Search results for: Miller-Rabin primality test
16 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics
Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe
Abstract:
Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test
Procedia PDF Downloads 11215 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 8114 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System
Authors: K. Kamal
Abstract:
Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units
Procedia PDF Downloads 17113 Carbon Nanotube-Based Catalyst Modification to Improve Proton Exchange Membrane Fuel Cell Interlayer Interactions
Authors: Ling Ai, Ziyu Zhao, Zeyu Zhou, Xiaochen Yang, Heng Zhai, Stuart Holmes
Abstract:
Optimizing the catalyst layer structure is crucial for enhancing the performance of proton exchange membrane fuel cells (PEMFCs) with low Platinum (Pt) loading. Current works focused on the utilization, durability, and site activity of Pt particles on support, and performance enhancement has been achieved by loading Pt onto porous support with different morphology, such as graphene, carbon fiber, and carbon black. Some schemes have also incorporated cost considerations to achieve lower Pt loading. However, the design of the catalyst layer (CL) structure in the membrane electrode assembly (MEA) must consider the interactions between the layers. Addressing the crucial aspects of water management, low contact resistance, and the establishment of effective three-phase boundary for MEA, multi-walled carbon nanotubes (MWCNTs) are promising CL support due to their intrinsically high hydrophobicity, high axial electrical conductivity, and potential for ordered alignment. However, the drawbacks of MWCNTs, such as strong agglomeration, wall surface chemical inertness, and unopened ends, are unfavorable for Pt nanoparticle loading, which is detrimental to MEA processing and leads to inhomogeneous CL surfaces. This further deteriorates the utilization of Pt and increases the contact resistance. Robust chemical oxidation or nitrogen doping can introduce polar functional groups onto the surface of MWCNTs, facilitating the creation of open tube ends and inducing defects in tube walls. This improves dispersibility and load capacity but reduces length and conductivity. Consequently, a trade-off exists between maintaining the intrinsic properties and the degree of functionalization of MWCNTs. In this work, MWCNTs were modified based on the operational requirements of the MEA from the viewpoint of interlayer interactions, including the search for the optimal degree of oxidation, N-doping, and micro-arrangement. MWCNT were functionalized by oxidizing, N-doping, as well as micro-alignment to achieve lower contact resistance between CL and proton exchange membrane (PEM), better hydrophobicity, and enhanced performance. Furthermore, this work expects to construct a more continuously distributed three-phase boundary by aligning MWCNT to form a locally ordered structure, which is essential for the efficient utilization of Pt active sites. Different from other chemical oxidation schemes that used HNO3:H2SO4 (1:3) mixed acid to strongly oxidize MWCNT, this scheme adopted pure HNO3 to partially oxidize MWCNT at a lower reflux temperature (80 ℃) and a shorter treatment time (0 to 10 h) to preserve the morphology and intrinsic conductivity of MWCNT. The maximum power density of 979.81 mw cm-2 was achieved by Pt loading on 6h MWCNT oxidation time (Pt-MWCNT6h). This represented a 59.53% improvement over the commercial Pt/C catalyst of 614.17 (mw cm-2). In addition, due to the stronger electrical conductivity, the charge transfer resistance of Pt-MWCNT6h in the electrochemical impedance spectroscopy (EIS) test was 0.09 Ohm cm-2, which was 48.86% lower than that of Pt/C. This study will discuss the developed catalysts and their efficacy in a working fuel cell system. This research will validate the impact of low-functionalization modification of MWCNTs on the performance of PEMFC, which simplifies the preparation challenges of CL and contributing for the widespread commercial application of PEMFCs on a larger scale.Keywords: carbon nanotubes, electrocatalyst, membrane electrode assembly, proton exchange membrane fuel cell
Procedia PDF Downloads 6912 Exploiting Charges on Medicinal Synthetic Aluminum Magnesium Silicate's {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃} Nanoparticles in Treating Viral Diseases, Tumors, Antimicrobial Resistant Infections
Authors: M. C. O. Ezeibe, F. I. O. Ezeibe
Abstract:
