Search results for: explainable machine learning
7681 Teaching the Student Agenda: A Case Study of Using Film Production in Students' English Learning
Authors: Ali Zefeiti
Abstract:
There has always been a debate on critical versus pragmatic approach to learning English. Different elements of teaching take different shapes in the two approaches. This study concerns itself with the students who are the main pillar of the teaching/learning operation. Students have always been placed into classrooms to learn what the curricula of different courses offer. There is little room for students to state their own learning needs as they often have to conform with the group requirement. This study focuses on an extra-curricular activity students did alongside their mainstream learning. The students come from different colleges and different EAP courses. They are united by their passion for the task and learning many things along the way. The data are collected through interviews and students' journals. The study was concerned with the effect of this extra-curricular activity on students' main learning trajectory. The students were engaged in the task of film production over the period of their English Language course. The findings show that students are able to set their own agenda for learning and have actually had a lot of skills and vocabulary to take to class.Keywords: critical EAP, pragmatic EAP, self-directed learning, teaching methods
Procedia PDF Downloads 4607680 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 667679 Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting
Authors: Sahil Kumar, Surinder Pal, Rahul Kapoor
Abstract:
This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine.Keywords: hot chamber die casting, cold chamber die casting, metals and alloys, casting technology
Procedia PDF Downloads 6217678 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads
Authors: Riaan Kleyn
Abstract:
Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.Keywords: computer vision, wine grapes, machine learning, machine harvested grapes
Procedia PDF Downloads 1007677 Use of Artificial Intelligence Should Be Centred Around Emotions to Create Effective Learning Environment in the Corporate Workplace
Authors: Artur Willoński
Abstract:
This research introduces the concept of Emotions Based Collaborative Prompting (EBCP) as a response to the need for a unified learning environment in the corporate workplace. The first section examines the key characteristics of workplace learning, presenting three core propositions: (1) workplace learning is both informal and diverse, requiring adaptable approaches; (2) corporate settings provide inherent structures that can be leveraged for collaborative learning; and (3) emotional engagement and human interaction play a central role in effective learning processes. The second section describes how EBCP framework creates an environment that helps identify emotions, assign emotions with parameters, and allows these parameters to be collected, analysed, and turned into a context-aware learning environment. It concludes that EBCP allows people who come from different social backgrounds, age groups, and positions in the organisation to collaborate and generate knowledge based on both formal and informal interactions.Keywords: collaborative learning, self-regulated learning, emotions, AI
Procedia PDF Downloads 197676 Learning Object Repositories as Developmental Resources for Educational Institutions in the 21st Century
Authors: Hanan A. Algamdi, Huda Y. Alyami
Abstract:
Learning object repositories contribute to developing educational process through its advantages; as they employ technology effectively, and use it to create new resources for effective learning, as well as they provide opportunities for collaboration in content through providing the ability for editing, modifying and developing it. This supports the relationships between communities that benefit from these repositories, and reflects positively on the content quality. Therefore, this study aims at exploring the most prominent learning topics in the 21st century, which should be included in learning object repositories, and identifying the necessary set of learning skills that the repositories should develop among today students. For conducting this study, the analytical descriptive method will be employed, and study sample will include a group of leaders, experts, and specialists in curricula and e-learning at ministry of education in Kingdom of Saudi Arabia.Keywords: learning object, repositories, 21st century, quality
Procedia PDF Downloads 3087675 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: android, API Calls, machine learning, permissions combination
Procedia PDF Downloads 3317674 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning
Authors: Masaki Omata, Shumma Hosokawa
Abstract:
An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.Keywords: e-learning, physiological index, physiological signal, state of learning
Procedia PDF Downloads 3837673 ICTs Knowledge as a Way of Enhancing Literacy and Lifelong Learning in Nigeria
Authors: Jame O. Ezema, Odenigbo Veronica
Abstract:
The study covers the topic Information Communication and Technology (ICTs) knowledge as a way of enhancing Literacy and Lifelong learning in Nigeria. This work delved into defining of ICTs. Types of ICTs and media technologies were also mentioned. It further explained how ICTs can be strengthened and the uses of ICTs in education was duly emphasized. The paper also enumerated some side effects of ICTs on learners while the role of ICTs in enhancing literacy was explained. The study carried out strategies to use ICTs meaningfully in Literacy Programs and also emphasized the word lifelong learning in Nigeria. Some recommendations were made towards acquiring ICTs knowledge, so as to enhance Literacy and Lifelong learning in Nigeria.Keywords: literacy, distance-learning, life-long learning for sustainable development, e-learning
Procedia PDF Downloads 5087672 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques
Authors: Tomas Trainys, Algimantas Venckauskas
Abstract:
Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.
