Bangladesh have scarcity of knowledge about children play. Most of them do not know which toys are perfect for their children. Appropriate toys for playing is one of the most significant parts of children development from early age, besides for proper amelioration of children’s mental growth and brain capacities, toys play an emergent role. So selection of proper toy for children is very important. A toy forms the sagacity of a child and instructs child’s attitude. In this era of globalization to keep pace with everything children toys are also going forward but in a deleterious way. Maximum toys are now battery-driven and for this psychological developments of children are not increasing in effective way; therefore, pedagogical toys are proper selection. This type of toy inspires the wisdom and helps a child to reveal himself/herself. Pedagogical toys are attractive to children and help to stimulate their imagination. Pedagogical toys help them to build senso-motoric skills and hand-eye coordination. In this study, some children divided into two groups, one group played with pedagogical toys and another group played with conventional toys. This study is going to exhibit the difference between pedagogical and conventional toys for kids. The main aim of this study is to reveal the potency of pedagogical toy for children. To implement this study two Daycare Centers (DCC) Projapoti 1 & 3 of Mymensingh city had chosen. Every DCC having 1.5-6 years old children but for this study 2-5 years old children had been selected. The children of Projapoti-1 played with pedagogical toys and the children of Projapoti-2 played with conventional toys. After 6 weeks of study, the children of Projapoti-1 proved that they have improved their skills more than those children of Projapoti-3 who were playing with conventional toys. The children of Projapoti-1 have developed their touch sensation, muscular movement, imitation power, hand-eye coordination whereas the children of Projapoti-3 have only developed their muscular movement fairly (while running after battery driven toys) which is not better than those children of Projapoti-1. They cannot imitate like the children of Projapoti-1. They just had fun from playing virtual games, battery driven toys, watching cartoons etc. Actually, it is not possible to develop a child’s brain without pedagogical toy.

Keywords: brain development, mental growth, pedagogical toys, play for children

Procedia PDF Downloads 309
769 Outcomes of Teacher’s Pedagogical Approach on Mainstreaming of Adolescents with Exceed Weight into Physical Education in United Arab Emirates: Ajman’s Case Study

Authors: Insaf Sayar, Moôtez Marzougui, Abderraouf Ben Abderrahman

Abstract:

Background: Physical Education and Sports (PES) plays an important role in the overall education of the student. It has physical, affective, psychological, and social repercussions. In fact, overweight children are sometimes underestimated by their lower physical performance and suffer from discriminatory attitudes by their peers and their physical education (PE) teachers. Objectives: The aim of this study was to investigate the impacts of both teacher’s pedagogy and overweight or obesity on the inclusion of obese students in physical education classes in the school setting in the Emirate of Ajman (United Arab Emirates) and to understand how physical education and sports (PES) teachers adapt their pedagogical interventions towards this category. Methods: A sample of 48 overweight or obese students and 20 teachers were approached from different schools in Ajman Emirate. Two standardized questionnaires for obese students and PSE teachers were used. Overweight and obesity were defined using age and sex-specific Body Mass Index (BMI). Results: Our results showed that the average BMI of the surveyed students is 28.58 ± 3.14 kg/m². According to the collected data, 85.42% of obese students report that they do not practice physical activity or rarely practice outside of school, and 73.42% go to school by bus or car. In addition, 66.7% of the surveyed students said that being overweight is a barrier to PES practice, and 100% of obese or overweight students do not prefer some physical activities such as running and jumping. Similarly, 75% of the surveyed teachers said that obese students are not integrated into the PES course, but only 55% of teachers reported that the obese student became an obstacle in PES sessions, while 80% of teachers reported that obese or overweight students were marginalized by their colleagues. In the same way, most of them (75%) said that obese students are exempted from PES courses. Conclusion: Overweight/obesity is prevalent among school children in the Emirate of Ajman, with a high correlation with sedentary behavior. The study confirmed an urgent need and effective teaching strategies/ pedagogies for including overweight or obese students in physical education engagement and learning.

Keywords: adolescent, mainstreaming, obesity, PES education, UAE

Procedia PDF Downloads 69
768 Effects of Educational Technology Integration in Classroom Instruction to the Math Performance of Generation Z Students of a Private High School in the Philippines

Authors: May Maricel De Gracia

Abstract:

Different generations respond differently to instruction because of their diverse characteristics, learning styles and study habits. Teaching strategies that were effective many years ago may not be effective now especially to the current generation which is Gen Z. Using quantitative research design, the main goal of this paper is to determine the impact of the implementation of educational technology integration in a private high school in the math performance of its Junior High School (JHS) students on SY 2014-2018 based on their periodical exam performance and on their final math grades. In support, survey on the use of technology was administered to determine the characteristics of both students and teachers of SY 2017-2018. Another survey regarding study habits was also administered to the students to determine their readiness with regards to note-taking skills, time management, test taking/preparation skills, reading, and writing and math skills. Teaching strategies were recommended based on the need of the current Gen Z JHS students. A total of 712 JHS students and 12 math teachers participated in answering the different surveys. Periodic exam means and final math grades between the school years without technology (SY 2004-2008) and with technology (SY 2014-2018) were analyzed through correlation and regression analyses. Result shows that the periodic exam mean has a 35.29% impact to the final grade of the students. In addition, z-test result where p > 0.05 shows that the periodical exam results do not differ significantly between the school years without integration of technology and with the integration of technology. However, with p < 0.01, a significant positive difference was observed in the final math grades of students between the school years without technology integration and with technology integration.

Keywords: classroom instruction, technology, generation z, math performance

Procedia PDF Downloads 136
767 Measures of Reliability and Transportation Quality on an Urban Rail Transit Network in Case of Links’ Capacities Loss

Authors: Jie Liu, Jinqu Cheng, Qiyuan Peng, Yong Yin

Abstract:

Urban rail transit (URT) plays a significant role in dealing with traffic congestion and environmental problems in cities. However, equipment failure and obstruction of links often lead to URT links’ capacities loss in daily operation. It affects the reliability and transport service quality of URT network seriously. In order to measure the influence of links’ capacities loss on reliability and transport service quality of URT network, passengers are divided into three categories in case of links’ capacities loss. Passengers in category 1 are less affected by the loss of links’ capacities. Their travel is reliable since their travel quality is not significantly reduced. Passengers in category 2 are affected by the loss of links’ capacities heavily. Their travel is not reliable since their travel quality is reduced seriously. However, passengers in category 2 still can travel on URT. Passengers in category 3 can not travel on URT because their travel paths’ passenger flow exceeds capacities. Their travel is not reliable. Thus, the proportion of passengers in category 1 whose travel is reliable is defined as reliability indicator of URT network. The transport service quality of URT network is related to passengers’ travel time, passengers’ transfer times and whether seats are available to passengers. The generalized travel cost is a comprehensive reflection of travel time, transfer times and travel comfort. Therefore, passengers’ average generalized travel cost is used as transport service quality indicator of URT network. The impact of links’ capacities loss on transport service quality of URT network is measured with passengers’ relative average generalized travel cost with and without links’ capacities loss. The proportion of the passengers affected by links and betweenness of links are used to determine the important links in URT network. The stochastic user equilibrium distribution model based on the improved logit model is used to determine passengers’ categories and calculate passengers’ generalized travel cost in case of links’ capacities loss, which is solved with method of successive weighted averages algorithm. The reliability and transport service quality indicators of URT network are calculated with the solution result. Taking Wuhan Metro as a case, the reliability and transport service quality of Wuhan metro network is measured with indicators and method proposed in this paper. The result shows that using the proportion of the passengers affected by links can identify important links effectively which have great influence on reliability and transport service quality of URT network; The important links are mostly connected to transfer stations and the passenger flow of important links is high; With the increase of number of failure links and the proportion of capacity loss, the reliability of the network keeps decreasing, the proportion of passengers in category 3 keeps increasing and the proportion of passengers in category 2 increases at first and then decreases; When the number of failure links and the proportion of capacity loss increased to a certain level, the decline of transport service quality is weakened.

Keywords: urban rail transit network, reliability, transport service quality, links’ capacities loss, important links

Procedia PDF Downloads 117
766 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance

Authors: Yi Jen Wang, Yu Ju Chen

Abstract:

Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.

Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing

Procedia PDF Downloads 160
765 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model

Authors: Mohammad Zamani, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.

Keywords: circular vertical, spillway, numerical model, boundary conditions

Procedia PDF Downloads 63
764 Neuropsychology of Dyslexia and Rehabilitation Approaches: A Research Study Applied to School Aged Children with Reading Disorders in Greece

Authors: Rozi Laskaraki, Argyris Karapetsas, Aikaterini Karapetsa

Abstract:

This paper is focused on the efficacy of a rehabilitation program based on musical activities, implied to a group of school-aged dyslexic children. Objective: The purpose of this study was to investigate the efficacy of auditory training including musical exercises in children with developmental dyslexia (DD). Participants and Methods: 45 third-, and fourth-grade students with DD and a matched control group (n=45) were involved in this study. In the beginning, students participated in a clinical assessment, including both electrophysiological (i.e., event related potentials (ERPs) esp.P300 waveform) and neuropsychological tests, being conducted in Laboratory of Neuropsychology, at University of Thessaly, in Volos, Greece. Initial assessment’s results confirmed statistically significant lower performance for children with DD, compared to that of the typical readers. After clinical assessment, a subgroup of children with dyslexia was submitted to a music auditory training program, conducted in 45-minute training sessions, once a week, for twenty weeks. The program included structured and digitized musical activities involving pitch, rhythm, melody and tempo perception and discrimination as well as auditory sequencing. After the intervention period, children underwent a new recording of ERPs. Results: The electrophysiological results revealed that children had similar P300 latency values to that of the controls, after the remediation program; thus children overcame their deficits. Conclusion: The outcomes of the current study suggest that ERPs is a valid clinical tool in neuropsychological assessment settings and dyslexia can be ameliorated through music auditory training.

Keywords: dyslexia, event related potentials, learning disabilities, music, rehabilitation

Procedia PDF Downloads 133
763 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 117
762 The Effect of Rheological Properties and Spun/Meltblown Fiber Characteristics on “Hotmelt Bleed through” Behavior in High Speed Textile Backsheet Lamination Process

Authors: Kinyas Aydin, Fatih Erguney, Tolga Ceper, Serap Ozay, Ipar N. Uzun, Sebnem Kemaloglu Dogan, Deniz Tunc

Abstract:

In order to meet high growth rates in baby diaper industry worldwide, the high-speed textile backsheet lamination lines have recently been introduced to the market for non-woven/film lamination applications. It is a process where two substrates are bonded to each other via hotmelt adhesive (HMA). Nonwoven (NW) lamination system basically consists of 4 components; polypropylene (PP) nonwoven, polyethylene (PE) film, HMA and applicator system. Each component has a substantial effect on the process efficiency of continuous line and final product properties. However, for a precise subject cover, we will be addressing only the main challenges and possible solutions in this paper. The NW is often produced by spunbond method (SSS or SMS configuration) and has a 10-12 gsm (g/m²) basis weight. The NW rolls can have a width and length up to 2.060 mm and 30.000 linear meters, respectively. The PE film is the 2ⁿᵈ component in TBS lamination, which is usually a 12-14 gsm blown or cast breathable film. HMA is a thermoplastic glue (mostly rubber based) that can be applied in a large range of viscosity ranges. The main HMA application technology in TBS lamination is the slot die application in which HMA is spread on the top of the NW along the whole width at high temperatures in the melt form. Then, the NW is passed over chiller rolls with a certain open time depending on the line speed. HMAs are applied at certain levels in order to provide a proper de-lamination strength in cross and machine directions to the entire structure. Current TBS lamination line speed and width can be as high as 800 m/min and 2100 mm, respectively. They also feature an automated web control tension system for winders and unwinders. In order to run a continuous trouble-free mass production campaign on the fast industrial TBS lines, rheological properties of HMAs and micro-properties of NWs can have adverse effects on the line efficiency and continuity. NW fiber orientation and fineness, as well as spun/melt blown composition fabric micro-level properties, are the significant factors to affect the degree of “HMA bleed through.” As a result of this problem, frequent line stops are observed to clean the glue that is being accumulated on the chiller rolls, which significantly reduces the line efficiency. HMA rheology is also important and to eliminate any bleed through the problem; one should have a good understanding of rheology driven potential complications. So, the applied viscosity/temperature should be optimized in accordance with the line speed, line width, NW characteristics and the required open time for a given HMA formulation. In this study, we will show practical aspects of potential preventative actions to minimize the HMA bleed through the problem, which may stem from both HMA rheological properties and NW spun melt/melt blown fiber characteristics.