Reasons viral diseases (including AI, HIV/AIDS, and COVID-19), tumors (including Cancers and Prostrate enlargement), and antimicrobial-resistant infections (AMR) are difficult to cure are features of the pathogens which normal cells do not have or need (biomedical markers) have not been identified; medicines that can counter the markers have not been invented; strategies and mechanisms for their treatments have not been developed. When cells become abnormal, they acquire negative electrical charges, and viruses are either positively charged or negatively charged, while normal cells remain neutral (without electrical charges). So, opposite charges' electrostatic attraction is a treatment mechanism for viral diseases and tumors. Medicines that have positive electrical charges would mop abnormal (infected and tumor) cells and DNA viruses (negatively charged), while negatively charged medicines would mop RNA viruses (positively charged). Molecules of Aluminum-magnesium silicate [AMS: Al₂Mg₃ (SiO₄)₃], an approved medicine and pharmaceutical stabilizing agent, consist of nanoparticles which have both positive electrically charged ends and negative electrically charged ends. The very small size (0.96 nm) of the nanoparticles allows them to reach all cells in every organ. By stabilizing antimicrobials, AMS reduces the rate at which the body metabolizes them so that they remain at high concentrations for extended periods. When drugs remain at high concentrations for longer periods, their efficacies improve. Again, nanoparticles enhance the delivery of medicines to effect targets. Both remaining at high concentrations for longer periods and better delivery to effect targets improve efficacy and make lower doses achieve desired effects so that side effects of medicines are reduced to allow the immunity of patients to be enhanced. Silicates also enhance the immune responses of treated patients. Improving antimicrobial efficacies and enhancing patients` immunity terminate infections so that none remains that could develop resistance. Some countries do not have natural deposits of AMS, but they may have Aluminum silicate (AS: Al₄ (SiO₄)₃) and Magnesium silicate (MS: Mg₂SiO₄), which are also approved medicines. So, AS and MS were used to formulate an AMS-brand, named Medicinal synthetic AMS {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃}. To overcome the challenge of AMS, AS, and MS being un-absorbable, Dextrose monohydrate is incorporated in MSAMS-formulations for the simple sugar to convey the electrically charged nanoparticles into blood circulation by the principle of active transport so that MSAMS-antimicrobial formulations function systemically. In vitro, MSAMS reduced (P≤0.05) titers of viruses, including Avian influenza virus and HIV. When used to treat virus-infected animals, it cured Newcastle disease and Infectious bursa disease of chickens, Parvovirus disease of dogs, and Peste des petits ruminants disease of sheep and goats. A number of HIV/AIDS patients treated with it have been reported to become HIV-negative (antibody and antigen). COVID-19 patients are also reported to recover and test virus negative when treated with MSAMS. PSA titers of prostate cancer/enlargement patients normalize (≤4) following treatment with MSAMS. MSAMS has also potentiated ampicillin trihydrate, sulfadimidin, cotrimoxazole, piparazine citrate and chloroquine phosphate to achieve ≥ 95 % infection-load reductions (AMR-prevention). At 75 % of doses of ampicillin, cotrimoxazole, and streptomycin, supporting MSAMS-formulations' treatments with antioxidants led to the termination of even already resistant infections.Keywords: electrical charges, viruses, abnormal cells, aluminum-magnesium silicate
Procedia PDF Downloads 6311 Human Bone Marrow Stem Cell Behavior on 3D Printed Scaffolds as Trabecular Bone Grafts
Authors: Zeynep Busra Velioglu, Deniz Pulat, Beril Demirbakan, Burak Ozcan, Ece Bayrak, Cevat Erisken
Abstract:
Bone tissue has the ability to perform a wide array of functions including providing posture, load-bearing capacity, protection for the internal organs, initiating hematopoiesis, and maintaining the homeostasis of key electrolytes via calcium/phosphate ion storage. The most common cause for bone defects is extensive trauma and subsequent infection. Bone tissue has the self-healing capability without a scar tissue formation for the majority of the injuries. However, some may result with delayed union or fracture non-union. Such cases include reconstruction of large bone defects or cases of compromised regenerative process as a result of avascular necrosis and osteoporosis. Several surgical methods exist to treat bone defects, including Ilizarov method, Masquelete technique, growth factor stimulation, and bone replacement. Unfortunately, these are technically demanding and come with