Search results for: professional learning communities (PLCs)
768 Quantifying Stakeholders’ Values of Technical and Vocational Education and Training Provision in Nigeria
Authors: Lidimma Benjamin, Nimmyel Gwakzing, Wuyep Nanyi
Abstract:
Technical and Vocational Education and Training (TVET) has many stakeholders, each with their own values and interests. This study will focus on the diversity of the values and interests within and across groups of stakeholders by quantifying the value that stakeholders attached to several quality attributes of TVET, and also find out to what extent TVET stakeholders differ in their values. The quality of TVET therefore, depends on how well it aligns with the values and interests of these stakeholders. The five stakeholders are parents, students, teachers, policy makers, and work place training supervisors. The 9 attributes are employer appreciation of students, graduation rate, obtained computer skills of students, mentoring hours in workplace learning/Students Industrial Work Experience Scheme (SIWES), challenge, structure, students’ appreciation of teachers, schooling hours, and attention to civic education. 346 respondents (comprising Parents, Students, Teachers, Policy Makers, and Workplace Training Supervisors) were repeatedly asked to rank a set of 4 programs, each with a specific value on the nine quality indicators. Conjoint analysis was used to obtain the values that the stakeholders assigned to the 9 attributes when evaluating the quality of TVET programs. Rank-ordered logistic regression was the statistical/tool used for ranking the respondents values assign to the attributes. The similarities and diversity in values and interests of the different stakeholders will be of use by both Nigerian government and TVET colleges, to improve the overall quality of education and the match between vocational programs and their stakeholders simultaneous evaluation and combination of information in product attributes. Such approach models the decision environment by confronting a respondent with choices that are close to real-life choices. Therefore, it is more realistically than traditional survey methods.Keywords: TVET, vignette study, conjoint analysis, quality perception, educational stakeholders
Procedia PDF Downloads 85767 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire
Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas
Abstract:
Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.Keywords: resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan
Procedia PDF Downloads 139766 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine
Procedia PDF Downloads 177765 Knowledge Management Strategies within a Corporate Environment of Papers
Authors: Daniel J. Glauber
Abstract:
Knowledge transfer between personnel could benefit an organization’s improved competitive advantage in the marketplace from a strategic approach to knowledge management. The lack of information sharing between personnel could create knowledge transfer gaps while restricting the decision-making processes. Knowledge transfer between personnel can potentially improve information sharing based on an implemented knowledge management strategy. An organization’s capacity to gain more knowledge is aligned with the organization’s prior or existing captured knowledge. This case study attempted to understand the overall influence of a KMS within the corporate environment and knowledge exchange between personnel. The significance of this study was to help understand how organizations can improve the Return on Investment (ROI) of a knowledge management strategy within a knowledge-centric organization. A qualitative descriptive case study was the research design selected for this study. The lack of information sharing between personnel may create knowledge transfer gaps while restricting the decision-making processes. Developing a knowledge management strategy acceptable at all levels of the organization requires cooperation in support of a common organizational goal. Working with management and executive members to develop a protocol where knowledge transfer becomes a standard practice in multiple tiers of the organization. The knowledge transfer process could be measurable when focusing on specific elements of the organizational process, including personnel transition to help reduce time required understanding the job. The organization studied in this research acknowledged the need for improved knowledge management activities within the organization to help organize, retain, and distribute information throughout the workforce. Data produced from the study indicate three main themes including information management, organizational culture, and knowledge sharing within the workforce by the participants. These themes indicate a possible connection between an organizations KMS, the organizations culture, knowledge sharing, and knowledge transfer.Keywords: knowledge transfer, management, knowledge management strategies, organizational learning, codification
Procedia PDF Downloads 443764 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 340763 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 18762 Teaching Foreign Languages Across the Curriculum (FLAC): Hybrid French/English Courses and their Dual Impact on Interdisciplinarity and L2 Competency
Authors: M. Caporale
Abstract:
French Curricula across the US have recently suffered low enrollment and have experienced difficulties with retention, thus resulting in fewer students minoring and majoring in French and enrolling in upper-level classes. Successful undergraduate programs offer French courses with a strong cultural and interdisciplinary or multidisciplinary component. The World Language Curriculum in liberal arts colleges in America needs to take into account the cultural aspects of the language and encourage students to think critically about the country or countries they are studying. Limiting the critical inquiry to language or literature narrowly defined provides and incomplete and stagnant picture of France and the Francophone world in today's global community. This essay discusses the creation and implementation of a hybrid interdisciplinary L1/L2 course titled "Topics in Francophone Cinema" (subtitle "Francophone Women on Screen and Behind the Camera"). Content-based interdisciplinary courses undoubtedly increase the profile of French and Francophone cultural Studies by introducing students of other disciplines to fundamental questions relating to the French and Francophone cultures (in this case, women's rights in the Francophone world). At the same time, this study determines that through targeted reading and writing assignments, sustained aural exposure to L2 through film,and student participation in a one-credit supplementary weekly practicum (creative film writing workshop), significant advances in L2 competence are achieved with students' oral and written production levels evolving from Advanced Low to Advanced-mid, as defined by the ACFL guidelines. Use of differentiated assessment methods for L1/L2 and student learning outcomes for both groups will also be addressed.Keywords: interdisciplinary, Francophone cultural studies, language competency, content-based
Procedia PDF Downloads 501761 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 122760 Discussion as a Means to Improve Peer Assessment Accuracy
Authors: Jung Ae Park, Jooyong Park
Abstract:
Writing is an important learning activity that cultivates higher level thinking. Effective and immediate feedback is necessary to help improve students' writing skills. Peer assessment can be an effective method in writing tasks because it makes it possible for students not only to receive quick feedback on their writing but also to get a chance to examine different perspectives on the same topic. Peer assessment can be practiced frequently and has the advantage of immediate feedback. However, there is controversy about the accuracy of peer assessment. In this study, we tried to demonstrate experimentally how the accuracy of peer assessment could be improved. Participants (n=76) were randomly assigned to groups of 4 members. All the participant graded two sets of 4 essays on the same topic. They graded the first set twice, and the second set or the posttest once. After the first grading of the first set, each group in the experimental condition 1 (discussion group), were asked to discuss the results of the peer assessment and then to grade the essays again. Each group in the experimental condition 2 (reading group), were asked to read the assessment on each essay by an expert and then to grade the essays again. In the control group, the participants were asked to grade the 4 essays twice in different orders. Afterwards, all the participants graded the second set of 4 essays. The mean score from 4 participants was calculated for each essay. The accuracy of the peer assessment was measured by Pearson correlation with the scores of the expert. The results were analyzed by two-way repeated measure ANOVA. The main effect of grading was observed: Grading accuracy got better as the number of grading experience increased. Analysis of posttest accuracy revealed that the score variations within a group of 4 participants decreased in both discussion and reading conditions but not in the control condition. These results suggest that having students discuss their grading together can be an efficient means to improve peer assessment accuracy. By discussing, students can learn from others about what to consider in grading and whether their grading is too strict or lenient. Further research is needed to examine the exact cause of the grading accuracy.Keywords: peer assessment, evaluation accuracy, discussion, score variations
Procedia PDF Downloads 267759 Manodharmam: A Scientific Methodology for Improvisation and Cognition in Carnatic Music
Authors: Raghavi Janaswamy, Saraswathi K. Vasudev
Abstract:
Music is ubiquitous in human lives. Ever since the fetus hears the sound inside the mother’s womb and later upon birth, the baby experiences alluring sounds, the curiosity of learning emanates and evokes exploration. Music is an education than mere entertainment. The intricate balance between music, education, and entertainment has well been recognized by the scientific community and is being explored as a viable tool to understand and improve human cognition. There are seven basic swaras (notes) Sa, Ri, Ga, Ma, Pa, Da, and Ni in the Carnatic music system that are analogous to C, D, E, F, G, A, and B of the western system. The Carnatic music builds on the conscious use of microtones, gamakams (oscillation), and rendering styles that evolved over centuries and established its stance. The complex but erudite raga system has been designed with elaborate