Search results for: simulink simulation model
10289 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 6010288 Autonomic Sonar Sensor Fault Manager for Mobile Robots
Authors: Martin Doran, Roy Sterritt, George Wilkie
Abstract:
NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.Keywords: autonomic, self-adaption, self-healing, self-optimization
Procedia PDF Downloads 35310287 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system
Procedia PDF Downloads 26410286 Hygro-Thermal Modelling of Timber Decks
Authors: Stefania Fortino, Petr Hradil, Timo Avikainen
Abstract:
Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM
Procedia PDF Downloads 17810285 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon
Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison
Abstract:
Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.Keywords: asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax
Procedia PDF Downloads 41910284 Inventory Management System of Seasonal Raw Materials of Feeds at San Jose Batangas through Integer Linear Programming and VBA
Authors: Glenda Marie D. Balitaan
Abstract:
The branch of business management that deals with inventory planning and control is known as inventory management. It comprises keeping track of supply levels and forecasting demand, as well as scheduling when and how to plan. Keeping excess inventory results in a loss of money, takes up physical space, and raises the risk of damage, spoilage, and loss. On the other hand, too little inventory frequently causes operations to be disrupted and raises the possibility of low customer satisfaction, both of which can be detrimental to a company's reputation. The United Victorious Feed mill Corporation's present inventory management practices were assessed in terms of inventory level, warehouse allocation, ordering frequency, shelf life, and production requirement. To help the company achieve their optimal level of inventory, a mathematical model was created using Integer Linear Programming. Due to the season, the goal function was to reduce the cost of purchasing US Soya and Yellow Corn. Warehouse space, annual production requirements, and shelf life were all considered. To ensure that the user only uses one application to record all relevant information, like production output and delivery, the researcher built a Visual Basic system. Additionally, the technology allows management to change the model's parameters.Keywords: inventory management, integer linear programming, inventory management system, feed mill
Procedia PDF Downloads 8610283 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 18810282 The Effect of β-Cryptoxanthin on Testicular Ischemia-Reperfusion Injury in a Rat Model: Evidence from Testicular Histology
Authors: Kianoush Mohammadnejad, Rahim Mohammadi, Ali Soleimanzadeh, Ali Shalizar Jalai, Farshid Sareafzadeh Rezaei
Abstract:
Testicular torsion and detorsion are significant clinical issues for infertile men. Torsion of the spermatic cord is an emergency condition resulting from the rotation of the testis and epididymis around the axis of the spermatic cord. A rat testis model was used to assess the effects of β-cryptoxanthin on ischemia-reperfusion injury. Twenty healthy male Wistar rats were included and randomized into four investigational groups (n = 5): Group SHAM: In this group, midline incision of the scrotum was performed, and the testicles were taken out for 2 hours with a 720-degree rotation. Group ISCHEMIA: In this group, a midline incision of the scrotum was performed, and the testicles were taken out and underwent ischemia for 2 hours with a 720-degree rotation. Group IS/REP/Oil: In this group, a midline scrotum cut was performed the testicles were taken out, and ischemia was created for 2 hours with a 720-degree rotation and at the end of ischemia 100 µL of corn oil (β-cryptoxanthin solvent) was injected intraperitoneally. Group IS/REP/CRPTXNTN 2.5: The same as group IS/REP/Oil as well as intraperitoneal administration of 100 µL of β-cryptoxanthin (2.5 µg/kg) at the end of ischemia. In all groups, the testes were returned back to the scrotum and, after 60 days, were dissected out and removed for histopathological analyses. β-cryptoxanthin at the dose of 2.5 µg/kg significantly improved histologic indices compared to other treatment groups (p<0.05). β-cryptoxanthin could be helpful in minimizing ischemia-reperfusion injury in testicular tissue exposed to ischemia.Keywords: beta-cryptoxanthin, testis, Ischemia-reperfusion, Intraperitoneal
Procedia PDF Downloads 2610281 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation
Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen
Abstract:
Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration
Procedia PDF Downloads 14310280 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 12010279 Quadrature Mirror Filter Bank Design Using Population Based Stochastic Optimization