noteworthy disadvantages such as lengthy treatment duration, adverse effects on the patient’s psychology, repeated surgical procedures, and often long hospitalization times. These limitations associated with surgical techniques make bone substitutes an attractive alternative. Here, it was hypothesized that a 3D printed scaffold will mimic trabecular bone in terms of biomechanical properties and that such scaffolds will support cell attachment and survival. To test this hypothesis, this study aimed at fabricating poly(lactic acid), PLA, structures using 3D printing technology for trabecular bone defects, characterizing the scaffolds and comparing with bovine trabecular bone. Capacity of scaffolds on human bone marrow stem cell (hBMSC) attachment and survival was also evaluated. Cubes with a volume of 1 cm³ having pore sizes of 0.50, 1.00 and 1.25 mm were printed. The scaffolds/grafts were characterized in terms of porosity, contact angle, compressive mechanical properties as well cell response. Porosities of the 3D printed scaffolds were calculated based on apparent densities. For contact angles, 50 µl distilled water was dropped over the surface of scaffolds, and contact angles were measured using ‘Image J’ software. Mechanical characterization under compression was performed on scaffolds and native trabecular bone (bovine, 15 months) specimens using a universal testing machine at a rate of 0.5mm/min. hBMSCs were seeded onto the 3D printed scaffolds. After 3 days of incubation with fully supplemented Dulbecco’s modified Eagle’s medium, the cells were fixed using 2% formaldehyde and glutaraldehyde mixture. The specimens were then imaged under scanning electron microscopy. Cell proliferation was determined by using EZQuant dsDNA Quantitation kit. Fluorescence was measured using microplate reader Spectramax M2 at the excitation and emission wavelengths of 485nm and 535nm, respectively. Findings suggested that porosity of scaffolds with pore dimensions of 0.5mm, 1.0mm and 1.25mm were not affected by pore size, while contact angle and compressive modulus decreased with increasing pore size. Biomechanical characterization of trabecular bone yielded higher modulus values as compared to scaffolds with all pore sizes studied. Cells attached and survived in all surfaces, demonstrating higher proliferation on scaffolds with 1.25mm pores as compared with those of 1mm. Collectively, given lower mechanical properties of scaffolds as compared to native bone, and biocompatibility of the scaffolds, the 3D printed PLA scaffolds of this study appear as candidate substitutes for bone repair and regeneration.Keywords: 3D printing, biomechanics, bone repair, stem cell
Procedia PDF Downloads 17210 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet
Authors: Justin Woulfe
Abstract:
Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics
Procedia PDF Downloads 1609 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 578 Bridging the Communication Gap in Emergency Care: How Informational Pamphlet Enhance Satisfaction for Patients with Distal Radius Fractures
Authors: Amr Mansour, Boaz Granot, Amani Tatar, Assil Mahamid, Mohammad Haj Yahia, Fairoz Jayyusi, Eyal Behrbalk
Abstract:
INTRODUCTION: Distal radius fractures are common orthopedic injuries often treated in the fast-paced, high-stress environment of emergency departments (EDs). In such settings, patient satisfaction can be significantly influenced by the clarity of communication and the accessibility of information This study explores the impact of providing an informational pamphlet that outlines ED processes, treatment expectations, and follow-up instructions on patient satisfaction across key domains, including trust, communication, organization, responsiveness, and overall experience. We hypothesize that a structured informational pamphlet will enhance patient satisfaction by fostering better understanding and aligning patient expectations with the realities of the ED visit. METHODS: A total of 100 adult patients treated for distal radius fractures between January and August 2024 participated in this survey-based study. Patients were randomized into two equal groups: one group received an informational pamphlet detailing their condition and treatment, while the other did not. Satisfaction levels were assessed using a structured questionnaire addressing five domains. Fisher's exact test was used to compare satisfaction measures between the two groups, and multivariate logistic regression analysis was conducted to evaluate the association between receiving an information sheet and high satisfaction. The study was approved by the Institutional Review Board. RESULTS SECTION: Patients