experiments on srutis (musical sounds) and human perception abilities. In parallel, ‘rasa’- the emotions evoked by certain srutis and hence the ragas been solidified along with the power of language in combination with the musical sounds. The Carnatic music branches out as Kalpita sangeetam (pre-composed music) and Manodharma sangeetam (improvised music). This article explores the Manodharma sangeetam and its subdivisions such as raga alapana, swara kalpana, neraval, and ragam-tanam-pallavi (RTP). The intrinsic mathematical strategies in it’s practice methods toward improvising the music have been explored in detail with concert examples. The techniques on swara weaving for swara kalpana rendering and methods on the alapana development are also discussed at length with an emphasis on the impact on the human cognitive abilities. The articulation of the outlined conscious practice methods not only helps to leave a long-lasting melodic impression on the listeners but also onsets cognitive developments.Keywords: Carnatic, Manodharmam, music cognition, Alapana
Procedia PDF Downloads 204758 Evaluation of Cultural Landscape Perception in Waterfront Historic Districts Based on Multi-source Data - Taking Venice and Suzhou as Examples
Authors: Shuyu Zhang
Abstract:
The waterfront historical district, as a type of historical districts on the verge of waters such as the sea, lake, and river, have a relatively special urban form. In the past preservation and renewal of traditional historic districts, there have been many discussions on the land range, and the waterfront and marginal spaces are easily overlooked. However, the waterfront space of the historic districts, as a cultural landscape heritage combining historical buildings and landscape elements, has strong ecological and sustainable values. At the same time, Suzhou and Venice, as sister water cities in history, have more waterfront spaces that can be compared in urban form and other levels. Therefore, this paper focuses on the waterfront historic districts in Venice and Suzhou, establishes quantitative evaluation indicators for environmental perception, makes analogies, and promotes the renewal and activation of the entire historical district by improving the spatial quality and vitality of the waterfront area. First, this paper uses multi-source data for analysis, such as Baidu Maps and Google Maps API to crawl the street view of the waterfront historic districts, uses machine learning algorithms to analyze the proportion of cultural landscape elements such as green viewing rate in the street view pictures, and uses space syntax software to make quantitative selectivity analysis, so as to establish environmental perception evaluation indicators for the waterfront historic districts. Finally, by comparing and summarizing the waterfront historic districts in Venice and Suzhou, it reveals their similarities and differences, characteristics and conclusions, and hopes to provide a reference for the heritage preservation and renewal of other waterfront historic districts.Keywords: waterfront historical district, cultural landscape, perception, multi-source Data
Procedia PDF Downloads 197757 Detect Critical Thinking Skill in Written Text Analysis. The Use of Artificial Intelligence in Text Analysis vs Chat/Gpt
Authors: Lucilla Crosta, Anthony Edwards
Abstract:
Companies and the market place nowadays struggle to find employees with adequate skills in relation to anticipated growth of their businesses. At least half of workers will need to undertake some form of up-skilling process in the next five years in order to remain aligned with the requests of the market . In order to meet these challenges, there is a clear need to explore the potential uses of AI (artificial Intelligence) based tools in assessing transversal skills (critical thinking, communication and soft skills of different types in general) of workers and adult students while empowering them to develop those same skills in a reliable trustworthy way. Companies seek workers with key transversal skills that can make a difference between workers now and in the future. However, critical thinking seems to be the one of the most imprtant skill, bringing unexplored ideas and company growth in business contexts. What employers have been reporting since years now, is that this skill is lacking in the majority of workers and adult students, and this is particularly visible trough their writing. This paper investigates how critical thinking and communication skills are currently developed in Higher Education environments through use of AI tools at postgraduate levels. It analyses the use of a branch of AI namely Machine Learning and Big Data and of Neural Network Analysis. It also examines the potential effect the acquisition of these skills through AI tools and what kind of effects this has on employability This paper will draw information from researchers and studies both at national (Italy & UK) and international level in Higher Education. The issues associated with the development and use of one specific AI tool Edulai, will be examined in details. Finally comparisons will be also made between these tools and the more recent phenomenon of Chat GPT and forthcomings and drawbacks will be analysed.Keywords: critical thinking, artificial intelligence, higher education, soft skills, chat GPT
Procedia PDF Downloads 113756 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change
Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz
Abstract:
The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.Keywords: average rate of change, context problems, derivative, numerical representation, SOLO taxonomy
Procedia PDF Downloads 93755 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development
Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng
Abstract:
Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics
Procedia PDF Downloads 170754 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 88753 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 164752 Efficacy of the Use of Different Teaching Approaches of Math Teachers
Authors: Nilda San Miguel, Elymar Pascual
Abstract:
The main focus of this study is exploring the effective approaches in teaching Mathematics that is being applied in public schools, s.y. 2018-2019. This research was written as connected output to the district-wide School Learning Action Cell (DISLAC) on Math teaching approaches which was recently conducted in Victoria, Laguna. Fifty-four math teachers coming from 17 schools in Victoria became the respondents of this study. Qualitative method of doing research was applied. Teachers’ responses to the following concerns were gathered, analyzed and interpreted: (1) evaluation of the recently conducted DISLAC, (2) status of the use of different approaches, (3) perception on the effective use of approaches, (4) preference of approach to explore in classroom sessions, (5) factors affecting the choice of approach, (6) difficulties encountered, (7) and perceived benefit to learners. Results showed that the conduct of DISLAC was very highly satisfactory (mean 4.41). Teachers looked at collaborative approach as very highly effective (mean 4.74). Fifty-two percent of the teachers is using collaborative approach, 17% constructivist, 11% integrative, 11% inquiry-based, and 9% reflective. Reflective approach was chosen to be explored by most of the respondents (29%) in future sessions. The difficulties encountered by teachers in using the different approaches are: (1) learners’ difficulty in following instructions, (2) lack of focus, (3) lack of willingness and cooperation, (4) teachers’ lack of mastery in using different approaches, and (5) lack of time of doing visual aids because of time mismanagement. Teachers deemed the use of various teaching approaches can help the learners to have (1) mastery of competency, (2) increased communication, (3) improved confidence, (4) facility in comprehension, and (5) better academic output. The result obtained from this study can be used as an input for SLACs. Recommendations at the end of the study were given to school/district heads and future researchers.Keywords: approaches, collaborative, constructivism, inquiry-based, integrative, reflective
Procedia PDF Downloads 283751 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence
Authors: Sylvester Akpah, Selasi Vondee
Abstract:
Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle
Procedia PDF Downloads 143750 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 101749 The Effect of Speech-Shaped Noise and Speaker’s Voice Quality on First-Grade Children’s Speech Perception and Listening Comprehension
Authors: I. Schiller, D. Morsomme, A. Remacle
Abstract:
Children’s ability to process spoken language develops until the late teenage years. At school, where efficient spoken language processing is key to academic achievement, listening conditions are often unfavorable. High background noise and poor teacher’s voice represent typical sources of interference. It can be assumed that these factors particularly affect primary school children, because their language and literacy skills are still low. While it is generally accepted that background noise and impaired voice impede spoken language processing, there is an increasing need for analyzing impacts within specific linguistic areas. Against this background, the aim of the study was to investigate the effect of speech-shaped noise and imitated dysphonic voice on first-grade primary school children’s speech perception and sentence comprehension. Via headphones, 5 to 6-year-old children, recruited within the French-speaking community of Belgium, listened to and performed a minimal-pair discrimination task and a sentence-picture matching task. Stimuli were randomly presented according to four experimental conditions: (1) normal voice / no noise, (2) normal voice / noise, (3) impaired voice / no noise, and (4) impaired voice / noise. The primary outcome measure was task score. How did performance vary with respect to listening condition? Preliminary results will be presented with respect to speech perception and sentence comprehension and carefully interpreted in the light of past findings. This study helps to support our understanding of children’s language processing skills under adverse conditions. Results shall serve as a starting point for probing new measures to optimize children’s learning environment.Keywords: impaired voice, sentence comprehension, speech perception, speech-shaped noise, spoken language processing
Procedia PDF Downloads 193748 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors
Procedia PDF Downloads 274747 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant
Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani
Abstract:
Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning
Procedia PDF Downloads 39746 Evaluation of Pragmatic Information in an English Textbook: Focus on Requests
Authors: Israa A. Qari
Abstract:
Learning to request in a foreign language is a key ability within pragmatics language teaching. This paper examines how requests are taught in English Unlimited Book 3 (Cambridge University Press), an EFL textbook series employed by King Abdulaziz University in Jeddah, Saudi Arabia to teach advanced foundation year students English. The focus of analysis is the evaluation of the request linguistic strategies present in the textbook, frequency of the use of these strategies, and the contextual information provided on the use of these linguistic forms. The researcher collected all the linguistic forms which consisted of the request speech act and divided them into levels employing the CCSARP request coding manual. Findings demonstrated that simple and commonly employed request strategies are introduced. Looking closely at the exercises throughout the chapters, it was noticeable that the book exclusively employed the most direct form of requesting (the imperative) when giving learners instructions: e.g. listen, write, ask, answer, read, look, complete, choose, talk, think, etc. The book also made use of some other request strategies such as ‘hedged performatives’ and ‘query preparatory’. However, it was also found that many strategies were not dealt with in the book, specifically strategies with combined functions (e.g. possibility, ability). On a sociopragmatic level, a strong focus was found to exist on standard situations in which relations between the requester and requestee are clear. In general, contextual information was communicated implicitly only. The textbook did not seem to differentiate between formal and informal request contexts (register) which might consequently impel students to overgeneralize. The paper closes with some recommendations for textbook and curriculum designers. Findings are also contrasted with previous results from similar body of research on EFL requests.Keywords: EFL, requests, saudi, speech acts, textbook evaluation
Procedia PDF Downloads 136745 An Experiment Research on the Effect of Brain-Break in the Classroom on Elementary School Students’ Selective Attention
Authors: Hui Liu, Xiaozan Wang, Jiarong Zhong, Ziming Shao
Abstract:
Introduction: Related research shows that students don’t concentrate on teacher’s speaking in the classroom. The d2 attention test is a time-limited test about selective attention. The d2 attention test can be used to evaluate individual selective attention. Purpose: To use the d2 attention test tool to measure the difference between the attention level of the experimental class and the control class before and after Brain-Break and to explore the effect of Brain-Break in the classroom on students' selective attention. Methods: According to the principle of no difference in pre-test data, two classes in the fourth- grade of Shenzhen Longhua Central Primary School were selected. After 20 minutes of class in the third class in the morning and the third class in the afternoon, about 3-minute Brain-Break intervention was performed in the experimental class for 10 weeks. The normal class in the control class did not intervene. Before and after the experiment, the d2 attention test tool was used to test the attention level of the two-class students. The paired sample t-test and independent sample t-test in SPSS 23.0 was used to test the change in the attention level of the two-class classes around 10 weeks. This article only presents results with significant differences. Results: The independent sample t-test results showed that after ten-week of Brain-Break, the missed errors (E1 t = -2.165 p = 0.042), concentration performance (CP t = 1.866 p = 0.05), and the degree of omissions (Epercent t = -2.375 p = 0.029) in experimental class showed significant differences compared with control class. The students’ error level decreased and the concentration increased. Conclusions: Adding Brain-Break interventions in the classroom can effectively improve the attention level of fourth-grade primary school students to a certain extent, especially can improve the concentration of attention and decrease the error rate in the tasks. The new sport's learning model is worth promotingKeywords: cultural class, micromotor, attention, D2 test
Procedia PDF Downloads 134744 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance
Authors: Hirokatsu Kawashima
Abstract:
One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).Keywords: auditory error recognition, intensive listening, interaction, investigation
Procedia PDF Downloads 514743 A Pedagogical Approach of Children’s Learning by Toys, Perspective: Bangladesh
Authors: Muktadir Ahmed, Sayed Akhlakur Rahaman, Mridha Shihab Mahmud
Abstract:
The parents of Bangladesh have scarcity of knowledge about children play. Most of them do not know which toys are perfect for their children. Appropriate toys for playing is one of the most significant parts of children development from early age, besides for proper amelioration of children’s mental growth and brain capacities, toys play an emergent role. So selection of proper toy for children is very important. A toy forms the sagacity of a child and instructs child’s attitude. In this era of globalization to keep pace with everything children toys are also going forward but in a deleterious way. Maximum toys are now battery-driven and for this psychological developments of children are not increasing in effective way; therefore, pedagogical toys are proper selection. This type of toy inspires the wisdom and helps a child to reveal himself/herself. Pedagogical toys are attractive to children and help to stimulate their imagination. Pedagogical toys help them to build senso-motoric skills and hand-eye coordination. In this study, some children divided into two groups, one group played with pedagogical toys and another group played with conventional toys. This study is going to exhibit the difference between pedagogical and conventional toys for kids. The main aim of this study is to reveal the potency of pedagogical toy for children. To implement this study two Daycare Centers (DCC) Projapoti 1 & 3 of Mymensingh city had chosen. Every DCC having 1.5-6 years old children but for this study 2-5 years old children had been selected. The children of Projapoti-1 played with pedagogical toys and the children of Projapoti-2 played with conventional toys. After 6 weeks of study, the children of Projapoti-1 proved that they have improved their skills more than those children of Projapoti-3 who were playing with conventional toys. The children of Projapoti-1 have developed their touch sensation, muscular movement, imitation power, hand-eye coordination whereas the children of Projapoti-3 have only developed their muscular movement fairly (while running after battery driven toys) which is not better than those children of Projapoti-1. They cannot imitate like the children of Projapoti-1. They just had fun from playing virtual games, battery driven toys, watching cartoons etc. Actually, it is not possible to develop a child’s brain without pedagogical toy.Keywords: brain development, mental growth, pedagogical toys, play for children
Procedia PDF Downloads 327742 Outcomes of Teacher’s Pedagogical Approach on Mainstreaming of Adolescents with Exceed Weight into Physical Education in United Arab Emirates: Ajman’s Case Study
Authors: Insaf Sayar, Moôtez Marzougui, Abderraouf Ben Abderrahman
Abstract:
Background: Physical Education and Sports (PES) plays an important role in the overall education of the student. It has physical, affective, psychological, and social repercussions. In fact, overweight children are sometimes underestimated by their lower physical performance and suffer from discriminatory attitudes by their peers and their physical education (PE) teachers. Objectives: The aim of this study was to investigate the impacts of both teacher’s pedagogy and overweight or obesity on the inclusion of obese students in physical education classes in the school setting in the Emirate of Ajman (United Arab Emirates) and to understand how physical education and sports (PES) teachers adapt their pedagogical interventions towards this category. Methods: A sample of 48 overweight or obese students and 20 teachers were approached from different schools in Ajman Emirate. Two standardized questionnaires for obese students and PSE teachers were used. Overweight and obesity were defined using age and sex-specific Body Mass Index (BMI). Results: Our results showed that the average BMI of the surveyed students is 28.58 ± 3.14 kg/m². According to the collected data, 85.42% of obese students report that they do not practice physical activity or rarely practice outside of school, and 73.42% go to school by bus or car. In addition, 66.7% of the surveyed students said that being overweight is a barrier to PES practice, and 100% of obese or overweight students do not prefer some physical activities such as running and jumping. Similarly, 75% of the surveyed teachers said that obese students are not integrated into the PES course, but only 55% of teachers reported that the obese student became an obstacle in PES sessions, while 80% of teachers reported that obese or overweight students were marginalized by their colleagues. In the same way, most of them (75%) said that obese students are exempted from PES courses. Conclusion: Overweight/obesity is prevalent among school children in the Emirate of Ajman, with a high correlation with sedentary behavior. The study confirmed an urgent need and effective teaching strategies/ pedagogies for including overweight or obese students in physical education engagement and learning.Keywords: adolescent, mainstreaming, obesity, PES education, UAE
Procedia PDF Downloads 81741 Effects of Educational Technology Integration in Classroom Instruction to the Math Performance of Generation Z Students of a Private High School in the Philippines
Authors: May Maricel De Gracia
Abstract:
Different generations respond differently to instruction because of their diverse characteristics, learning styles and study habits. Teaching strategies that were effective many years ago may not be effective now especially to the current generation which is Gen Z. Using quantitative research design, the main goal of this paper is to determine the impact of the implementation of educational technology integration in a private high school in the math performance of its Junior High School (JHS) students on SY 2014-2018 based on their periodical exam performance and on their final math grades. In support, survey on the use of technology was administered to determine the characteristics of both students and teachers of SY 2017-2018. Another survey regarding study habits was also administered to the students to determine their readiness with regards to note-taking skills, time management, test taking/preparation skills, reading, and writing and math skills. Teaching strategies were recommended based on the need of the current Gen Z JHS students. A total of 712 JHS students and 12 math teachers participated in answering the different surveys. Periodic exam means and final math grades between the school years without technology (SY 2004-2008) and with technology (SY 2014-2018) were analyzed through correlation and regression analyses. Result shows that the periodic exam mean has a 35.29% impact to the final grade of the students. In addition, z-test result where p > 0.05 shows that the periodical exam results do not differ significantly between the school years without integration of technology and with the integration of technology. However, with p < 0.01, a significant positive difference was observed in the final math grades of students between the school years without technology integration and with technology integration.Keywords: classroom instruction, technology, generation z, math performance
Procedia PDF Downloads 148740 Successful Public-Private Partnership Through the Impact of Environmental Education: A Case Study on Transforming Community Confrict into Harmony in the Dongpian Community
Authors: Men An Pan, Ho Hsiung Huang, Jui Chuan Lin, Tsui Hsun Wu, Hsing Yuan Yen
Abstract:
Pingtung County, located in the southernmost region of Taiwan, has the largest number of pig farms in the country. In the past, livestock operators in Dongpian Village discharged their wastewater into the nearby water bodies, causing water pollution in the local rivers and polluting the air with the stench of the pig excrement. These resulted in many complaints from the local residents. In response to a long time fighting back of the community against the livestock farms due to the confrict, the County Government's Environmental Protection Bureau (PTEPB) examined potential wayouts in addition to heavy fines to the perpetrators. Through helping the livestock farms to upgrade their pollution prevention equipment, promoting the reuse of biogas residue and slurry from the pig excrement, and environmental education, the confrict was successfully resolved. The properly treated wastewater from the livestock farms has been freely provided to the neighboring farmlands via pipelines and tankers. Thus, extensive cultivation of bananas, papaya, red dragon fruit, Inca nut, and cocoa has resulted in 34% resource utilization of biogas residue as a fertilizer. This has encouraged farmers to reduce chemical fertilizers and use microbial materials like photosynthetic bacteria after banning herbicides while lowering the cost of wastewater treatment in livestock farms and alleviating environmental pollution simultaneously. That is, the livestock farms fully demonstrate the determination to fulfill their corporate social responsibility (CSR). Due to the success, Eight farms jointly established a social enterprise - "Dongpian Gemstone Village Co., Ltd." to promote organic farming through a "shared farm." The company appropriates 5% of its total revenue back to the community through caregiving services for the elderly and a fund for young local farmers. The community adopted the Satoyama Initiative in accordance with the Conference of the CBD COP10. Through the positive impact of environmental education, the community seeks to realize the coexistence between society and nature while maintaining and developing socio-economic activities (including agriculture) with respect for nature and building a harmonic relationship between humans and nature. By way of sustainable management of resources and ensuring biodiversity, the community is transforming into a socio-ecological production landscape. Apart from nature conservation and watercourse ecology, preserving local culture is also a key focus of the environmental education. To mitigate the impact of global warming and climate change, the community and the government have worked together to develop a disaster prevention and relief system, strive to establish a low-carbon emitting homeland, and become a model for resilient communities. By the power of environmental education, this community has turned its residents’ hearts and minds into concrete action, fulfilled social responsibility, and moved towards realizing the UN SDGs. Even though it is not the only community to integrate government agencies, research institutions, and NGOs for environmental education, it is a prime example of a low-carbon sustainable community that achieves more than 9 SDGs, including responsible consumption and production, climate change action, and diverse partnerships. The community is also leveraging environmental education to become a net-zero carbon community targeted by COP26.Keywords: environmental education, biogas residue, biogas slurry, CSR, SDGs, climate change, net-zero carbon emissions
Procedia PDF Downloads 145739 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection
Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei
Abstract:
Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.Keywords: data mining, industrial system, multivariate time series, anomaly detection
Procedia PDF Downloads 17