Authors: Ju-Hong Lee, Ding-Chen Chung
Abstract:
The paper deals with the optimal design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using a metaheuristic based optimization technique. Based on the theory of two-channel QMF banks using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the group delay error of the designed QMF bank and the magnitude response error of the designed low-pass analysis filter. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a particle swarm optimization algorithm. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.Keywords: quadrature mirror filter bank, digital all-pass filter, weighted least squares algorithm, particle swarm optimization
Procedia PDF Downloads 52610278 Evaluation of a Hybrid Configuration for Active Space Radiation Bio-Shielding
Authors: Jiahui Song, Ravindra P. Joshi
Abstract:
One of the biggest obstacles to human space exploration of the solar system is the risk posed by prolonged exposure to space radiation. It is generally agreed that particles with energies around 1-2 GeV per nucleon are the most damaging to humans. Passive shielding techniques entail using solid material to create a shield that prevents particles from penetrating a given region by absorbing the energy of incident particles. Previous techniques resulted in adding ‘dead mass’ to spacecraft, which is not an economically viable solution. Additionally, collisions of the incoming ionized particles with traditional passive protective material lead to secondary radiation. This study develops an enhanced hybrid active space radiation bio-shielding concept, a combination of the electrostatic and magnetostatic shielding, by varying the size of the magnetic ring, and by having multiple current-carrying rings, to mitigate the biohazards of severe space radiation for the success of deep-space explorations. The simulation results show an unprecedented reduction of 1GeV GCR (Galactic Cosmic Rays) proton transmission to about 15%.Keywords: bio-shielding, electrostatic, magnetostatic, radiation
Procedia PDF Downloads 39910277 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period
Authors: Xu Wang
Abstract:
This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty
Procedia PDF Downloads 17110276 Numerical Study on the Effect of Obstacle Structure on Two-Phase Detonation Initiation
Authors: Ding Yu, Ge Yang, Wang Hong-Tao
Abstract:
Aiming at the detonation performance and detonation wave propagation distance of liquid fuel detonation engine, the kerosene/oxygen-enriched air mixture is chosen as the research object; its detonation initiation and detonation wave propagation process by mild energy input are numerically studied by using Euler-Lagrange method in the present study. The effects of a semicircular obstacle, rectangular obstacle, and triangular obstacle on the detonation characteristic parameters in the detonation tube are compared and analyzed, and the effect of the angle between obstacle and flame propagation direction on flame propagation characteristics and detonation process when the blocking ratio is constant are studied. The results show that the flame propagation velocity decreases with the increase of the angle in the range of 0-90°, and when the angle is 0° which corresponds to the semicircle obstacle gets the highest detonation wave propagation velocity. With the increase of the angle in the range of 0-90°, DDT (Deflagration to detonation transition) distance decreases first and then increases.Keywords: deflagration to detonation transition, numerical simulation, obstacle structure, turbulent flame
Procedia PDF Downloads 8610275 Teaching Techno-Criticism to Digital Natives: Participatory Journalism as Pedagogical Practice
Authors: Stephen D. Caldes
Abstract:
Teaching media and digital literacy to “digital natives” presents a unique set of pedagogical obstacles, especially when critique is involved, as these early-adopters tend to deify most technological and/or digital advancements and inventions. Knowing no other way of being, these natives are often reluctant to hear criticisms of the way they receive information, educate themselves, communicate with others, and even become enculturated because critique often connotes generational gaps and/or clandestine efforts to produce neo-Luddites. To digital natives, techno-criticism is more the result of an antiquated, out-of-touch agenda rather than a constructive, progressive praxis. However, the need to cultivate a techno-critical perspective among technology’s premier users has, perhaps, never been more pressing. In an effort to sidestep reluctance and encourage critical thought about where we are in terms of digital technology and where exactly it may be taking us, this essay outlines a new model for teaching techno-criticism to digital natives. Specifically, it recasts the techniques of participatory journalism—helping writers and readers understand subjects outside of their specific historical context—as progressive, interdisciplinary pedagogy. The model arises out of a review of relevant literature and data gathered via literary analysis and participant observation. Given the tenuous relationships between novel digital advancements, individual identity, collective engagement, and, indeed, Truth/fact, shepherding digital natives toward routine practice of “techno-realism” seems of utter importance.Keywords: digital natives, journalism education, media literacy, techno-criticism
