Search results for: vector optimization
3349 An Improved Approach to Solve Two-Level Hierarchical Time Minimization Transportation Problem
Authors: Kalpana Dahiya
Abstract:
This paper discusses a two-level hierarchical time minimization transportation problem, which is an important class of transportation problems arising in industries. This problem has been studied by various researchers, and a number of polynomial time iterative algorithms are available to find its solution. All the existing algorithms, though efficient, have some shortcomings. The current study proposes an alternate solution algorithm for the problem that is more efficient in terms of computational time than the existing algorithms. The results justifying the underlying theory of the proposed algorithm are given. Further, a detailed comparison of the computational behaviour of all the algorithms for randomly generated instances of this problem of different sizes validates the efficiency of the proposed algorithm.Keywords: global optimization, hierarchical optimization, transportation problem, concave minimization
Procedia PDF Downloads 1623348 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification
Authors: Sharon Li, Zhonghang Xia
Abstract:
Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine
Procedia PDF Downloads 233347 Growth and Anatomical Responses of Lycopersicon esculentum (Tomatoes) under Microgravity and Normal Gravity Conditions
Authors: Gbenga F. Akomolafe, Joseph Omojola, Ezekiel S. Joshua, Seyi C. Adediwura, Elijah T. Adesuji, Michael O. Odey, Oyinade A. Dedeke, Ayo H. Labulo
Abstract:
Microgravity is known to be a major abiotic stress in space which affects plants depending on the duration of exposure. In this work, tomatoes seeds were exposed to long hours of simulated microgravity condition using a one-axis clinostat. The seeds were sown on a 1.5% combination of plant nutrient and agar-agar solidified medium in three Petri dishes. One of the Petri dishes was mounted on the clinostat and allowed to rotate at the speed of 20 rpm for 72 hours, while the others were subjected to the normal gravity vector. The anatomical sections of both clinorotated and normal gravity plants were made after 72 hours and observed using a Phase-contrast digital microscope. The percentage germination, as well as the growth rate of the normal gravity seeds, was higher than the clinorotated ones. The germinated clinorotated roots followed different directions unlike the normal gravity ones which grew towards the direction of gravity vector. The clinostat was able to switch off gravistimulation. Distinct cellular arrangement was observed for tomatoes under normal gravity condition, unlike those of clinorotated ones. The root epidermis and cortex of normal gravity are thicker than the clinorotated ones. This implied that under long-term microgravity influence, plants do alter their anatomical features as a way of adapting to the stress condition.Keywords: anatomy, clinostat, germination, lycopersicon esculentum, microgravity
Procedia PDF Downloads 3223346 Expression of Fused Plasmodium falciparum Orotate Phosphoribosyltransferase and Orotidine 5'-Monophosphate Decarboxylase in Escherichia coli
Authors: Waranya Imprasittichai, Patsarawadee Paojinda, Sudaratana R. Krungkrai, Nirianne Marie Q. Palacpac, Toshihiro Horii, Jerapan Krungkrai
Abstract:
Fusion of the last two enzymes in the pyrimidine biosynthetic pathway in the inversed order by having COOH-terminal orotate phosphoribosyltransferase (OPRT) and NH2-terminal orotidine 5'-monophosphate decarboxylase (OMPDC), as OMPDC-OPRT, are described in many organisms. In this study, we constructed gene fusions of Plasmodium falciparum OMPDC-OPRT (1,836 bp) in pTrcHisA vector and expressed as an 6xHis-tag bifunctional protein in three Escherichia coli strains (BL21, Rosetta, TOP10) at 18 °C, 25 °C and 37 °C. The recombinant bifunctional protein was partially purified by Ni-Nitrilotriacetic acid-affinity chromatography. Specific activities of OPRT and OMPDC domains in the bifunctional enzyme expressed in E. coli TOP10 cells were approximately 3-4-fold higher than those in BL21 cells. There were no enzymatic activities when the construct vector expressed in Rosetta cells. Maximal expression of the fused gene was observed at 18 °C and the bifunctional enzyme had specific activities of OPRT and OMPDC domains in a ratio of 1:2. These results provide greater yields and better catalytic activities of the bifunctional OMPDC-OPRT enzyme for further purification and kinetic study.Keywords: bifunctional enzyme, orotate phosphoribosyltransferase, orotidine 5'-monophosphate decarboxylase, plasmodium falciparum