Procedia PDF Downloads 1537671 Spectral Clustering for Manufacturing Cell Formation
Authors: Yessica Nataliani, Miin-Shen Yang
Abstract:
Cell formation (CF) is an important step in group technology. It is used in designing cellular manufacturing systems using similarities between parts in relation to machines so that it can identify part families and machine groups. There are many CF methods in the literature, but there is less spectral clustering used in CF. In this paper, we propose a spectral clustering algorithm for machine-part CF. Some experimental examples are used to illustrate its efficiency. Overall, the spectral clustering algorithm can be used in CF with a wide variety of machine/part matrices.Keywords: group technology, cell formation, spectral clustering, grouping efficiency
Procedia PDF Downloads 4107670 A Development of Personalized Edutainment Contents through Storytelling
Authors: Min Kyeong Cha, Ju Yeon Mun, Seong Baeg Kim
Abstract:
Recently, ‘play of learning’ became important and is emphasized as a useful learning tool. Therefore, interest in edutainment contents is growing. Storytelling is considered first as a method that improves the transmission of information and learner's interest when planning edutainment contents. In this study, we designed edutainment contents in the form of an adventure game that applies the storytelling method. This content provides questions and items constituted dynamically and reorganized learning contents through analysis of test results. It allows learners to solve various questions through effective iterative learning. As a result, the learners can reach mastery learning.Keywords: storytelling, edutainment, mastery learning, computer operating principle
Procedia PDF Downloads 3217669 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing
Authors: Paramvir Singh
Abstract:
The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles
Procedia PDF Downloads 947668 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.Keywords: coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator
Procedia PDF Downloads 1777667 A Co-Constructed Picture of Chinese Teachers' Conceptions of Learning at Play
Authors: Shu-Chen Wu
Abstract:
This qualitative study investigated Chinese teachers’ perspectives on learning at play. Six kindergarten teachers were interviewed to obtain their understanding of learning at play. Exemplary play episodes from their classrooms were selected with the assistance of the participating teachers. Four three-minute videos containing the largest amount of learning elements based on the teachers’ views were selected for analysis. Applying video-stimulated interviews, the selected video clips were shown to eight teachers in two focus groups to elicit their perspectives on learning at play. The findings revealed that Chinese teachers have a very structured representation of learning at play, which should contribute to the development of professional practices and curricular policies.Keywords: learning at play, teachers’ perspectives, co-constructed views, video-stimulated interviews
Procedia PDF Downloads 2357666 Creating Positive Learning Environment
Authors: Samia Hassan, Fouzia Latif
Abstract:
In many countries, education is still far from being a knowledge industry in the sense of own practices that are not yet being transformed by knowledge about the efficacy of those practices. The core question of this paper is why students get bored in class? Have we balanced between the creation and advancement of an engaging learning community and effective learning environment? And between, giving kids confidence to achieve their maximum and potential goals, we sand managing student’s behavior. We conclude that creating a positive learning environment enhances opportunities for young children to feel safe, secure, and to supported in order to do their best learning. Many factors can use in classrooms aid to the positive environment like course content, class preparation, and behavior.Keywords: effective, environment, learning, positive
Procedia PDF Downloads 5797665 Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula
Authors: Mohammed T. Taher, Usman Ghani, Ahmed S. Khan
Abstract:
This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies.Keywords: simulation-based teaching, hands-on learning, feedback-based learning, scaffolding
Procedia PDF Downloads 4657664 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 1797663 Automatic Generating CNC-Code for Milling Machine
Authors: Chalakorn Chitsaart, Suchada Rianmora, Mann Rattana-Areeyagon, Wutichai Namjaiprasert
Abstract:
G-code is the main factor in computer numerical control (CNC) machine for controlling the tool-paths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.Keywords: geometric shapes, milling operation, minor changes, CNC Machine, G-code, cutting parameters
Procedia PDF Downloads 3527662 Students' Perceptions and Gender Relationships towards the Mobile Learning in Polytechnic Mukah Sarawak (Malaysia)
Authors: Habsah Mohamad Sabli, Mohammad Fardillah Wahi
Abstract:
