Search results for: model maintenance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17654

Search results for: model maintenance

16754 Culvert Blockage Evaluation Using Australian Rainfall And Runoff 2019

Authors: Rob Leslie, Taher Karimian

Abstract:

The blockage of cross drainage structures is a risk that needs to be understood and managed or lessened through the design. A blockage is a random event, influenced by site-specific factors, which needs to be quantified for design. Under and overestimation of blockage can have major impacts on flood risk and cost associated with drainage structures. The importance of this matter is heightened for those projects located within sensitive lands. It is a particularly complex problem for large linear infrastructure projects (e.g., rail corridors) located within floodplains where blockage factors can influence flooding upstream and downstream of the infrastructure. The selection of the appropriate blockage factors for hydraulic modeling has been subject to extensive research by hydraulic engineers. This paper has been prepared to review the current Australian Rainfall and Runoff 2019 (ARR 2019) methodology for blockage assessment by applying this method to a transport corridor brownfield upgrade case study in New South Wales. The results of applying the method are also validated against asset data and maintenance records. ARR 2019 – Book 6, Chapter 6 includes advice and an approach for estimating the blockage of bridges and culverts. This paper concentrates specifically on the blockage of cross drainage structures. The method has been developed to estimate the blockage level for culverts affected by sediment or debris due to flooding. The objective of the approach is to evaluate a numerical blockage factor that can be utilized in a hydraulic assessment of cross drainage structures. The project included an assessment of over 200 cross drainage structures. In order to estimate a blockage factor for use in the hydraulic model, a process has been advanced that considers the qualitative factors (e.g., Debris type, debris availability) and site-specific hydraulic factors that influence blockage. A site rating associated with the debris potential (i.e., availability, transportability, mobility) at each crossing was completed using the method outlined in ARR 2019 guidelines. The hydraulic results inputs (i.e., flow velocity, flow depth) and qualitative factors at each crossing were developed into an advanced spreadsheet where the design blockage level for cross drainage structures were determined based on the condition relating Inlet Clear Width and L10 (average length of the longest 10% of the debris reaching the site) and the Adjusted Debris Potential. Asset data, including site photos and maintenance records, were then reviewed and compared with the blockage assessment to check the validity of the results. The results of this assessment demonstrate that the estimated blockage factors at each crossing location using ARR 2019 guidelines are well-validated with the asset data. The primary finding of the study is that the ARR 2019 methodology is a suitable approach for culvert blockage assessment that has been validated against a case study spanning a large geographical area and multiple sub-catchments. The study also found that the methodology can be effectively coded within a spreadsheet or similar analytical tool to automate its application.

Keywords: ARR 2019, blockage, culverts, methodology

Procedia PDF Downloads 336
16753 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable

Authors: Seon Soon Choi

Abstract:

The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.

Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable

Procedia PDF Downloads 406
16752 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 307
16751 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 61
16750 Dynamic Investigation of Brake Squeal Problem in The Presence of Kinematic Nonlinearities

Authors: Shahroz Khan, Osman Taha Şen

Abstract:

In automotive brake systems, brake noise has been a major problem, and brake squeal is one of the critical ones which is an instability issue. The brake squeal produces an audible sound at high frequency that is irritating to the human ear. To study this critical problem, first a nonlinear mathematical model with three degree of freedom is developed. This model consists of a point mass that simulates the brake pad and a sliding surface that simulates the brake rotor. The model exposes kinematic and clearance nonlinearities, but no friction nonlinearity. In the formulation, the friction coefficient is assumed to be constant and the friction force does not change direction. The nonlinear governing equations of the model are first obtained, and numerical solutions are sought for different cases. Second, a computational model for the squeal problem is developed with a commercial software, and computational solutions are obtained with two different types of contact cases (solid-to-solid and sphere-to-plane). This model consists of three rigid bodies and several elastic elements that simulate the key characteristics of a brake system. The response obtained from this model is compared with numerical solutions in time and frequency domain.

Keywords: contact force, nonlinearities, brake squeal, vehicle brake

Procedia PDF Downloads 241
16749 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems

Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.

Keywords: wind resource assessment, weather research and forecasting (WRF) model, python, GIS software

Procedia PDF Downloads 434
16748 The Process of Crisis: Model of Its Development in the Organization

Authors: M. Mikušová

Abstract:

The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.