Procedia PDF Downloads 32310274 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 2810273 A Review of Encryption Algorithms Used in Cloud Computing
Authors: Derick M. Rakgoale, Topside E. Mathonsi, Vusumuzi Malele
Abstract:
Cloud computing offers distributed online and on-demand computational services from anywhere in the world. Cloud computing services have grown immensely over the past years, especially in the past year due to the Coronavirus pandemic. Cloud computing has changed the working environment and introduced work from work phenomenon, which enabled the adoption of technologies to fulfill the new workings, including cloud services offerings. The increased cloud computing adoption has come with new challenges regarding data privacy and its integrity in the cloud environment. Previously advanced encryption algorithms failed to reduce the memory space required for cloud computing performance, thus increasing the computational cost. This paper reviews the existing encryption algorithms used in cloud computing. In the future, artificial neural networks (ANN) algorithm design will be presented as a security solution to ensure data integrity, confidentiality, privacy, and availability of user data in cloud computing. Moreover, MATLAB will be used to evaluate the proposed solution, and simulation results will be presented.Keywords: cloud computing, data integrity, confidentiality, privacy, availability
Procedia PDF Downloads 14310272 Comparison of Equivalent Linear and Non-Linear Site Response Model Performance in Kathmandu Valley
Authors: Sajana Suwal, Ganesh R. Nhemafuki
Abstract:
Evaluation of ground response under earthquake shaking is crucial in geotechnical earthquake engineering. Damage due to seismic excitation is mainly correlated to local geological and geotechnical conditions. It is evident from the past earthquakes (e.g. 1906 San Francisco, USA, 1923 Kanto, Japan) that the local geology has strong influence on amplitude and duration of ground motions. Since then significant studies has been conducted on ground motion amplification revealing the importance of influence of local geology on ground. Observations from the damaging earthquakes (e.g. Nigata and San Francisco, 1964; Irpinia, 1980; Mexico, 1985; Kobe, 1995; L’Aquila, 2009) divulged that non-uniform damage pattern, particularly in soft fluvio-lacustrine deposit is due to the local amplification of seismic ground motion. Non-uniform damage patterns are also observed in Kathmandu Valley during 1934 Bihar Nepal earthquake and recent 2015 Gorkha earthquake seemingly due to the modification of earthquake ground motion parameters. In this study, site effects resulting from amplification of soft soil in Kathmandu are presented. A large amount of subsoil data was collected and used for defining the appropriate subsoil model for the Kathamandu valley. A comparative study of one-dimensional total-stress equivalent linear and non-linear site response is performed using four strong ground motions for six sites of Kathmandu valley. In general, one-dimensional (1D) site-response analysis involves the excitation of a soil profile using the horizontal component and calculating the response at individual soil layers. In the present study, both equivalent linear and non-linear site response analyses were conducted using the computer program DEEPSOIL. The results show that there is no significant deviation between equivalent linear and non-linear site response models until the maximum strain reaches to 0.06-0.1%. Overall, it is clearly observed from the results that non-linear site response model perform better as compared to equivalent linear model. However, the significant deviation between two models is resulted from other influencing factors such as assumptions made in 1D site response, lack of accurate values of shear wave velocity and nonlinear properties of the soil deposit. The results are also presented in terms of amplification factors which are predicted to be around four times more in case of non-linear analysis as compared to equivalent linear analysis. Hence, the nonlinear behavior of soil prevails the urgent need of study of dynamic characteristics of the soft soil deposit that can specifically represent the site-specific design spectra for the Kathmandu valley for building resilient structures from future damaging earthquakes.Keywords: deep soil, equivalent linear analysis, non-linear analysis, site response