who received an informational pamphlet reported significantly higher satisfaction across all five domains (p < .001). In Trust and Understanding, 82% of info-sheet recipients felt “in good hands,” compared to 10% of non-recipients. For Communication, 86% rated doctor explanations as “very clear,” versus 16% among non-recipients. Logistic regression showed that receiving an informational pamphlet was a significant predictor of high satisfaction with Discharge Explanation—clarity on condition, treatment, and follow-up (OR = 17.65, 95% CI: 4.74 - 65.77, p < .001) and Reasonable Solution—feeling their primary concern was resolved (OR = 37.82, 95% CI: 8.75 - 163.42, p < .001). Other predictors, including fracture reduction, gender, and age, were not significant. DISCUSSION: This study highlights the substantial role that simple, cost-effective interventions like informational pamphlets can play in enhancing patient satisfaction in emergency care. By improving communication, fostering trust, and promoting a patient-centered approach, informational pamphlets offer a valuable tool for healthcare providers seeking to enhance the quality of care and patient experience in high-pressure emergency environments. However, the study's limitations, including its single-center design and reliance on self-reported satisfaction scores, may affect the generalizability of the results. Future research should consider a multi-center approach and explore long-term outcomes to further validate the efficacy of informational pamphlets in diverse ED settings. Ultimately, sustained improvement in patient satisfaction is a complex and dynamic issue necessitating a multifactorial approach, and other methods should also be explored to complement this strategy. SIGNIFICANCE/CLINICAL RELEVANCE: This study demonstrates that providing an informational pamphlet in the ED setting can significantly improve patient satisfaction across multiple domains, emphasizing its potential as a simple, cost-effective tool to enhance communication, trust, and overall patient experience during emergency care for distal radius fractures. Integrating such interventions into standard ED protocols may foster a more patient-centered approach, improving both patient outcomes and healthcare efficiency.Keywords: distal radius fracture, quality care, patient satisfaction, emergency medicine, patient-centered care, communication
Procedia PDF Downloads 177 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island
Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari
Abstract:
Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area
Procedia PDF Downloads 4076 Utilization of Developed Single Sequence Repeats Markers for Dalmatian Pyrethrum (Tanacetum cinerariifolium) in Preliminary Genetic Diversity Study on Natural Populations
Authors: F. Varga, Z. Liber, J. Jakše, A. Turudić, Z. Šatović, I. Radosavljević, N. Jeran, M. Grdiša
Abstract:
Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.; Asteraceae), a source of the commercially dominant plant insecticide pyrethrin, is a species endemic to the eastern Adriatic. Genetic diversity of T. cinerariifolium was previously studied using amplified fragment length polymorphism (AFLP) markers. However, microsatellite markers (single sequence repeats - SSRs) are more informative because they are codominant, highly polymorphic, locus-specific, and more reproducible, and thus are most often used to assess the genetic diversity of plant species. Dalmatian pyrethrum is an outcrossing diploid (2n = 18) whose large genome size and high repeatability have prevented the success of the traditional approach to SSR markers development. The advent of next-generation sequencing combined with the specifically developed method recently enabled the development of, to the author's best knowledge, the first set of SSRs for genomic characterization of Dalmatian pyrethrum, which is essential from the perspective of plant genetic resources conservation. To evaluate the effectiveness of the developed SSR markers in genetic differentiation of Dalmatian pyrethrum populations, a preliminary genetic diversity study was conducted on 30 individuals from three geographically distinct natural populations in Croatia (northern Adriatic island of Mali Lošinj, southern Adriatic island of Čiovo, and Mount Biokovo) based on 12 SSR loci. Analysis of molecular variance (AMOVA) by randomization test with 10,000 permutations was performed in Arlequin 3.5. The average number of alleles per locus, observed and expected heterozygosity, probability of deviations from Hardy-Weinberg equilibrium, and inbreeding coefficient was calculated using GENEPOP 4.4. Genetic distance based on the proportion of common alleles (DPSA) was calculated using MICROSAT. Cluster analysis using the neighbor-joining method with 1,000 bootstraps was performed with PHYLIP to generate a dendrogram. The results of the AMOVA analysis showed that the total SSR diversity was 23% within and 77% between the three populations. A slight deviation from Hardy-Weinberg equilibrium was observed in the Mali Lošinj population. Allele richness ranged from 2.92 to 3.92, with the highest number of private alleles observed in the Mali Lošinj population (17). The average observed DPSA between 30 individuals was 0.557. The highest DPSA (0.875) was observed between several pairs of Dalmatian pyrethrum individuals from the Mali Lošinj and Mt. Biokovo populations, and the lowest between two individuals from the Čiovo population. Neighbor-joining trees, based on DPSA, grouped individuals into clusters according to their population affiliation. The separation of Mt. Biokovo clade was supported (bootstrap value 58%), which is consistent with the previous study on AFLP markers, where isolated populations from Mt. Biokovo differed from the rest of the populations. The developed SSR markers are an effective tool for assessing the genetic diversity and structure of natural Dalmatian pyrethrum populations. These preliminary results are encouraging for a future comprehensive study with a larger sample size across the species' range. Combined with the biochemical data, these highly informative markers could help identify potential genotypes of interest for future development of breeding lines and cultivars that are both resistant to environmental stress and high in pyrethrins. Acknowledgment: This work has been supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.) insecticidal potential’- (PyrDiv) (IP-06-2016-9034) and by project KK.01.1.1.01.0005, Biodiversity and Molecular Plant Breeding, at the Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.Keywords: Asteraceae, genetic diversity, genomic SSRs, NGS, pyrethrum, Tanacetum cinerariifolium
Procedia PDF Downloads 1145 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations
Authors: Nanine Fouche
Abstract:
The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance
Procedia PDF Downloads 1754 Gamification Beyond Competition: the Case of DPG Lab Collaborative Learning Program for High-School Girls by GameLab KBTU and UNICEF in Kazakhstan
Authors: Nazym Zhumabayeva, Aleksandr Mezin, Alexandra Knysheva
Abstract:
Women's underrepresentation in STEM is critical, worsened by ineffective engagement in educational practices. UNICEF Kazakhstan and GameLab KBTU's collaborative initiatives aim to enhance female STEM participation by fostering an inclusive environment. Learning from LEVEL UP's 2023 program, which featured a hackathon, the 2024 strategy pivots towards non-competitive gamification. Although the data from last year's project showed higher than average student engagement, observations and in-depth interviews with participants showed that the format was stressful for the girls, making them focus on points rather than on other values. This study presents a gamified educational system, DPG Lab, aimed at incentivizing young women's participation in STEM through the development of digital public goods (DPGs). By prioritizing collaborative gamification elements, the project seeks to create an inclusive learning environment that increases engagement and interest in STEM among young women. The DPG Lab aims to find a solution to minimize competition and support collaboration. The project is designed to motivate female participants towards the development of digital solutions through an introduction to the concept of DPGs. It consists of a short online course, a simulation videogame, and a real-time online quest with an offline finale at the KBTU campus. The online course offers short video lectures on open-source development and DPG standards. The game facilitates the practical application of theoretical knowledge, enriching the learning experience. Learners can also participate in a quest that encourages participants to develop DPG ideas in teams by choosing missions throughout the quest path. At the offline quest finale, the participants will meet in person to exchange experiences and accomplishments without engaging in comparative assessments: the quest ensures that each team’s trajectory is distinct by design. This marks a shift from competitive hackathons to a collaborative format, recognizing the unique contributions and achievements of each participant. The pilot batch of students is scheduled to commence in April 2024, with the finale anticipated in June. It is projected that this group