Keywords: crisis, management, model, organization

Procedia PDF Downloads 283
16747 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 182
16746 Optimization of Scheduling through Altering Layout Using Pro-Model

Authors: Zouhair Issa Ahmed, Ahmed Abdulrasool Ahmed, Falah Hassan Abdulsada

Abstract:

This paper presents a layout of a factory using Pro-Model simulation by choosing the best layout that gives the highest productivity and least work in process. The general problem is to find the best sequence in which jobs pass between the machines which are compatible with the technological constraints and optimal with respect to some performance criteria. The best simulation with Pro-Model program increased productivity and reduced work in process by balancing lines of production compared with the current layout of factory when productivity increased from 45 products to 180 products through 720 hours.

Keywords: scheduling, Pro-Model, simulation, balancing lines of production, layout planning, WIP

Procedia PDF Downloads 624
16745 Software Engineering Revolution Driven by Complexity Science

Authors: Jay Xiong, Li Lin

Abstract:

This paper introduces a new software engineering paradigm based on complexity science, called NSE (Nonlinear Software Engineering paradigm). The purpose of establishing NSE is to help software development organizations double their productivity, half their cost, and increase the quality of their products in several orders of magnitude simultaneously. NSE complies with the essential principles of complexity science. NSE brings revolutionary changes to almost all aspects in software engineering. NSE has been fully implemented with its support platform Panorama++.

Keywords: complexity science, software development, software engineering, software maintenance

Procedia PDF Downloads 258
16744 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison

Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran

Abstract:

This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.

Keywords: heat transfer, nanofluid, single-phase models, two-phase models

Procedia PDF Downloads 477
16743 Particle Filter Implementation of a Non-Linear Dynamic Fall Model

Authors: T. Kobayashi, K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively.

Keywords: fall, microwave Doppler sensor, non-linear dynamics model, particle filter

Procedia PDF Downloads 204
16742 A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability

Authors: Pompa Marcello, Mauro Capocelli, Vincenzo Piemonte

Abstract:

This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics.

Keywords: gastro-intestinal model, drugs bioavailability, paracetamol, ketoprofen

Procedia PDF Downloads 160
16741 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 166
16740 Basic One-Dimensional Modelica®-Model for Simulation of Gas-Phase Adsorber Dynamics

Authors: Adrian Rettig, Silvan Schneider, Reto Tamburini, Mirko Kleingries, Ulf Christian Muller

Abstract:

Industrial adsorption processes are, mainly due to si-multaneous heat and mass transfer, characterized by a high level of complexity. The conception of such processes often does not take place systematically; instead scale-up/down respectively number-up/down methods based on existing systems are used. This paper shows how Modelica® can be used to develop a transient model enabling a more systematic design of such ad- and desorption components and processes. The core of this model is a lumped-element submodel of a single adsorbent grain, where the thermodynamic equilibria and the kinetics of the ad- and desorption processes are implemented and solved on the basis of mass-, momentum and energy balances. For validation of this submodel, a fixed bed adsorber, whose characteristics are described in detail in the literature, was modeled and simulated. The simulation results are in good agreement with the experimental results from the literature. Therefore, the model development will be continued, and the extended model will be applied to further adsorber types like rotor adsorbers and moving bed adsorbers.

Keywords: adsorption, desorption, linear driving force, dynamic model, Modelica®, integral equation approach

Procedia PDF Downloads 363
16739 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 309
16738 Digital Transformation of Payment Systems Using Field Service Management

Authors: Hamze Torabian, Mohammad Mehrabioun Mohammadi

Abstract:

Like many other industries, the payment industry has been affected by digital transformation. The importance of digital transformation in the payment industry is very crucial. Because the payment industry is considered a leading industry in digital and emerging technologies, and the digitalization of other industries such as retail, health, and telecommunication, it also depends on the growth rate of digitalized payment systems. One of the technological innovations in service management is Field Service Management (FSM). Despite the widespread use of FSM in various industries such as petrochemical, health, maintenance, etc., this technology can also be recruited in the payment industry, transforming the payment industry into a more agile and efficient one. Accordingly, the present study pays close attention to the application of FSM in the payment industry. Given the importance of merchants' bargaining power in the payment industry, this study aims to use FSM in the digital transformation initiative with a targeted focus on providing real-time services to merchants. The research method consists of three parts. Firstly, conducting the review of past research, applications of FSM in the payment industry are considered. In the next step, merchants' benefits such as emotional, functional, economic, and social benefits in using FSM are identified using in-depth interviews and content analysis methods. The related business model in helping the payment industry transforming into a more agile and efficient industry is considered in the following step. The results revealed the 10 main pillars required to realize the digital transformation of payment systems using FSM.