Procedia PDF Downloads 29710271 Multilevel Modelling of Modern Contraceptive Use in Nigeria: Analysis of the 2013 NDHS
Authors: Akiode Ayobami, Akiode Akinsewa, Odeku Mojisola, Salako Busola, Odutolu Omobola, Nuhu Khadija
Abstract:
Purpose: Evidence exists that family planning use can contribute to reduction in infant and maternal mortality in any country. Despite these benefits, contraceptive use in Nigeria still remains very low, only 10% among married women. Understanding factors that predict contraceptive use is very important in order to improve the situation. In this paper, we analysed data from the 2013 Nigerian Demographic and Health Survey (NDHS) to better understand predictors of contraceptive use in Nigeria. The use of logistics regression and other traditional models in this type of situation is not appropriate as they do not account for social structure influence brought about by the hierarchical nature of the data on response variable. We therefore used multilevel modelling to explore the determinants of contraceptive use in order to account for the significant variation in modern contraceptive use by socio-demographic, and other proximate variables across the different Nigerian states. Method: This data has a two-level hierarchical structure. We considered the data of 26, 403 married women of reproductive age at level 1 and nested them within the 36 states and the Federal Capital Territory, Abuja at level 2. We modelled use of modern contraceptive against demographic variables, being told about FP at health facility, heard of FP on TV, Magazine or radio, husband desire for more children nested within the state. Results: Our results showed that the independent variables in the model were significant predictors of modern contraceptive use. The estimated variance component for the null model, random intercept, and random slope models were significant (p=0.00), indicating that the variation in contraceptive use across the Nigerian states is significant, and needs to be accounted for in order to accurately determine the predictors of contraceptive use, hence the data is best fitted by the multilevel model. Only being told about family planning at the health facility and religion have a significant random effect, implying that their predictability of contraceptive use varies across the states. Conclusion and Recommendation: Results showed that providing FP information at the health facility and religion needs to be considered when programming to improve contraceptive use at the state levels.Keywords: multilevel modelling, family planning, predictors, Nigeria
Procedia PDF Downloads 42110270 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression
Procedia PDF Downloads 28210269 Development of Cost Effective Ultra High Performance Concrete by Using Locally Available Materials
Authors: Mohamed Sifan, Brabha Nagaratnam, Julian Thamboo, Keerthan Poologanathan
Abstract:
Ultra high performance concrete (UHPC) is a type of cementitious material known for its exceptional strength, ductility, and durability. However, its production is often associated with high costs due to the significant amount of cementitious materials required and the use of fine powders to achieve the desired strength. The aim of this research is to explore the feasibility of developing cost-effective UHPC mixes using locally available materials. Specifically, the study aims to investigate the use of coarse limestone sand along with other sand types, namely, basalt sand, dolomite sand, and river sand for developing UHPC mixes and evaluating its performances. The study utilises the particle packing model to develop various UHPC mixes. The particle packing model involves optimising the combination of coarse limestone sand, basalt sand, dolomite sand, and river sand to achieve the desired properties of UHPC. The developed UHPC mixes are then evaluated based on their workability (measured through slump flow and mini slump value), compressive strength (at 7, 28, and 90 days), splitting tensile strength, and microstructural characteristics analysed through scanning electron microscope (SEM) analysis. The results of this study demonstrate that cost-effective UHPC mixes can be developed using locally available materials without the need for silica fume or fly ash. The UHPC mixes achieved impressive compressive strengths of up to 149 MPa at 28 days with a cement content of approximately 750 kg/m³. The mixes also exhibited varying levels of workability, with slump flow values ranging from 550 to 850 mm. Additionally, the inclusion of coarse limestone sand in the mixes effectively reduced the demand for superplasticizer and served as a filler material. By exploring the use