will comprise 50 female high-school students from various regions across Kazakhstan. Expected outcomes include increased engagement and interest in STEM fields among young female participants, positive emotional and psychological impact through an emphasis on collaborative learning environments, and improved understanding and skills in DPG development. GameLab KBTU intends to undertake a hypothesis evaluation, employing a methodology similar to that utilized in the preceding LEVEL UP project. This approach will encompass the compilation of quantitative metrics (conversion funnels, test results, and surveys) and qualitative data from in-depth interviews and observational studies. For comparative analysis, a select group of participants from the previous year's project will be recruited to engage in the DPG Lab. By developing and implementing a gamified framework that emphasizes inclusion, engagement, and collaboration, the study seeks to provide practical knowledge about effective gamification strategies for promoting gender diversity in STEM. The expected outcomes of this initiative can contribute to the broader discussion on gamification in education and gender equality in STEM by offering a replicable and scalable model for similar interventions around the world.Keywords: collaborative learning, competitive learning, digital public goods, educational gamification, emerging regions, STEM, underprivileged groups
Procedia PDF Downloads 623 Climate Change Threats to UNESCO-Designated World Heritage Sites: Empirical Evidence from Konso Cultural Landscape, Ethiopia
Authors: Yimer Mohammed Assen, Abiyot Legesse Kura, Engida Esyas Dube, Asebe Regassa Debelo, Girma Kelboro Mensuro, Lete Bekele Gure
Abstract:
Climate change has posed severe threats to many cultural landscapes of UNESCO world heritage sites recently. The UNESCO State of Conservation (SOC) reports categorized flooding, temperature increment, and drought as threats to cultural landscapes. This study aimed to examine variations and trends of rainfall and temperature extreme events and their threats to the UNESCO-designated Konso Cultural Landscape in southern Ethiopia. The study used dense merged satellite-gauge station rainfall data (1981-2020) with spatial resolution of 4km by 4km and observed maximum and minimum temperature data (1987-2020). Qualitative data were also gathered from cultural leaders, local administrators, and religious leaders using structured interview checklists. The spatial patterns, coefficient of variation, standardized anomalies, trends, and magnitude of change of rainfall and temperature extreme events both at annual and seasonal levels were computed using the Mann-Kendall trend test and Sen’s slope estimator under the CDT package. The standard precipitation index (SPI) was also used to calculate drought severity, frequency, and trend maps. The data gathered from key informant interviews and focus group discussions were coded and analyzed thematically to complement statistical findings. Thematic areas that explain the impacts of extreme events on the cultural landscape were chosen for coding. The thematic analysis was conducted using Nvivo software. The findings revealed that rainfall was highly variable and unpredictable, resulting in extreme drought and flood. There were significant (P<0.05) increasing trends of heavy rainfall (R10mm and R20mm) and the total amount of rain on wet days (PRCPTOT), which might have resulted in flooding. The study also confirmed that absolute temperature extreme indices (TXx, TXn, and TNx) and the percentile-based temperature extreme indices (TX90p, TN90p, TX10p, and TN10P) showed significant (P<0.05) increasing trends which are signals for warming of the study area. The results revealed that the frequency as well as the severity of drought at 3-months (katana/hageya seasons) was more pronounced than the 12-months (annual) time scale. The highest number of droughts in 100 years is projected at a 3-months timescale across the study area. The findings also showed that frequent drought has led to loss of grasses which are used for making traditional individual houses and multipurpose communal houses (pafta), food insecurity, migration, loss of biodiversity, and commodification of stones from terrace. On the other hand, the increasing trends of rainfall extreme indices resulted in destruction of terraces, soil erosion, loss of life and damage of properties. The study shows that a persistent decline in farmland productivity, due to erratic and extreme rainfall and frequent drought occurrences, forced the local people to participate in non-farm activities and retreat from daily preservation and management of their landscape. Overall, the increasing rainfall and temperature extremes coupled with prevalence of drought are thought to have an impact on the sustainability of cultural landscape through disrupting the ecosystem services and livelihood of the community. Therefore, more localized adaptation and mitigation strategies to the changing climate are needed to maintain the sustainability of Konso cultural landscapes as a global cultural treasure and to strengthen the resilience of smallholder farmers.Keywords: adaptation, cultural landscape, drought, extremes indices