Keywords: breathable, hotmelt, nonwoven, textile backsheet lamination, spun/melt blown

Procedia PDF Downloads 343
761 Engaging Students in Spatial Thinking through Design Education: Case Study of a Biomimicry Design Project in the Primary Classroom

Authors: Caiwei Zhu, Remke Klapwijk

Abstract:

Spatial thinking, a way of thinking based on the understanding and reasoning of spatial concepts and representations, is embedded in science, technology, engineering, arts, and mathematics (STEAM) learning. Aside from many studies that successfully used targeted training to improve students’ spatial thinking skills, few have closely examined how spatial thinking can be trained in classroom settings. Design and technology education, which receives increasing attention towards its integration into formal curriculums, inherently encompasses a wide range of spatial activities, such as constructing mental representations of design ideas, mentally transforming objects and materials to form designs, visually communicating design plans through annotated drawings, and creating 2D and 3D design artifacts. Among different design topics, biomimicry offers a unique avenue for students to recognize and analyze the shapes and structures in nature. By mapping the forms of plants and animals onto functions, students gain inspiration to solve human design challenges. This study is one of the first to highlight opportunities for training spatial thinking in a biomimicry design project for primary school students. Embracing methodological principles of educational design-based research, this case study is conducted along with iterations in the design of the intervention and collaboration with teachers. Data are harvested from small groups of 10- to 12-year-olds at an international school in the Netherlands. Classroom videos, semi-structured interviews with students, design drawings and artifacts, formative assessment, and the pre- and post-intervention spatial test triangulate evidence for students' spatial thinking. In addition to contributing to a theory of integrating spatial thinking in the primary curriculum, mechanisms underlying such improvement in spatial thinking are explored and discussed.

Keywords: biomimicry, design and technology education, primary education, spatial thinking

Procedia PDF Downloads 60
760 Teacher Knowledge: Unbridling Teacher Agency in the Context of Professional Development for Transformative Teaching and Learning

Authors: Bernice Badal

Abstract:

This article addresses a persistent challenge related to teacher agency in knowledge acquisition in professional development (PD) workshops in contexts of educational change, given that scholarship identifies a need for more teacher involvement and amplification of teacher's voices. Theoretical concepts are drawn from Bandura’s Social cognitive theory, incorporating the triadic causation model of agency to examine the reciprocal nature of the context, teacher characteristics, and systemic influences that shape how knowledge is transmitted and acquired in PD workshops. This qualitative study, using a mix of classroom observations and interviews, explored the political, contextual, and personal characteristics of teacher agency in PD through an analysis of data extracted from a PhD study. The narratives of six teachers from three township schools are examined to show how PD efforts in South Africa have failed to take account of the holistic development of teacher agency in knowledge dissemination and how this shapes teacher self-efficacy beliefs about being able to masterfully apply the tenets of the reform. Agency, teacher voice, and contextual considerations were used as markers of the quality of the training provided to understand how knowledge is acquired and meaning is made. The findings suggest that systemic influences of institutionally imposed PD offer partial understandings of the reform, which is offered in traditional formats that do not consider teacher empowerment in knowledge production and the development of teacher agency. Common in all the participants’ responses is the need for more information and training on the prescribed approach for teaching English as a second language; however, this paper holds the view that more information may not solve teachers’ dilemmas. Accordingly, it recommends a restructuring of the programme with facilitators being more cognisant of teacher agency for the development of transformative teachers. The findings of the study contribute to the field of teacher knowledge, teacher training, and professional development in the context of educational reforms.