of coarse limestone sand and other sand types, this study provides valuable insights into optimising the particle packing model for UHPC production. The findings highlight the potential to reduce costs associated with UHPC production without compromising its strength and durability. The study collected data on the workability, compressive strength, splitting tensile strength, and microstructural characteristics of the developed UHPC mixes. Workability was measured using slump flow and mini slump tests, while compressive strength and splitting tensile strength were assessed at different curing periods. Microstructural characteristics were analysed through SEM and energy dispersive X-ray spectroscopy (EDS) analysis. The collected data were then analysed and interpreted to evaluate the performance and properties of the UHPC mixes. The research successfully demonstrates the feasibility of developing cost-effective UHPC mixes using locally available materials. The inclusion of coarse limestone sand, in combination with other sand types, shows promising results in achieving high compressive strengths and satisfactory workability. The findings suggest that the use of the particle packing model can optimise the combination of materials and reduce the reliance on expensive additives such as silica fume and fly ash. This research provides valuable insights for researchers and construction practitioners aiming to develop cost-effective UHPC mixes using readily available materials and an optimised particle packing approach.Keywords: cost-effective, limestone powder, particle packing model, ultra high performance concrete
Procedia PDF Downloads 11710268 Impacts of Land Use and Land Cover Change on Stream Flow and Sediment Yield of Genale Dawa Dam III Watershed, Ethiopia
Authors: Aklilu Getahun Sulito
Abstract:
Land Use and Land Cover change dynamics is a result of complex interactions betweenseveral bio- physical and socio-economic conditions. The impacts of the landcoverchange on stream flow and sediment yield were analyzed statistically usingthehydrological model, SWAT. Genale Dawa Dam III watershed is highly af ectedbydeforestation, over grazing, and agricultural land expansion. This study was aimedusingSWAT model for the assessment of impacts of land use land cover change on sediment yield, evaluating stream flow on wet &dry seasons and spatial distribution sediment yieldfrom sub-basins of the Genale Dawa Dam III watershed. Land use land cover maps(LULC) of 2000, 2008 and 2016 were used with same corresponding climate data. During the study period most parts of the forest, dense forest evergreen and grass landchanged to cultivated land. The cultivated land increased by 26.2%but forest land, forest evergreen lands and grass lands decreased by 21.33%, 11.59 % and 7.28 %respectively, following that the mean annual sediment yield of watershed increased by 7.37ton/haover16 years period (2000 – 2016). The analysis of stream flow for wet and dry seasonsshowed that the steam flow increased by 25.5% during wet season, but decreasedby29.6% in the dry season. The result an average annual spatial distribution of sediment yield increased by 7.73ton/ha yr -1 from (2000_2016). The calibration results for bothstream flow and sediment yield showed good agreement between observed and simulateddata with the coef icient of determination of 0.87 and 0.84, Nash-Sutclif e ef iciencyequality to 0.83 and 0.78 and percentage bias of -7.39% and -10.90%respectively. Andthe result for validation for both stream flow and sediment showed good result withCoef icient of determination equality to 0.83 and 0.80, Nash-Sutclif e ef iciency of 0.78and 0.75 and percentage bias of 7.09% and 3.95%. The result obtained fromthe model based on the above method was the mean annual sediment load at Genale DawaDamIIIwatershed increase from 2000 to 2016 for the reason that of the land uses change. Sotouse the Genale Dawa Dam III the land use management practices are neededinthefuture to prevent further increase of sediment yield of the watershed.Keywords: Genale Dawa Dam III watershed, land use land cover change, SWAT, spatial distribution, sediment yield, stream flow
Procedia PDF Downloads 5810267 A Framework for Event-Based Monitoring of Business Processes in the Supply Chain Management of Industry 4.0
Authors: Johannes Atug, Andreas Radke, Mitchell Tseng, Gunther Reinhart
Abstract:
In modern supply chains, large numbers of SKU (Stock-Keeping-Unit) need to be timely managed, and any delays in noticing disruptions of items often limit the ability to defer the impact on customer order fulfillment. However, in supply chains of IoT-connected enterprises, the ERP (Enterprise-Resource-Planning), the MES (Manufacturing-Execution-System) and the SCADA (Supervisory-Control-and-Data-Acquisition) systems generate large amounts of data, which generally glean much earlier notice of deviations in the business process steps. That is, analyzing these streams of data with process mining techniques allows the monitoring of the supply chain business processes and thus identification of items that deviate from the standard order fulfillment process. In this paper, a framework to enable event-based SCM (Supply-Chain-Management) processes including an overview of core enabling technologies are presented, which is based on the RAMI (Reference-Architecture-Model for Industrie 4.0) architecture. The application of this framework in the industry is presented, and implications for SCM in industry 4.0 and further research are outlined.Keywords: cyber-physical production systems, event-based monitoring, supply chain management, RAMI (Reference-Architecture-Model for Industrie 4.0)
Procedia PDF Downloads 24110266 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distributionKeywords: multi-objective optimization, random drift particle swarm optimization, crowding distance sorting, pareto optimal solution
Procedia PDF Downloads 25910265 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures
Authors: Moumita Sit, Chaitali Ray
Abstract:
The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress
Procedia PDF Downloads 15310264 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children
Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman
Abstract:
Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.Keywords: Automatic Speech Recognition System, children speech, adaptation, Malay
Procedia PDF Downloads 40310263 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate
Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari
Abstract:
Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.Keywords: cyclic loading, delayed wire rope bracing, ductile moment frame, energy absorption, hysteresis curve
Procedia PDF Downloads 29410262 Working Fluids in Absorption Chillers: Investigation of the Use of Deep Eutectic Solvents
Authors: L. Cesari, D. Alonso, F. Mutelet
Abstract:
The interest in cold production has been on the increase in absorption chillers for many years. In fact, the absorption cycles replace the compressor and thus reduce electrical consumption. The devices also allow waste heat generated through industrial activities to be recovered and cooled to a moderate temperature in accordance with regulatory guidelines. Many working fluids were investigated but could not compete with the commonly used {H2O + LiBr} and {H2O + NH3} to author’s best knowledge. Yet, the corrosion, toxicity and crystallization phenomena of these mixtures prevent the development of the absorption technology. This work investigates the possible use of a glyceline deep eutectic solvent (DES) and CO2 as working fluid in an absorption chiller. To do so, good knowledge of the mixtures is required. Experimental measurements (vapor-liquid equilibria, density, and heat capacity) were performed to complete the data lacking in the literature. The performance of the mixtures was quantified by the calculation of the coefficient of performance (COP). The results show that working fluids containing DES + CO2 are an interesting alternative and lead to different trails of working mixtures for absorption and chiller.Keywords: absorption devices, deep eutectic solvent, energy valorization, experimental data, simulation
Procedia PDF Downloads 11510261 A Cost-Effective Evaluation of Proper Control Process of Air-Cooled Heat Exchanger
Authors: Ali Ghobadi, Eisa Bakhoda, Hamid R. Javdan
Abstract:
One of the key factors in air cooled heat exchangers operation is the proper control of process stream outlet temperature. In this study, performances of two different air cooled heat exchangers have been considered, one of them condenses Propane and the other one cools LPG streams. In order to predict operation of these air coolers at different operating conditions. The results of simulations were applied for both economical evaluations and operational considerations for using convenient air cooler control system. In this paper, using On-Off fans method and installing variable speed drivers have been studied. Finally, the appropriate methods for controlling outlet temperature of process fluid streams as well as saving energy consumption were proposed. Using On-Off method for controlling studied Propane condenser by multiple fans is proper; while controlling LPG air cooler with lesser fans by means of two variable speed drivers is economically convenient.Keywords: air cooled heat exchanger, simulation, economical evaluation, energy, process control
Procedia PDF Downloads 41510260 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD
Authors: Mehdi Montakhabrazlighi, Ercan Balikci
Abstract:
The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.Keywords: neural network, rupture strength, superalloy, thermocalc
Procedia PDF Downloads 317