Keywords: digital transformation, field service management, merchant support systems, payment industry

Procedia PDF Downloads 157
16737 Modeling of a Pendulum Test Including Skin and Muscles under Compression

Authors: M. J. Kang, Y. N. Jo, H. H. Yoo

Abstract:

Pendulum tests were used to identify a stretch reflex and diagnose spasticity. Some researches tried to make a mathematical model to simulate the motions. Thighs are subject to compressive forces due to gravity during a pendulum test. Therefore, it affects knee trajectories. However, the most studies on the pendulum tests did not consider that conditions. We used Kelvin-Voight model as compression model of skin and muscles. In this study, we investigated viscoelastic behaviors of skin and muscles using gelatin blocks from experiments of the vibration of the compliantly supported beam. Then we calculated a dynamic stiffness and loss factors from the experiment and estimated a damping coefficient of the model. We also did pendulum tests of human lower limbs to validate the stiffness and damping coefficient of a skin model. To simulate the pendulum motion, we derive equations of motion. We used stretch reflex activation model to estimate muscle forces induced by the stretch reflex. To validate the results, we compared the activation with electromyography signals during experiments. The compression behavior of skin and muscles in this study can be applied to analyze sitting posture as wee as developing surgical techniques.

Keywords: Kelvin-Voight model, pendulum test, skin and muscles under compression, stretch reflex

Procedia PDF Downloads 437
16736 The Impact of CYP2C9 Gene Polymorphisms on Warfarin Dosing

Authors: Weaam Aldeeban, Majd Aljamali, Lama A. Youssef

Abstract:

Background & Objective: Warfarin is considered a problematic drug due to its narrow therapeutic window and wide inter-individual response variations, which are attributed to demographic, environmental, and genetic factors, particularly single nucleotide polymorphism (SNPs) in the genes encoding VKORC1 and CYP2C9 involved in warfarin's mechanism of action and metabolism, respectively. CYP2C9*2rs1799853 and CYP2C9*3rs1057910 alleles are linked to reduced enzyme activity, as carriers of either or both alleles are classified as moderate or slow metabolizers, and therefore exhibit higher sensitivity of warfarin compared with wild type (CYP2C9*1*1). Our study aimed to assess the frequency of *1, *2, and *3 alleles in the CYP2C9 gene in a cohort of Syrian patients receiving a maintenance dose of warfarin for different indications, the impact of genotypes on warfarin dosing, and the frequency of adverse effects (i.e., bleedings). Subjects & Methods: This retrospective cohort study encompassed 94 patients treated with warfarin. Patients’ genotypes were identified by sequencing the polymerase chain reaction (PCR) specific products of the gene encoding CYP2C9, and the effects on warfarin therapeutic outcomes were investigated. Results: Sequencing revealed that 43.6% of the study population has the *2 and/or *3 SNPs. The mean weekly maintenance dose of warfarin was 37.42 ± 15.5 mg for patients with the wild-type allele (CYP2C9*1*1), whereas patients with one or both variants (*2 and/or *3) demanded a significantly lower dose (28.59 ±11.58 mg) of warfarin, (P= 0.015). A higher percentage (40.7%) of patients with allele *2 and/or *3 experienced hemorrhagic accidents compared with only 17.9% of patients with the wild type *1*1, (P = 0.04). Conclusions: Our study proves an association between *2 and *3 genotypes and higher sensitivity to warfarin and a tendency to bleed, which necessitates lowering the dose. These findings emphasize the significance of CYP2C9 genotyping prior to commencing warfarin therapy in order to achieve optimal and faster dose control and to ensure effectiveness and safety.

Keywords: warfarin, CYP2C9, polymorphisms, Syrian, hemorrhage

Procedia PDF Downloads 138
16735 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control

Procedia PDF Downloads 401
16734 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 136
16733 Modelling Sudden Deaths from Myocardial Infarction and Stroke

Authors: Y. S. Yusoff, G. Streftaris, H. R Waters

Abstract:

Death within 30 days is an important factor to be looked into, as there is a significant risk of deaths immediately following or soon after, Myocardial Infarction (MI) or stroke. In this paper, we will model the deaths within 30 days following a Myocardial Infarction (MI) or stroke in the UK. We will see how the probabilities of sudden deaths from MI or stroke have changed over the period 1981-2000. We will model the sudden deaths using a Generalized Linear Model (GLM), fitted using the R statistical package, under a Binomial distribution for the number of sudden deaths. We parameterize our model using the extensive and detailed data from the Framingham Heart Study, adjusted to match UK rates. The results show that there is a reduction for the sudden deaths following a MI over time but no significant improvement for sudden deaths following a stroke.