Procedia PDF Downloads 262 Understanding Patterns of Hard Coral Demographics in Kenyan Reefs to Inform Restoration
Authors: Swaleh Aboud, Mishal Gudka, David Obura
Abstract:
Background: Coral reefs are becoming increasingly vulnerable due to several threats ranging from climate change to overfishing. This has resulted in increased management and conservation efforts to protect reefs from degradation and facilitate recovery. Recruitmentof new individuals are isimportant in the recovery process and critical for the persistence of coral reef ecosystems. Local coral community structure can be influenced by successful recruit settlement, survival, and growth Understanding coral recruitment patterns can help quantify reef resilience and connectivity, establish baselines and track changes and evaluate the effectiveness of reef restoration and conservation efforts. This study will examine the abundance and spatial pattern of coral recruits and how this relates to adult community structure, including the distribution of thermal resistance and sensitive genera and their distribution in different management regimes. Methods: Coral recruit and demography surveys were conducted from 2020 to 2022, covering 35 sites in 19coral reef locations along the Kenyan coast. These included marine parks, reserves, community conservation areas (CMAs), and open access areas from the north (Marereni) to the south (Kisite) coast of Kenya and across different reef habitats. The data was collected through the underwater visual census (UVC) technique. We counted adult corals (>10 cm diameter)of23 selected genera using belt transects (25 by 1 m) and sampling of 1 m2 quadrat (at an interval of 5m) for all coloniesless than 10 cm diameter. The benthic cover was collected using photo quadrats. The surveys were only done during the northeast monsoon season. The data wereanalyzed using the R program to see the distribution patterns and the Kruskal Wallis test to see whether there was a significant difference. Spearman correlation was also applied to assess the relationship between the distribution of coral genera in recruits and adults. Results: A total of 44 different coral genera were recorded for recruits, ranging from 3at Marereni to 30at Watamu Marine Reserve. Recruit densities ranged from 1.2±1.5recruit m-2 (mean±SD) at Likoni to 10.3± 8.4 recruit m-2 at Kisite Marine Park. The overall densityof recruitssignificantly differed between reef locations, with Kisite Marine Park and Reserve and Likonihaving significantly large differences from all the other locations, while Vuma, Watamu, Malindi, and Kilifi had significantly lower differences from all the other locations. The recruit generadensity along the Kenya coastwas divided into two clusters, one of which only included sites inKisite Marine Park. Adult colonies were dominated by Porites massive, Acropora, Platygyra, and Favites, whereas recruits were dominated by Porites branching, Porites massive, Galaxea, and Acropora. However, correlation analysis revealed a statistically significant positive correlation (r=0.81, p<0.05) between recruit and adult coral densities across the 23 coral genera. Marereni, which had the lowest densityof recruits, has only thermallyresistant coral genera, while Kisite Marine Park, with the highest recruit densities, has over 90% thermal sensitive coral genera. A weak positive correlation was found between recruit density and coralline algae, dead standing corals, and turf algae, whereas a weak negative correlation was found between recruit density and bare substrate and macroalgae. Between management regimes, marine reserves were found to have more recruits than no-take zones (marine parks and CMAs) and open access areas, although the difference was not significant. Conclusion: There was a statistically significant difference in the density of recruits between different reef locations along the Kenyan coast. Although the dominating genera of adults and recruits were different, there was a strong positive correlation between their coral communities, which could indicate self-recruitment processes or consistent distance seedings (of the same recruit genera). Sites such as Kisite Marine Park, with high recruit densities but dominated by thermally sensitive genera, will, on the other hand, be adversely affected by future thermal stress. This could imply that reducing the threats to coral reefs such as overfishingcould allow for their natural regeneration and recovery.Keywords: coral recruits, coral adult size-class, cora demography, resilience