Keywords: teacher professional development, teacher voice, teacher agency, educational reforms, teacher knowledge

Procedia PDF Downloads 48
759 The Effect of PETTLEP Imagery on Equestrian Jumping Tasks

Authors: Nurwina Anuar, Aswad Anuar

Abstract:

Imagery is a popular mental technique used by athletes and coaches to improve learning and performance. It has been widely investigated and beneficial in the sports context. However, the imagery application in equestrian sport has been understudied. Thus, the effectiveness of imagery should encompass the application in the equestrian sport to ensure its application covert all sports. Unlike most sports (e.g., football, badminton, tennis, ski) which are both mental and physical are dependent solely upon human decision and response, equestrian sports involves the interaction of human-horse collaboration to success in the equestrian tasks. This study aims to investigate the effect of PETTLEP imagery on equestrian jumping tasks, motivation and imagery ability. It was hypothesized that the use of PETTLEP imagery intervention will significantly increase in the skill equestrian jumping tasks. It was also hypothesized that riders’ imagery ability and motivation will increase across phases. The participants were skilled riders with less to no imagery experience. A single-subject ABA design was employed. The study was occurred over five week’s period at Universiti Teknologi Malaysia Equestrian Park. Imagery ability was measured using the Sport Imagery Assessment Questionnaires (SIAQ), the motivational measured based on the Motivational imagery ability measure for Sport (MIAMS). The effectiveness of the PETTLEP imagery intervention on show jumping tasks were evaluated by the professional equine rider on the observational scale. Results demonstrated the improvement on all equestrian jumping tasks for the most participants from baseline to intervention. Result shows the improvement on imagery ability and participants’ motivations after the PETTLEP imagery intervention. Implication of the present study include underlining the impact of PETTLEP imagery on equestrian jumping tasks. The result extends the previous research on the effectiveness of PETTLEP imagery in the sports context that involves interaction and collaboration between human and horse.

Keywords: PETTLEP imagery, imagery ability, equestrian, equestrian jumping tasks

Procedia PDF Downloads 183
758 Sustainable Community Education: Strategies for Long-Term Impact

Authors: Kariman Abdelaziz Ahmed Ali Hamzawy

Abstract:

Amidst the growing global challenges facing communities, from climate change to educational gaps, sustainable community education has emerged as a vital tool for ensuring comprehensive and enduring development. This research aims to explore effective strategies for sustainable community education that can lead to long-term impacts on local communities. The study begins by defining the concept of sustainable education within a community context and reviews the current literature on the topic. It then presents case studies from various communities around the world where sustainable educational strategies have been successfully implemented. These case studies illustrate how sustainable education can enhance community engagement, build local capacities, and improve quality of life in sustainable ways. The findings from these studies are analyzed to identify the key factors contributing to the success of sustainable educational programs. These factors include partnerships between different sectors (governmental, private, and community), the innovative use of technology, and the adaptation of educational curricula to meet the unique needs of the community. The research also offers practical recommendations on designing and implementing sustainable educational programs, emphasizing the integration of formal and informal education, promoting lifelong learning, and developing local resources. It addresses potential challenges and ways to overcome them to ensure the long-term sustainability of these programs. In conclusion, the research provides a future vision of the role of sustainable education in building resilient and prosperous communities and highlights the importance of investing in education as a key driver of sustainable development. This study contributes to the ongoing discussion on achieving lasting impact through sustainable community education and offers a practical framework for stakeholders to adopt and implement these strategies.

Keywords: sustainable education, community education, Community engagement, local capacity building, educational technology

Procedia PDF Downloads 24
757 Distribution of Micro Silica Powder at a Ready Mixed Concrete

Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han

Abstract:

Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.

Keywords: micro silica, distribution, ready mixed concrete, foam

Procedia PDF Downloads 200
756 Variation of Warp and Binder Yarn Tension across the 3D Weaving Process and its Impact on Tow Tensile Strength

Authors: Reuben Newell, Edward Archer, Alistair McIlhagger, Calvin Ralph

Abstract:

Modern industry has developed a need for innovative 3D composite materials due to their attractive material properties. Composite materials are composed of a fibre reinforcement encased in a polymer matrix. The fibre reinforcement consists of warp, weft and binder yarns or tows woven together into a preform. The mechanical performance of composite material is largely controlled by the properties of the preform. As a result, the bulk of recent textile research has been focused on the design of high-strength preform architectures. Studies looking at optimisation of the weaving process have largely been neglected. It has been reported that yarns experience varying levels of damage during weaving, resulting in filament breakage and ultimately compromised composite mechanical performance. The weaving parameters involved in causing this yarn damage are not fully understood. Recent studies indicate that poor yarn tension control may be an influencing factor. As tension is increased, the yarn-to-yarn and yarn-to-weaving-equipment interactions are heightened, maximising damage. The correlation between yarn tension variation and weaving damage severity has never been adequately researched or quantified. A novel study is needed which accesses the influence of tension variation on the mechanical properties of woven yarns. This study has looked to quantify the variation of yarn tension throughout weaving and sought to link the impact of tension to weaving damage. Multiple yarns were randomly selected, and their tension was measured across the creel and shedding stages of weaving, using a hand-held tension meter. Sections of the same yarn were subsequently cut from the loom machine and tensile tested. A comparison study was made between the tensile strength of pristine and tensioned yarns to determine the induced weaving damage. Yarns from bobbins at the rear of the creel were under the least amount of tension (0.5-2.0N) compared to yarns positioned at the front of the creel (1.5-3.5N). This increase in tension has been linked to the sharp turn in the yarn path between bobbins at the front of the creel and creel I-board. Creel yarns under the lower tension suffered a 3% loss of tensile strength, compared to 7% for the greater tensioned yarns. During shedding, the tension on the yarns was higher than in the creel. The upper shed yarns were exposed to a decreased tension (3.0-4.5N) compared to the lower shed yarns (4.0-5.5N). Shed yarns under the lower tension suffered a 10% loss of tensile strength, compared to 14% for the greater tensioned yarns. Interestingly, the most severely damaged yarn was exposed to both the largest creel and shedding tensions. This study confirms for the first time that yarns under a greater level of tension suffer an increased amount of weaving damage. Significant variation of yarn tension has been identified across the creel and shedding stages of weaving. This leads to a variance of mechanical properties across the woven preform and ultimately the final composite part. The outcome from this study highlights the need for optimised yarn tension control during preform manufacture to minimize yarn-induced weaving damage.

Keywords: optimisation of preform manufacture, tensile testing of damaged tows, variation of yarn weaving tension, weaving damage

Procedia PDF Downloads 214
755 Commentary on Successful and Emerging Bullying Control Programs: A Comparison between Eighteen Bullying Interventions Applied Worldwide

Authors: Sohni Siddiqui, Anja Schultze-Krumbholz

Abstract:

Our lives now revolve more around online-related tasks, as the internet has become a necessity. One of the disturbance concerns with high internet usage is the multiplication of cyber-associated risky behaviors such as cyber aggression and/or cyberbullying. Cyber Bullying is an emerging issue that needs immediate attention from many stakeholders such as parents, doctors, school administrators, policymakers, researchers, and others, especially in the COVID-19 pandemic when online learning has been adopted as an instructional strategy, and there is a continuous rise in cyberbullying cases. The aim of the article is to review existing successful and emerging interventions designed to control bullying and cyberbullying by engaging individuals through teachers’ professional development and adopting a whole-school approach. The study identified the strengths and limitations of the programs and suggested improvements to existing interventions. Preparing interventions with a strong theoretical framework, integrating applications of emerging theories in interventions, promoting proactive and reactive strategies in combination, beginning with the baseline needs assessment surveys, reducing digital time and digital divide among parents and children, promoting the concept of lead trainer, peer trainer, and hot spots, focusing on physical activities, use of landmarks are some of the recommendations proposed by authors. In addition to face-to-face intervention, the researchers recommend updating and improving previous intervention programs with games and apps. Especially in the time of pandemic crises, when face-to-face interactions are limited and cyberbullying is triggered, the use of apps, web-based interventions, and games can be an effective way to control electronic perpetration and victimization.

Keywords: anti bullying programs, cyber bullying, individualized trainings, teachers’ professional development, whole school interventions

Procedia PDF Downloads 131
754 A Study on the Usage of Library versus the Internet as Sources of Information with Reference to the Undergraduate Students in the Faculties of Humanities, Social Sciences, Science and Commerce and Management in the University of Kelaniya

Authors: Dilini Bodhinayaka, Aunsha Sajeewanie Rubasinghe

Abstract:

The library of the University of Kelaniya plays a significant role in supporting the academic work of the university. As at July, 2016 the library of the University of Kelaniya comprised of 250301 printed books, 2157 CD-ROMs, 1203 theses and 800 non-book materials. Furthermore, the library is subscribed to about 60 local journals, access to over 12,500 full text academic journals and around 100,000 e-books. The library provides the services and resources that support in teaching, doing research and learning. On the other hand, undergraduate students have adopted and continued to use the online information retrieval for their academic and research work. This study aims to compare the usage of internet and the usage of library among undergraduates in the faculties of Humanities, Social Sciences, Science and Commerce & Management in the University of Kelaniya. Also, the research attempts to determine the factors of enthusiasm or the disinterest in the students in using library and Internet. All the undergraduate students in the University (8440 students at the time of the study) were taken as the population of the study and the sample of 15% was selected out of the population using stratified sampling method. A total of 1266 questionnaires were distributed among undergraduates of the above mentioned faculties. The qualitative data were analyzed using Descriptive Statistical Method. Findings, of the study indicated that undergraduate students of the faculties of Humanities, Social Sciences, Science and Commerce & Management use both the library and the internet to fulfill their information needs. But, the students in the faculty of Science and Commerce & Management use the internet sources more than the library. The undergraduates in the faculties of Humanities and Social Sciences frequently use the university library than the internet. Although, majority agreed that the internet is the most preferred source of information they have no an adequate awareness about the available internet resources in the E-library of the University of Kelaniya.

Keywords: university libraries, University of Kelaniya, online resources, undergraduates in Sri Lanka

Procedia PDF Downloads 224
753 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring

Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra

Abstract:

Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.

Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application

Procedia PDF Downloads 82
752 Balanced Scorecard (BSC) Project : A Methodological Proposal for Decision Support in a Corporate Scenario

Authors: David de Oliveira Costa, Miguel Ângelo Lellis Moreira, Carlos Francisco Simões Gomes, Daniel Augusto de Moura Pereira, Marcos dos Santos

Abstract:

Strategic management is a fundamental process for global companies that intend to remain competitive in an increasingly dynamic and complex market. To do so, it is necessary to maintain alignment with their principles and values. The Balanced Scorecard (BSC) proposes to ensure that the overall business performance is based on different perspectives (financial, customer, internal processes, and learning and growth). However, relying solely on the BSC may not be enough to ensure the success of strategic management. It is essential that companies also evaluate and prioritize strategic projects that need to be implemented to ensure they are aligned with the business vision and contribute to achieving established goals and objectives. In this context, the proposition involves the incorporation of the SAPEVO-M multicriteria method to indicate the degree of relevance between different perspectives. Thus, the strategic objectives linked to these perspectives have greater weight in the classification of structural projects. Additionally, it is proposed to apply the concept of the Impact & Probability Matrix (I&PM) to structure and ensure that strategic projects are evaluated according to their relevance and impact on the business. By structuring the business's strategic management in this way, alignment and prioritization of projects and actions related to strategic planning are ensured. This ensures that resources are directed towards the most relevant and impactful initiatives. Therefore, the objective of this article is to present the proposal for integrating the BSC methodology, the SAPEVO-M multicriteria method, and the prioritization matrix to establish a concrete weighting of strategic planning and obtain coherence in defining strategic projects aligned with the business vision. This ensures a robust decision-making support process.

Keywords: MCDA process, prioritization problematic, corporate strategy, multicriteria method

Procedia PDF Downloads 60
751 Indian Art Education and Career Opportunities: A Critical Analysis on Commercial Art

Authors: Pooja Jain

Abstract:

Art education is often ignored in syllabus of developing countries like India and in educational planning for development but now days Indian Art with a global recognition is becoming an integral part of the education at all levels. The term art, widely used in all parts of the modern world, carried varied significance in India as its meaning was continuously being extended, covering the many varieties of creative expression such as painting, sculpture, commercial art, design, poetry, music, dance, and architecture. Over the last 100 years Indian artists of all forms have evolved a wide variety of expressive styles. With the recommendations and initiatives by Government of India, Art Education has subsequently gained pace at the school level as a mandatory subject for all making a path way for students with a creative bend of mind. This paper investigates curriculum in various schools of the country at secondary and senior secondary levels along with some eminent institutions running the program. Findings depicted the role of art education and justified its importance primarily with commercial art being perceived to be essential for students learning skills for economic gain in their career ahead. With so many art colleges spread across India, emerging artists and designers are being trained and are creating art of infinite variety and style and have opened up many career avenues. Commercial Art being a plethora of artistic expressions has confidently come of age wherein a creative perception is mixed with an introspective imagination to bring out multi faceted career options with a significant future enveloped in art. Visual arts in education thus is an expanding field of result assured research.

Keywords: modern art, commercial art, introspective imagination, career

Procedia PDF Downloads 167
750 Qualitative Data Summary of Piloted Observation Instrument for Designing Adaptations in Inclusive Settings

Authors: Rebecca Lynn

Abstract:

The successful inclusion of students with disabilities depends upon many factors, including the collaboration between general and special education teachers for meeting student learning goals as outlined in the Individualized Education Plan (IEP). However, Individualized Education Plans do not provide sufficient information on accommodations and modifications for the variety of general education contexts and content areas in which a student may participate. In addition, general and special education teachers lack observation skills and tools for gathering essential information about the strengths and needs of students with disabilities in relation to general education instruction and classrooms. More research and tools are needed for planning adaptations that increase access to content in general education classrooms. This paper will discuss the outcomes of a qualitative field-based study of a structured observation instrument used for gathering information on student strengths and needs in relation to social, academic and regulatory expectations during instruction in general education classrooms. The study explores the following questions: To what extent does the observation structure and instrument increase collaborative planning of adaptations in general education classrooms for students with disabilities? To what extent does the observation structure and instrument change pedagogical practices and collaboration in general education classrooms for fostering successful inclusion? A hypothesis of this study was that use of the instrument in the context of lessons and in collaborative debriefing would increase awareness and use of meaningful adaptations, and lead to universal design in the planning of instruction. A finding of the study is a shift from viewing students with disabilities as passive participants to a more pedagogical inclusion as teachers developed skills in observation and created content/context-specific adaptations for students with disabilities in the general education classroom.

Keywords: adaptations, collaboration, inclusion, observations

Procedia PDF Downloads 113