Keywords: sudden deaths, myocardial infarction, stroke, ischemic heart disease

Procedia PDF Downloads 282
16732 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea

Procedia PDF Downloads 356
16731 Documents Emotions Classification Model Based on TF-IDF Weighting Measure

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.

Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms

Procedia PDF Downloads 469
16730 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 471
16729 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws

Authors: Jia-Jang Wu

Abstract:

This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.

Keywords: torsional vibration, full-size model, scale model, scaling laws

Procedia PDF Downloads 386
16728 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 218
16727 Activation-TV® to Reduce Elderly Loneliness and Insecurity

Authors: Hannele Laaksonen, Seija Nyqvist, Kari Nurmes

Abstract:

Objectives: In the year 2011 the City of Vaasa started to develop know-how in the technology and the introduction of services for aging people in cooperation with the Polytechnic Novia University of Applied Sciences and VAMK, University of Applied Sciences. The project´s targets included: to help elderly people to maintain their ability to function, to provide them social and physical activities, to prevent their social exclusion, to decrease their feelings of loneliness and insecurity and to develop their technical know-how. Methods: The project was built based on open source code, tailor-made service system and user interface for the elderly living at home and their families, based on the users´ expectations and experiences of services. Activation-TV®-project vas carried out 1.4.2011-31.3.2014. A pilot group of eight elderly persons, who were living at home, were selected to the project. All necessary technical means as well as guidance and teaching equipment were provided to the pilot group. The students of University of Applied Sciences (VAMK, Novia) and employees of Center of Ageing were made all programs to the Activation-TV®. The project group were interviewed after and before intervention. The data were evaluated both qualitatively and quantitatively. Results: The built service includes a video library, a group room for interactive programs and a personal room for bilateral meetings and direct shipment. The program is bilingual and produced in both national languages. The Activation TV® reduced elderly peoples´ (n=8) feelings of emptiness, added mental well-being and quality of life with social contacts. Relatives felt, that they were able to get in to older peoples´ everyday life with Activation TV®. Discussion: The built application was tailored to the model that has not been developed elsewhere in Finland. This model can be copied from one server to another and thus transferred to other municipalities but the program requires its own personnel system management and maintenance as well as program production cooperation between the different actors. This service can be used for the elderly who are living at home without dementia.

Keywords: mental well-being, quality of life, elderly people, Finland

Procedia PDF Downloads 334
16726 Optimization of Water Pipeline Routes Using a GIS-Based Multi-Criteria Decision Analysis and a Geometric Search Algorithm

Authors: Leon Mortari

Abstract:

The Metropolitan East region of Rio de Janeiro state, Brazil, faces a historic water scarcity. Among the alternatives studied to solve this situation, the possibility of adduction of the available water in the reservoir Lagoa de Juturnaíba to supply the region's municipalities stands out. The allocation of a linear engineering project must occur through an evaluation of different aspects, such as altitude, slope, proximity to roads, distance from watercourses, land use and occupation, and physical and chemical features of the soil. This work aims to apply a multi-criteria model that combines geoprocessing techniques, decision-making, and geometric search algorithm to optimize a hypothetical adductor system in the scenario of expanding the water supply system that serves this region, known as Imunana-Laranjal, using the Lagoa de Juturnaíba as the source. It is proposed in this study, the construction of a spatial database related to the presented evaluation criteria, treatment and rasterization of these data, and standardization and reclassification of this information in a Geographic Information System (GIS) platform. The methodology involves the integrated analysis of these criteria, using their relative importance defined by weighting them based on expert consultations and the Analytic Hierarchy Process (AHP) method. Three approaches are defined for weighting the criteria by AHP: the first treats all criteria as equally important, the second considers weighting based on a pairwise comparison matrix, and the third establishes a hierarchy based on the priority of the criteria. For each approach, a distinct group of weightings is defined. In the next step, map algebra tools are used to overlay the layers and generate cost surfaces, that indicates the resistance to the passage of the adductor route, using the three groups of weightings. The Dijkstra algorithm, a geometric search algorithm, is then applied to these cost surfaces to find an optimized path within the geographical space, aiming to minimize resources, time, investment, maintenance, and environmental and social impacts.

Keywords: geometric search algorithm, GIS, pipeline, route optimization, spatial multi-criteria analysis model

Procedia PDF Downloads 13
16725 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data

Procedia PDF Downloads 389