Search results for: k-means clustering based feature weighting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28570

Search results for: k-means clustering based feature weighting

27700 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 81
27699 New Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading

Authors: Amar Sabih, James Nemes

Abstract:

The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a new workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion.

Keywords: adiabatic sher band, ductile failure, stress instability, workability criterion

Procedia PDF Downloads 71
27698 Application of Fuzzy Approach to the Vibration Fault Diagnosis

Authors: Jalel Khelil

Abstract:

In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification.

Keywords: fault diagnosis, fuzzy classification k-nearest neighbor, vibration

Procedia PDF Downloads 449
27697 A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer

Authors: James Q. Feng

Abstract:

Pneumatic nebulizers (as variations based on the Collison nebulizer) have been widely used for producing fine aerosol droplets from a liquid material. As qualitatively described by many authors, the basic working principle of those nebulizers involves utilization of the negative pressure associated with an expanding gas jet to syphon liquid into the jet stream, then to blow and shear into liquid sheets, filaments, and eventually droplets. But detailed quantitative analysis based on fluid mechanics theory has been lacking in the literature. The purpose of present work is to investigate the nature of negative pressure distribution associated with compressible gas jet flow in the Collison nebulizer by a computational fluid dynamics (CFD) analysis, using an OpenFOAM® compressible flow solver. The value of the negative pressure associated with a gas jet flow is examined by varying geometric parameters of the jet expansion channel adjacent to the jet orifice outlet. Such an analysis can provide valuable insights into fundamental mechanisms in liquid aspiration process, helpful for effective design of the pneumatic atomizer in the Aerosol Jet® direct-write system for micro-feature, high-aspect-ratio material deposition in additive manufacturing.

Keywords: collison nebulizer, compressible gas jet flow, liquid aspiration, pneumatic atomization

Procedia PDF Downloads 155
27696 Spatiotemporal Variation Characteristics of Soil pH around the Balikesir City, Turkey

Authors: Çağan Alevkayali, Şermin Tağil

Abstract:

Determination of soil pH surface distribution in urban areas is substantial for sustainable development. Changes on soil properties occur due to functions on performed in agriculture, industry and other urban functions. Soil pH is important to effect on soil productivity which based on sensitive and complex relation between plant and soil. Furthermore, the spatial variability of soil reaction is necessary to measure the effects of urbanization. The objective of this study was to explore the spatial variation of soil pH quality and the influence factors of human land use on soil Ph around Balikesir City using data for 2015 and Geographic Information Systems (GIS). For this, soil samples were taken from 40 different locations, and collected with the method of "Systematic Random" from the pits at 0-20 cm depths, because anthropologic sourced pollutants accumulate on upper layers of soil. The study area was divided into a grid system with 750 x 750 m. GPS was used to determine sampling locations, and Inverse Distance Weighting (IDW) interpolation technique was used to analyze the spatial distribution of pH in the study area and to predict the variable values of un-exampled places with the help from the values of exampled places. Natural soil acidity and alkalinity depend on interaction between climate, vegetation, and soil geological properties. However, analyzing soil pH is important to indirectly evaluate soil pollution caused by urbanization and industrialization. The result of this study showed that soil pH around the Balikesir City was neutral, in generally, with values were between 6.5 and 7.0. On the other hand, some slight changes were demonstrated around open dump areas and the small industrial sites. The results obtained from this study can be indicator of important soil problems and this data can be used by ecologists, planners and managers to protect soil supplies around the Balikesir City.

Keywords: Balikesir, IDW, GIS, spatial variability, soil pH, urbanization

Procedia PDF Downloads 306
27695 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy

Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi

Abstract:

Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.

Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing

Procedia PDF Downloads 131
27694 A Parallel Implementation of k-Means in MATLAB

Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas

Abstract:

The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.

Keywords: K-means algorithm, clustering, parallel computations, Matlab

Procedia PDF Downloads 368
27693 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 58
27692 A Decision Support System for the Detection of Illicit Substance Production Sites

Authors: Krystian Chachula, Robert Nowak

Abstract:

Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).

Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion

Procedia PDF Downloads 96
27691 Speeding-up Gray-Scale FIC by Moments

Authors: Eman A. Al-Hilo, