Search results for: electrolyte-supported model
6646 The Investigation of Relationship between Accounting Information and the Value of Companies
Authors: Golamhassan Ghahramani Aghdam, Pedram Bavili Tabrizi
Abstract:
The aim of this research is to investigate the relationship between accounting information and the value of the companies accepted in Tehran Exchange Market. The dependent variable in this research is the value of a company that is measured by price coefficients, and the independent variables are balance sheet information, profit and loss information, cash flow state information, and profit quality characteristics. The profit quality characteristic index is to be related and to be on-time. This research is an application research, and the research population includes all companies that are active in Tehran exchange market. The number of 194 companies was selected by the systematic method as the statistics sample in the period of 2018-2019. The multi-variable linear regression model was used for the hypotheses test. The results show that there is no relationship between accounting information and companies’ value (stock value) that can be due to the lack of efficiency of the investment market and the inability to use the accounting information by investment market activists.Keywords: accounting information, company value, profit quality characteristics, price coefficient
Procedia PDF Downloads 1396645 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 2466644 Towards Better Quality in Healthcare and Operations Management: A Developmental Literature Review
Authors: Marc Dorval, Marie-Hélène Jobin
Abstract:
This work presents the various perspectives, dimensions, components and definitions given to quality in the operations management (OM) and healthcare services (HCS) literature in time, highlighting gaps and learning opportunities between the two disciplines through a thorough search into their rich and distinct body of knowledge. Greater and new insights about the general nature of quality are obtained with findings such as in OM, quality has been approached in six fairly distinct paradigms (excellence, value, conformity to specifications, attributes, satisfaction and meeting or exceeding customer expectations), whereas in HCS, two approaches are prominent (Donabedian’s structure, process and outcomes model and Lohr and Schroeder’s circumscribed definition). The two disciplines views on quality seem to have progressed much in parallel with little cross-learning from each other. This work then proposes an encompassing definition of quality as a lever and suggests further research and development avenues for a better use of the concept of quality by academics and practitioners alike toward the goals of greater organizational performance and improved management in healthcare and possibly other service domains.Keywords: healthcare, management, operations, quality, services
Procedia PDF Downloads 2296643 Translation Training in the AI Era
Authors: Min Gao
Abstract:
In the past year, the advent of large language models (LLMs) has brought about a revolution in the language service industry, making it possible to efficiently produce more satisfactory and higher-quality translations. This is groundbreaking news for commercial companies involved in language services since much of a translator's work can now be completed by machines. However, it may be bad news for universities that provide translation training programs. They need to confront the challenges posed by AI in education by reconsidering issues such as the reform of traditional teaching methods, the translation ethics of students, and the new demands of the job market for their graduates. This article is an exploratory study of these issues based on the author's experiences in translation teaching. The research combines methods in the form of questionnaires and interviews. The findings include: (1) students may lose their motivation to learn in the AI era, but this can be compensated for by encouragement from the lecturer; (2) Translation ethics are not a serious problem in schools, considering the strict policies and regulations in place; (3) The role of translators has evolved in the new era, necessitating a reform of the traditional teaching methods.Keywords: job market of translation, large language model, translation ethics, translation training
Procedia PDF Downloads 686642 Analysis of Risk-Based Disaster Planning in Local Communities
Authors: R. A. Temah, L. A. Nkengla-Asi
Abstract:
Planning for future disasters sets the stage for a variety of activities that may trigger multiple recurring operations and expose the community to opportunities to minimize risks. Local communities are increasingly embracing the necessity for planning based on local risks, but are also significantly challenged to effectively plan and response to disasters. This research examines basic risk-based disaster planning model and compares it with advanced risk-based planning that introduces the identification and alignment of varieties of local capabilities within and out of the local community that can be pivotal to facilitate the management of local risks and cascading effects prior to a disaster. A critical review shows that the identification and alignment of capabilities can potentially enhance risk-based disaster planning. A tailored holistic approach to risk based disaster planning is pivotal to enhance collective action and a reduction in disaster collective cost.Keywords: capabilities, disaster planning, hazards, local community, risk-based
Procedia PDF Downloads 2066641 Solar Power Forecasting for the Bidding Zones of the Italian Electricity Market with an Analog Ensemble Approach
Authors: Elena Collino, Dario A. Ronzio, Goffredo Decimi, Maurizio Riva
Abstract:
The rapid increase of renewable energy in Italy is led by wind and solar installations. The 2017 Italian energy strategy foresees a further development of these sustainable technologies, especially solar. This fact has resulted in new opportunities, challenges, and different problems to deal with. The growth of renewables allows to meet the European requirements regarding energy and environmental policy, but these types of sources are difficult to manage because they are intermittent and non-programmable. Operationally, these characteristics can lead to instability on the voltage profile and increasing uncertainty on energy reserve scheduling. The increasing renewable production must be considered with more and more attention especially by the Transmission System Operator (TSO). The TSO, in fact, every day provides orders on energy dispatch, once the market outcome has been determined, on extended areas, defined mainly on the basis of power transmission limitations. In Italy, six market zone are defined: Northern-Italy, Central-Northern Italy, Central-Southern Italy, Southern Italy, Sardinia, and Sicily. An accurate hourly renewable power forecasting for the day-ahead on these extended areas brings an improvement both in terms of dispatching and reserve management. In this study, an operational forecasting tool of the hourly solar output for the six Italian market zones is presented, and the performance is analysed. The implementation is carried out by means of a numerical weather prediction model, coupled with a statistical post-processing in order to derive the power forecast on the basis of the meteorological projection. The weather forecast is obtained from the limited area model RAMS on the Italian territory, initialized with IFS-ECMWF boundary conditions. The post-processing calculates the solar power production with the Analog Ensemble technique (AN). This statistical approach forecasts the production using a probability distribution of the measured production registered in the past when the weather scenario looked very similar to the forecasted one. The similarity is evaluated for the components of the solar radiation: global (GHI), diffuse (DIF) and direct normal (DNI) irradiation, together with the corresponding azimuth and zenith solar angles. These are, in fact, the main factors that affect the solar production. Considering that the AN performance is strictly related to the length and quality of the historical data a training period of more than one year has been used. The training set is made by historical Numerical Weather Prediction (NWP) forecasts at 12 UTC for the GHI, DIF and DNI variables over the Italian territory together with corresponding hourly measured production for each of the six zones. The AN technique makes it possible to estimate the aggregate solar production in the area, without information about the technologic characteristics of the all solar parks present in each area. Besides, this information is often only partially available. Every day, the hourly solar power forecast for the six Italian market zones is made publicly available through a website.Keywords: analog ensemble, electricity market, PV forecast, solar energy
Procedia PDF Downloads 1586640 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness
Procedia PDF Downloads 3096639 Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair: A Case of Automobile
Authors: Adedeji W. Oyediran, Yekini N. Asafe
Abstract:
Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for automobile users.Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community
Procedia PDF Downloads 5086638 Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems
Authors: Paolo Castaldo, Bruno Palazzo, Laura Lodato
Abstract:
This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed.Keywords: FP devices, seismic reliability, seismic robustness, seizure
Procedia PDF Downloads 4126637 Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features
Authors: Hrishi Rakshit, Pooneh Bagheri Zadeh
Abstract:
This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods.Keywords: drone classifications, deep convolutional neural network, hyperparameters, drone audio signal
Procedia PDF Downloads 1046636 FLEX: A Backdoor Detection and Elimination Method in Federated Scenario
Authors: Shuqi Zhang
Abstract:
Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%.Keywords: federated learning, secure aggregation, backdoor attack, cluster analysis, neuron pruning
Procedia PDF Downloads 966635 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst
Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong
Abstract:
Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide
Procedia PDF Downloads 1526634 Structural and Magnetic Properties of Mn-Doped 6H-SiC
Authors: M. Al Azri, M. Elzain, K. Bouziane, S. M. Chérif
Abstract:
n-Type 6H-SiC(0001) substrates were implanted with three fluencies of Mn+ 5x1015 Mn/cm2 (Mn content: 0.7%), 1x1016 (~2 %), and 5x1016 cm–2 (7%) with implantation energy of 80 keV and substrate temperature of 365ºC. The samples were characterized using Rutherford Backscattering and Channeling Spectroscopy (RBS/C), High-Resolution X-Ray Diffraction technique (HRXRD), micro-Raman Spectroscopy (μRS), and Superconducting Quantum Interference Device (SQUID) techniques. The aim of our work is to investigate implantation induced defects with dose and to study any correlation between disorder-composition and magnetic properties. In addition, ab-initio calculations were used to investigate the structural and magnetic properties of Mn-doped 6H-SiC. Various configurations of Mn sites and vacancy types were considered. The calculations showed that a substitutional Mn atom at Si site possesses larger magnetic moment than Mn atom at C site. A model is introduced to explain the dependence of the magnetic structure on site occupation. The magnetic properties of ferromagnetically (FM) and antiferromagnetically (AFM) coupled pairs of Mn atoms with and without neighboring vacancies have also been explored.Keywords: ab-initio calculations, diluted magnetic semiconductors, magnetic properties, silicon carbide
Procedia PDF Downloads 3246633 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 1166632 A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio
Authors: Ehsan Atefi, Michael Grigware
Abstract:
Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT.Keywords: respiratory failure, surfactant deficiency, surfactant replacement, machine learning
Procedia PDF Downloads 1266631 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems
Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi
Abstract:
The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm
Procedia PDF Downloads 1786630 Determining Antecedents of Employee Turnover: A Study on Blue Collar vs White Collar Workers on Marco Level
Authors: Evy Rombaut, Marie-Anne Guerry
Abstract:
Predicting voluntary turnover of employees is an important topic of study, both in academia and industry. Researchers try to uncover determinants for a broader understanding and possible prevention of turnover. In the current study, we use a data set based approach to reveal determinants for turnover, differing for blue and white collar workers. Our data set based approach made it possible to study actual turnover for more than 500000 employees in 15692 Belgian corporations. We use logistic regression to calculate individual turnover probabilities and test the goodness of our model with the AUC (area under the ROC-curve) method. The results of the study confirm the relationship of known determinants to employee turnover such as age, seniority, pay and work distance. In addition, the study unravels unknown and verifies known differences between blue and white collar workers. It shows opposite relationships to turnover for gender, marital status, the number of children, nationality, and pay.Keywords: employee turnover, blue collar, white collar, dataset analysis
Procedia PDF Downloads 2916629 Unsupervised Domain Adaptive Text Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, unsupervised training, text retrieval
Procedia PDF Downloads 736628 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink
Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai
Abstract:
This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink
Procedia PDF Downloads 3896627 Retrofitted Semi-Active Suspension System for a Eelectric Model Vehicle
Authors: Shiuh-Jer Huang, Yun-Han Yeh
Abstract:
A 40 steps manual adjusting shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system for a four-wheel drive electric vehicle. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. A fuzzy logic controller was designed to derive appropriate damping target based on vehicle running condition for semi-active suspension system to follow. The damping ratio control of each wheel axis suspension system is executed with a robust fuzzy sliding mode controller (FSMC). Different road surface conditions are chosen to evaluate the control performance of this semi-active suspension system based on wheel axis acceleration signal.Keywords: semi-active suspension, electric vehicle, fuzzy sliding mode control, accelerometer
Procedia PDF Downloads 4816626 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 1436625 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence
Authors: Pablo Enrique Sartor Del Giudice
Abstract:
Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.Keywords: football, penalty shootouts, Montecarlo simulation, ABBA
Procedia PDF Downloads 1626624 Cloud-Based Dynamic Routing with Feedback in Formal Methods
Authors: Jawid Ahmad Baktash, Mursal Dawodi, Tomokazu Nagata
Abstract:
With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked.Keywords: cloud, dynamic routing, formal method, Pro-B, event-B
Procedia PDF Downloads 4236623 The Consumer Responses toward the Offensive Product Advertising
Authors: Chin Tangtarntana
Abstract:
The main purpose of this study was to investigate the effects of animation in offensive product advertising. Experiment was conducted to collect consumer responses toward animated and static ads of offensive and non-offensive products. The study was conducted by distributing questionnaires to the target respondents. According to statistics from Innovative Internet Research Center, Thailand, majority of internet users are 18 – 44 years old. The results revealed an interaction between ad design and offensive product. Specifically, when used in offensive product advertisements, animated ads were not effective for consumer attention, but yielded positive response in terms of attitude toward product. The findings support that information processing model is accurate in predicting consumer cognitive response toward cartoon ads, whereas U&G, arousal, and distinctive theory is more accurate in predicting consumer affective response. In practical, these findings can also be used to guide ad designers and marketers that are suitable for offensive products.Keywords: animation, banner ad design, consumer responses, offensive product advertising, stock exchange of Thailand
Procedia PDF Downloads 2686622 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model
Authors: Navid Daryasafar, Nima Farshidfar
Abstract:
In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation
Procedia PDF Downloads 5396621 The Potential Role of Some Nutrients and Drugs in Providing Protection from Neurotoxicity Induced by Aluminium in Rats
Authors: Azza A. Ali, Abeer I. Abd El-Fattah, Shaimaa S. Hussein, Hanan A. Abd El-Samea, Karema Abu-Elfotuh
Abstract:
Background: Aluminium (Al) represents an environmental risk factor. Exposure to high levels of Al causes neurotoxic effects and different diseases. Vinpocetine is widely used to improve cognitive functions, it possesses memory-protective and memory-enhancing properties and has the ability to increase cerebral blood flow and glucose uptake. Cocoa bean represents a rich source of iron as well as a potent antioxidant. It can protect from the impact of free radicals, reduces stress as well as depression and promotes better memory and concentration. Wheatgrass is primarily used as a concentrated source of nutrients. It contains vitamins, minerals, carbohydrates, amino acids and possesses antioxidant and anti-inflammatory activities. Coenzyme Q10 (CoQ10) is an intracellular antioxidant and mitochondrial membrane stabilizer. It is effective in improving cognitive disorders and has been used as anti-aging. Zinc is a structural element of many proteins and signaling messenger that is released by neural activity at many central excitatory synapses. Objective: To study the role of some nutrients and drugs as Vinpocetine, Cocoa, Wheatgrass, CoQ10 and Zinc against neurotoxicity induced by Al in rats as well as to compare between their potency in providing protection. Methods: Seven groups of rats were used and received daily for three weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except for the control group which received saline. All groups of Al-toxicity model except one group (non-treated) were co-administered orally together with AlCl3 the following treatments; Vinpocetine (20mg/kg), Cocoa powder (24mg/kg), Wheat grass (100mg/kg), CoQ10 (200mg/kg) or Zinc (32mg/kg). Biochemical changes in the rat brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups besides histopathological examinations in different brain regions. Results: Neurotoxicity and neurodegenerations in the rat brain after three weeks of Al exposure were indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the significant decrease in SOD, TAC, BDNF and confirmed by the histopathological changes in the brain. On the other hand, co-administration of each of Vinpocetine, Cocoa, Wheatgrass, CoQ10 or Zinc together with AlCl3 provided protection against hazards of neurotoxicity and neurodegenerations induced by Al, their protection were indicated by the decrease in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the increase in SOD, TAC, BDNF and confirmed by the histopathological examinations of different brain regions. Vinpocetine and Cocoa showed the most pronounced protection while Zinc provided the least protective effects than the other used nutrients and drugs. Conclusion: Different degrees of protection from neurotoxicity and neuronal degenerations induced by Al could be achieved through the co-administration of some nutrients and drugs during its exposure. Vinpocetine and Cocoa provided the most protection than Wheat grass, CoQ10 or Zinc which showed the least protective effects.Keywords: aluminum, neurotoxicity, vinpocetine, cocoa, wheat grass, coenzyme Q10, Zinc, rats
Procedia PDF Downloads 2496620 A Particle Image Velocimetric (PIV) Experiment on Simplified Bottom Hole Flow Field
Authors: Heqian Zhao, Huaizhong Shi, Zhongwei Huang, Zhengliang Chen, Ziang Gu, Fei Gao
Abstract:
Hydraulics mechanics is significantly important in the drilling process of oil or gas exploration, especially for the drill bit. The fluid flows through the nozzles on the bit and generates a water jet to remove the cutting at the bottom hole. In this paper, a simplified bottom hole model is established. The Particle Image Velocimetric (PIV) is used to capture the flow field of the single nozzle. Due to the limitation of the bottom and wellbore, the potential core is shorter than that of the free water jet. The velocity magnitude rapidly attenuates when fluid close to the bottom is lower than about 5 mm. Besides, a vortex zone appears near the middle of the bottom beside the water jet zone. A modified exponential function can be used to fit the centerline velocity well. On the one hand, the results of this paper can provide verification for the numerical simulation of the bottom hole flow field. On the other hand, it also can provide an experimental basis for the hydraulic design of the drill bit.Keywords: oil and gas, hydraulic mechanic of drilling, PIV, bottom hole
Procedia PDF Downloads 2136619 Factors Influencing University Students' Online Disinhibition Behavior: The Moderating Effects of Deterrence and Social Identity
Authors: Wang, Kuei-Ing, Jou-Fan Shih
Abstract:
This study adopts deterrence theory as well as social identities as moderators, and explores their moderating affects on online toxic disinhibition. Survey and Experimental methodologies are applied to test the research model and four hypotheses are developed in this study. The controllability of identity positively influenced the behavior of toxic disinhibition both in experimental and control groups while the fluidity of the identity did not have significant influences on online disinhibition. Punishment certainty, punishment severity as well as social identity negatively moderated the relation between the controllability of the identity and the toxic disinhibition. The result of this study shows that internet users hide their real identities when they behave inappropriately on internet, but once they acknowledge that the inappropriate behavior will be found and punished severely, the inappropriate behavior then will be weakened.Keywords: seductive properties of internet, online disinhibition, punishment certainty, punishment severity, social identity
Procedia PDF Downloads 5086618 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1226617 Portable Hands-Free Process Assistant for Gas Turbine Maintenance
Authors: Elisabeth Brandenburg, Robert Woll, Rainer Stark
Abstract:
This paper presents how smart glasses and voice commands can be used for improving the maintenance process of industrial gas turbines. It presents the process of inspecting a gas turbine’s combustion chamber and how it is currently performed using a set of paper-based documents. In order to improve this process, a portable hands-free process assistance system has been conceived. In the following, it will be presented how the approach of user-centered design and the method of paper prototyping have been successfully applied in order to design a user interface and a corresponding workflow model that describes the possible interaction patterns between the user and the interface. The presented evaluation of these results suggests that the assistance system could help the user by rendering multiple manual activities obsolete, thus allowing him to work hands-free and to save time for generating protocols.Keywords: paper prototyping, smart glasses, turbine maintenance, user centered design
Procedia PDF Downloads 321