Procedia PDF Downloads 3543345 Conversion of HVAC Lines into HVDC in Transmission Expansion Planning
Authors: Juan P. Novoa, Mario A. Rios
Abstract:
This paper presents a transmission planning methodology that considers the conversion of HVAC transmission lines to HVDC as an alternative of expansion of power systems, as a consequence of restrictions for the construction of new lines. The transmission expansion planning problem formulates an optimization problem that minimizes the total cost that includes the investment cost to convert lines from HVAC to HVDC and possible required reinforcements of the power system prior to the conversion. The costs analysis assesses the impact of the conversion on the reliability because transmission lines are out of service during the conversion work. The presented methodology is applied to a test system considering a planning a horizon of 10 years.Keywords: transmission expansion planning, HVDC, cost optimization, energy non-supplied
Procedia PDF Downloads 3883344 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: beam structures, layerwise, optimization, variable stiffness
Procedia PDF Downloads 1423343 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1293342 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration
Authors: Mohammad Reza Esmaili
Abstract:
One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto
Procedia PDF Downloads 663341 The Optimization Design of Sound Absorbing for Automotive Interior Material
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park
Abstract:
Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during developmentKeywords: automotive interior material, sound absorbing, optimization design, nonwoven fabric
Procedia PDF Downloads 8373340 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization
Authors: Zhiyan Meng, Dan Liu, Jintao Meng
Abstract:
Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model
Procedia PDF Downloads 303339 A Novel PSO Based Decision Tree Classification
Authors: Ali Farzan
Abstract:
Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree.Keywords: decision tree, particle swarm optimization, splitting criteria, metaheuristic
Procedia PDF Downloads 4063338 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 4293337 Synergy Effect of Energy and Water Saving in China's Energy Sectors: A Multi-Objective Optimization Analysis
Authors: Yi Jin, Xu Tang, Cuiyang Feng
Abstract:
The ‘11th five-year’ and ‘12th five-year’ plans have clearly put forward to strictly control the total amount and intensity of energy and water consumption. The synergy effect of energy and water has rarely been considered in the process of energy and water saving in China, where its contribution cannot be maximized. Energy sectors consume large amounts of energy and water when producing massive energy, which makes them both energy and water intensive. Therefore, the synergy effect in these sectors is significant. This paper assesses and optimizes the synergy effect in three energy sectors under the background of promoting energy and water saving. Results show that: From the perspective of critical path, chemical industry, mining and processing of non-metal ores and smelting and pressing of metals are coupling points in the process of energy and water flowing to energy sectors, in which the implementation of energy and water saving policies can bring significant synergy effect. Multi-objective optimization shows that increasing efforts on input restructuring can effectively improve synergy effects; relatively large synergetic energy saving and little water saving are obtained after solely reducing the energy and water intensity of coupling sectors. By optimizing the input structure of sectors, especially the coupling sectors, the synergy effect of energy and water saving can be improved in energy sectors under the premise of keeping economy running stably.Keywords: critical path, energy sector, multi-objective optimization, synergy effect, water
Procedia PDF Downloads 3603336 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 2053335 Increasing Performance of Autopilot Guided Small Unmanned Helicopter
Authors: Tugrul Oktay, Mehmet Konar, Mustafa Soylak, Firat Sal, Murat Onay, Orhan Kizilkaya
Abstract:
In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained.Keywords: small helicopters, hierarchical control, stochastic optimization, autonomous performance maximization, autopilots
Procedia PDF Downloads 5823334 Supply Chain Optimization for Silica Sand in a Glass Manufacturing Company
Authors: Ramon Erasmo Verdin Rodriguez
Abstract:
Many has been the ways that historically the managers and gurus has been trying to get closer to the perfect supply chain, but since this topic is so vast and very complex the bigger the companies are, the duty has not been certainly easy. On this research, you are going to see thru the entrails of the logistics that happens at a glass manufacturing company with the number one raw material of the process that is the silica sand. After a very quick passage thru the supply chain, this document is going to focus on the way that raw materials flow thru the system, so after that, an analysis and research can take place to improve the logistics. Thru Operations Research techniques, it will be analyzed the current scheme of distribution and inventories of raw materials at a glass company’s plants, so after a mathematical conceptualization process, the supply chain could be optimized with the purpose of reducing the uncertainty of supply and obtaining an economic benefit at the very end of this research.Keywords: inventory management, operations research, optimization, supply chain
Procedia PDF Downloads 3263333 Optimization of the Production Processes of Biodiesel from a Locally Sourced Gossypium herbaceum and Moringa oleifera
Authors: Ikechukwu Ejim
Abstract:
This research project addresses the optimization of biodiesel production from gossypium herbaceum (cottonseed) and moringa oleifera seeds. Soxhlet extractor method using n-hexane for gossypium herbaceum (cottonseed) and ethanol for moringa oleifera were used for solvent extraction. 1250 ml of oil was realized from both gossypium herbaceum (cottonseed) and moringa oleifera seeds before characterization. In transesterification process, a 4-factor-3-level experiment was conducted using an optimal design of Response Surface Methodology. The effects of methanol/oil molar ratio, catalyst concentration (%), temperature (°C) and time (mins), on the yield of methyl ester for both cottonseed and moringa oleifera oils were determined. The design consisted of 25 experimental runs (5 lack of fit points, five replicate points, 0 additional center points and I optimality) and provided sufficient information to fit a second-degree polynomial model. The experimental results suggested that optimum conditions were as follows; cottonseed yield (96.231%), catalyst concentration (0.972%), temperature (55oC), time (60mins) and methanol/oil molar ratios (8/1) respectively while moringa oleifera optimum values were yield (80.811%), catalyst concentration (1.0%), temperature (54.7oC), time (30mins ) and methanol/oil molar ratios (8/1) respectively. This optimized conditions were validated with the actual biodiesel yield in experimental trials and literature.Keywords: optimization, Gossypium herbaceum, Moringa oleifera, biodiesel
Procedia PDF Downloads 1463332 A Review of Transformer Modeling for Power Line Communication Applications
Authors: Balarabe Nkom, Adam P. R. Taylor, Craig Baguley
Abstract:
Power Line Communications (PLC) is being employed in existing power systems, despite the infrastructure not being designed with PLC considerations in mind. Given that power transformers can last for decades, the distribution transformer in particular exists as a relic of un-optimized technology. To determine issues that may need to be addressed in subsequent designs of such transformers, it is essential to have a highly accurate transformer model for simulations and subsequent optimization for the PLC environment, with a view to increase data speed, throughput, and efficiency, while improving overall system stability and reliability. This paper reviews various methods currently available for creating transformer models and provides insights into the requirements of each for obtaining high accuracy. The review indicates that a combination of traditional analytical methods using a hybrid approach gives good accuracy at reasonable costs.Keywords: distribution transformer, modelling, optimization, power line communications
Procedia PDF Downloads 5083331 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications
Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar
Abstract:
The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.Keywords: supersonic nozzle, Chevron, acoustic level, shape optimization of Chevron nozzles, jet noise suppression
Procedia PDF Downloads 5163330 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm
Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu
Abstract:
Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model
Procedia PDF Downloads 2503329 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 1343328 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence
Authors: Brahim Berbaoui
Abstract:
In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization
Procedia PDF Downloads 6163327 Time-Domain Simulations of the Coupled Dynamics of Surface Riding Wave Energy Converter
Authors: Chungkuk Jin, Moo-Hyun Kim, HeonYong Kang
Abstract:
A surface riding (SR) wave energy converter (WEC) is designed and its feasibility and performance are numerically simulated by the author-developed floater-mooring-magnet-electromagnetics fully-coupled dynamic analysis computer program. The biggest advantage of the SR-WEC is that the performance is equally effective even in low sea states and its structural robustness is greatly improved by simply riding along the wave surface compared to other existing WECs. By the numerical simulations and actuator testing, it is clearly demonstrated that the concept works and through the optimization process, its efficiency can be improved.Keywords: computer simulation, electromagnetics fully-coupled dynamics, floater-mooring-magnet, optimization, performance evaluation, surface riding, WEC
Procedia PDF Downloads 1453326 Optimization of Spatial Light Modulator to Generate Aberration Free Optical Traps
Authors: Deepak K. Gupta, T. R. Ravindran
Abstract:
Holographic Optical Tweezers (HOTs) in general use iterative algorithms such as weighted Gerchberg-Saxton (WGS) to generate multiple traps, which produce traps with 99% uniformity theoretically. But in experiments, it is the phase response of the spatial light modulator (SLM) which ultimately determines the efficiency, uniformity, and quality of the trap spots. In general, SLMs show a nonlinear phase response behavior, and they may even have asymmetric phase modulation depth before and after π. This affects the resolution with which the gray levels are addressed before and after π, leading to a degraded trap performance. We present a method to optimize the SLM for a linear phase response behavior along with a symmetric phase modulation depth around π. Further, we optimize the SLM for its varying phase response over different spatial regions by optimizing the brightness/contrast and gamma of the hologram in different subsections. We show the effect of the optimization on an array of trap spots resulting in improved efficiency and uniformity. We also calculate the spot sharpness metric and trap performance metric and show a tightly focused spot with reduced aberration. The trap performance is compared by calculating the trap stiffness of a trapped particle in a given trap spot before and after aberration correction. The trap stiffness is found to improve by 200% after the optimization.Keywords: spatial light modulator, optical trapping, aberration, phase modulation
Procedia PDF Downloads 1873325 Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method
Authors: Rosangliana Chawngthu, Ramkumar K. Thapa
Abstract:
A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results.Keywords: photoassisted field emission, transfer Hamiltonian, vector potential, wavefunction
Procedia PDF Downloads 2263324 Optimization of a Flux Switching Permanent Magnet Machine Using Laminated Segmented Rotor
Authors: Seyedmilad Kazemisangdehi, Seyedmehdi Kazemisangdehi
Abstract:
Flux switching permanent magnet machines are considered for wide range of applications because of their outstanding merits including high torque/power densities, high efficiency, simple and robust rotor structure. Therefore, several topologies have been proposed like the PM exited flux switching machine, hybrid excited flux switching type, and so on. Recently, a novel laminated segmented rotor flux switching permanent magnet machine was introduced. It features flux barriers on rotor structure to enhance the performances of machine including torque ripple reduction and also torque and efficiency improvements at the same time. This is while, the design of barriers was not optimized by the authors. Therefore, in this paper three coefficients regarding the position of the barriers are considered for optimization. The effect of each coefficient on the performance of this machine is investigated by finite element method and finally an optimized design of flux barriers based on these three coefficients is proposed from different points of view including electromagnetic torque maximization and cogging torque/torque ripple minimization. At optimum design from maximum developed torque aspect, this machine generates 0.65 Nm torque higher than that of the not-optimized design with an almost 0.4 % improvement in efficiency.Keywords: finite element analysis, FSPM, laminated segmented rotor flux switching permanent magnet machine, optimization