Procedia PDF Downloads 1241 Developing VR-Based Neurorehabilitation Support Tools: A Step-by-Step Approach for Cognitive Rehabilitation and Pain Distraction during Invasive Techniques in Hospital Settings
Authors: Alba Prats-Bisbe, Jaume López-Carballo, David Leno-Colorado, Alberto García Molina, Alicia Romero Marquez, Elena Hernández Pena, Eloy Opisso Salleras, Raimon Jané Campos
Abstract:
Neurological disorders are a leading cause of disability and premature mortality worldwide. Neurorehabilitation (NRHB) is a clinical process aimed at reducing functional impairment, promoting societal participation, and improving the quality of life for affected individuals. Virtual reality (VR) technology is emerging as a promising NRHB support tool. Its immersive nature fosters a strong sense of agency and embodiment, motivating patients to engage in meaningful tasks and increasing adherence to therapy. However, the clinical benefits of VR interventions are challenging to determine due to the high heterogeneity among health applications. This study explores a stepwise development approach for creating VR-based tools to assist individuals with neurological disorders in medical practice, aiming to enhance reproducibility, facilitate comparison, and promote the generalization of findings. Building on previous research, the step-by-step methodology encompasses: Needs Identification– conducting cross-disciplinary meetings to brainstorm problems, solutions, and address barriers. Intervention Definition– target population, set goals, and conceptualize the VR system (equipment and environments). Material Selection and Placement– choose appropriate hardware and software, place the device within the hospital setting, and test equipment. Co-design– collaboratively create VR environments, user interfaces, and data management strategies. Prototyping– develop VR prototypes, conduct user testing, and make iterative redesigns. Usability and Feasibility Assessment– design protocols and conduct trials with stakeholders in the hospital setting. Efficacy Assessment– conduct clinical trials to evaluate outcomes and long-term effects. Cost-Effectiveness Validation– assess reproducibility, sustainability, and balance between costs and benefits. NRHB is complex due to the multifaceted needs of patients and the interdisciplinary healthcare architecture. VR has the potential to support various applications, such as motor skill training, cognitive tasks, pain management, unilateral spatial neglect (diagnosis and treatment), mirror therapy, and ecologically valid activities of daily living. Following this methodology was crucial for launching a VR-based system in a real hospital environment. Collaboration with neuropsychologists lead to develop A) a VR-based tool for cognitive rehabilitation in patients with acquired brain injury (ABI). The system comprises a head-mounted display (HTC Vive Pro Eye) and 7 tasks targeting attention, memory, and executive functions. A desktop application facilitates session configuration, while database records in-game variables. The VR tool's usability and feasibility were demonstrated in proof-of-concept trials with 20 patients, and effectiveness is being tested through a clinical protocol with 12 patients completing 24-session treatment. Another case involved collaboration with nurses and paediatric physiatrists to create B) a VR-based distraction tool during invasive techniques. The goal is to alleviate pain and anxiety associated with botulinum toxin (BTX) injections, blood tests, or intravenous placements. An all-in-one headset (HTC Vive Focus 3) deploys 360º videos to improve the experience for paediatric patients and their families. This study presents a framework for developing clinically relevant and technologically feasible VR-based support tools for hospital settings. Despite differences in patient type, intervention purpose, and VR system, the methodology demonstrates usability, viability, reproducibility and preliminary clinical benefits. It highlights the importance approach centred on clinician and patient needs for any aspect of NRHB within a real hospital setting.Keywords: neurological disorders, neurorehabilitation, stepwise development approach, virtual reality
Procedia PDF Downloads 32