The main aim of this research study is to better understand and measure students' perceptions towards the effectiveness of mobile learning. This paper reports on the results of a survey of three hundred nineteen students at Polytechnic Mukah Sarawak (PMU) about their perception to the use of mobile technology in education. An analysis of the quantitative survey findings is presented focusing on the ramification for mobile-learning (m-learning) practices in higher learning and teaching environments. In this paper we present our research findings about the level of perception and gender correlations with perceived ease of use and perceived usefulness using M-Learning in learning activities among students in Polytechnic Mukah (PMU). Based on gender respondent, were 150 female (47.0%) and 169 male (53.0%). The survey findings further revealed that perception of students are in moderately high and agree for using m-learning. The perceived ease of use and perceived usefulness is significant with weak correlations between students to adapt m-learning for active learning activities. The outcome of this research can benefit the decision makers of higher institution in Mukah Sarawak regard to way to enhance m-learning and promote effective teaching and learning activities as well as strengthening the quality of learning delivery.Keywords: M-learning, student attitudes, student perception, mobile technology
Procedia PDF Downloads 5037661 A Deep Learning Approach to Online Social Network Account Compromisation
Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang
Abstract:
The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.Keywords: computer security, network security, online social network, account compromisation
Procedia PDF Downloads 1217660 An Exploration of First Year Bachelor of Education Degree Students’ Learning Preferences in Academic Literacy in a Private Higher Education Institution: A Case for the Blended Learning Approach
Authors: K. Kannapathi-Naidoo
Abstract:
The higher education landscape has undergone changes in the past decade, with concepts such as blended learning, online learning, and hybrid models appearing more frequently in research and practice. The year 2020 marked a mass migration from face-to-face learning and more traditional forms of education to online learning in higher education institutions across the globe due to the Covid-19 pandemic. As a result, contact learning students and lecturing staff alike were thrust into the world of online learning at an unprecedented pace. Traditional modes of learning had to be amended, and pedagogical strategies required adjustments. This study was located within a compulsory first-year academic literacy module in a higher education institution. The study aimed to explore students’ learning preferences between online, face-face, and blended learning within the context of academic literacy. Data was collected through online qualitative questionnaires administered to 150 first-year students, which were then analysed thematically. The findings of the study revealed that 48.5% of the participants preferred a blended learning approach to academic literacy. The main themes that emerged in support of their preference were best of both worlds, flexibility, productivity, and lecturer accessibility. As a result, this paper advocates for the blended learning approach for academic literacy skills-based modules.Keywords: academic literacy, blended learning, online learning, student learning preferences
Procedia PDF Downloads 767659 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 3517658 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 837657 Employing a Flipped Classroom Approach to Support Project-Based Learning
Authors: Kian Jon Chua, Islam Md Raisul
Abstract:
Findings on a research study conducted for a group of year-2 engineering students participating in a flipped classroom (FC) experience that is judiciously incorporated into project-based learning (PBL) module are presented. The chief purpose of the research is to identify whether if the incorporation of flipped classroom approach to project-based learning indeed yields a positive learning experience for engineering students. Results are presented and compared from the two classes of students – one is subjected to a traditional PBL learning mode while the other undergoes a hybrid PBL-FC learning format. Some themes related to active learning, problem-solving ability, teacher as facilitator, and degree of self-efficacy are also discussed. This paper hopes to provide new knowledge and insights relating to the introduction of flipped classroom learning to a project-based engineering module. Some potential study limitations and future directions to address them are also presented.Keywords: hybrid project-based learning, flipped classroom, problem-solving, active learning
Procedia PDF Downloads 1387656 English Grammatical Errors of Arabic Sentence Translations Done by Machine Translations
Authors: Muhammad Fathurridho
Abstract:
Grammar as a rule used by every language to be understood by everyone is always related to syntax and morphology. Arabic grammar is different with another languages’ grammars. It has more rules and difficulties. This paper aims to investigate and describe the English grammatical errors of machine translation systems in translating Arabic sentences, including declarative, exclamation, imperative, and interrogative sentences, specifically in year 2018 which can be supported with artificial intelligence’s role. The Arabic sample sentences which are divided into two; verbal and nominal sentence of several Arabic published texts will be examined as the source language samples. The translated sentences done by several popular online machine translation systems, including Google Translate, Microsoft Bing, Babylon, Facebook, Hellotalk, Worldlingo, Yandex Translate, and Tradukka Translate are the material objects of this research. Descriptive method that will be taken to finish this research will show the grammatical errors of English target language, and classify them. The conclusion of this paper has showed that the grammatical errors of machine translation results are varied and generally classified into morphological, syntactical, and semantic errors in all type of Arabic words (Noun, Verb, and Particle), and it will be one of the evaluations for machine translation’s providers to correct them in order to improve their understandable results.Keywords: Arabic, Arabic-English translation, machine translation, grammatical errors
Procedia PDF Downloads 1567655 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor
Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes
Abstract:
In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data
Procedia PDF Downloads 1497654 Evaluating Learning Outcomes in the Implementation of Flipped Teaching Using Data Envelopment Analysis
Authors: Huie-Wen Lin
Abstract:
This study integrated various teaching factors -based on the idea of a flipped classroom- in a financial management course. The study’s aim was to establish an effective teaching implementation strategy and evaluation mechanism with respect to learning outcomes, which can serve as a reference for the future modification of teaching methods. This study implemented a teaching method in five stages and estimated the learning efficiencies of 22 students (in the teaching scenario and over two semesters). Subsequently, data envelopment analysis (DEA) was used to compare, for each student, between the learning efficiencies before and after participation in the flipped classroom -in the first and second semesters, respectively- to identify the crucial external factors influencing learning efficiency. According to the results, the average overall student learning efficiency increased from 0.901 in the first semester to 0.967 in the second semester, which demonstrate that the flipped classroom approach can improve teaching effectiveness and learning outcomes. The results also revealed a difference in learning efficiency between male and female students.Keywords: data envelopment analysis, flipped classroom, learning outcome, teaching and learning
Procedia PDF Downloads 1587653 Student Engagement and Perceived Academic Stress: Open Distance Learning in Malaysia
Authors: Ng Siew Keow, Cheah Seeh Lee
Abstract:
Students’ strong engagement in learning increases their motivation and satisfaction to learn, be resilient to combat academic stress. Engagement in learning is even crucial in the open distance learning (ODL) setting, where the adult students are learning remotely, lessons and learning materials are mostly delivered via online platforms. This study aimed to explore the relationship between learning engagement and perceived academic stress levels of adult students who enrolled in ODL learning mode. In this descriptive correlation study during the 2021-2022 academic years, 101 adult students from Wawasan Open University, Malaysia (WOU) were recruited through convenient sampling. The adult students’ online learning engagement levels and perceived academic stress levels were identified through the self-report Online Student Engagement Scale (OSE) and the Perception of Academic Stress Scale (PASS). The Pearson correlation coefficient test revealed a significant positive relationship between online student engagement and perceived academic stress (r= 0.316, p<0.01). The higher scores on PASS indicated lower levels of perceived academic stress. The findings of the study supported the assumption of the importance of engagement in learning in promoting psychological well-being as well as sustainability in online learning in the open distance learning context.Keywords: student engagement, academic stress, open distance learning, online learning
Procedia PDF Downloads 1647652 Effectiveness of Language Learning Strategy Instruction Based on CALLA on Iranian EFL Language Strategy Use
Authors: Reza Khani, Ziba Hosseini
Abstract:
Ever since the importance of language learning strategy instruction (LLS) has been distinguished, there has been growing interest on how to teach LLS in language learning classrooms. So thus this study attempted to implement language strategy instruction based on CALLA approach for Iranian EFL learners in a real classroom setting. The study was testing the hypothesis that strategy instruction result in improved linguistic strategy of students. The participant of the study were 240 EFL learners who received language learning instruction for four months. The data collected using Oxford strategy inventory for language learning. The results indicated the instruction had statistically significant effect on language strategy use of intervention group who received instruction.Keywords: CALLA, language learning strategy, language learning strategy instruction, Iranian EFL language strategy
Procedia PDF Downloads 574