Procedia PDF Downloads 2303323 A Firefly Based Optimization Technique for Optimal Planning of Voltage Controlled Distributed Generators
Authors: M. M. Othman, Walid El-Khattam, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper presents a method for finding the optimal location and capacity of dispatchable DGs connected to the distribution feeders for optimal planning for a specified power loss without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37-nodes feeder. The results that are validated by comparing it with results obtained from other competing methods show the effectiveness, accuracy and speed of the proposed method.Keywords: distributed generators, firefly technique, optimization, power loss
Procedia PDF Downloads 5333322 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model
Authors: Tarek Aboueldahab, Amin Mohamed Nassar
Abstract:
Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction
Procedia PDF Downloads 4503321 Effect of Nanoparticles Concentration, pH and Agitation on Bioethanol Production by Saccharomyces cerevisiae BY4743: An Optimization Study
Authors: Adeyemi Isaac Sanusi, Gueguim E. B. Kana
Abstract:
Nanoparticles have received attention of the scientific community due to their biotechnological potentials. They exhibit advantageous size, shape and concentration-dependent catalytic, stabilizing, immunoassays and immobilization properties. This study investigates the impact of metallic oxide nanoparticles (NPs) on ethanol production by Saccharomyces cerevisiae BY4743. Nine different nanoparticles were synthesized using precipitation method and microwave treatment. The nanoparticles synthesized were characterized by Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fermentation processes were carried out at varied NPs concentrations (0 – 0.08 wt%). Highest ethanol concentrations were achieved after 24 h using Cobalt NPs (5.07 g/l), Copper NPs (4.86 g/l) and Manganese NPs (4.74 g/l) at 0.01 wt% NPs concentrations, which represent 13%, 8.7% and 5.4% increase respectively over the control (4.47 g/l). The lowest ethanol concentration (0.17 g/l) was obtained when 0.08 wt% of Silver NPs was used. And lower ethanol concentrations were observed at higher NPs concentration. Ethanol concentration decrease after 24 h for all the processes. In all set up with NPs, the pH was observed to be stable and the stability was directly proportional to nanoparticles concentrations. These findings suggest that the presence of some of the NPs in the bioprocesses has catalytic and pH stabilizing potential. Ethanol production by Saccharomyces cerevisiae BY4743 was enhanced in the presence of Cobalt NPs, Copper NPs and Manganese NPs. Optimization study using response surface methodology (RSM) will further elucidate the impact of these nanoparticles on bioethanol production.Keywords: agitation, bioethanol, nanoparticles concentration, optimization, pH value
Procedia PDF Downloads 1883320 A Novel PfkB Gene Cloning and Characterization for Expression in Potato Plants
Authors: Arfan Ali, Idrees Ahmad Nasir
Abstract:
Potato (Solanum tuberosum) is an important cash crop and popular vegetable in Pakistan and throughout the world. Cold storage of potatoes accelerates the conversion of starch into reduced sugars (glucose and fructose). This process causes dry mass and bitter taste in the potatoes that are not acceptable to end consumers. In the current study, the phosphofructokinase B gene was cloned into the pET-30 vector for protein expression and the pCambia-1301 vector for plant expression. Amplification of a 930bp product from an E. coli strain determined the successful isolation of the phosphofructokinase B gene. Restriction digestion using NcoI and BglII along with the amplification of the 930bp product using gene specific primers confirmed the successful cloning of the PfkB gene in both vectors. The protein was expressed as a His-PfkB fusion protein. Western blot analysis confirmed the presence of the 35 Kda PfkB protein when hybridized with anti-His antibodies. The construct Fani-01 was evaluated transiently using a histochemical gus assay. The appearance of blue color in the agroinfiltrated area of potato leaves confirmed the successful expression of construct Fani-01. Further, the area displaying gus expression was evaluated for PfkB expression using ELISA. Moreover, PfkB gene expression evaluated through transient expression determined successful gene expression and highlighted its potential utilization for stable expression in potato to reduce sweetening due to long-term storage.Keywords: potato, Solanum tuberosum, transformation, PfkB, anti-sweetening
Procedia PDF Downloads 472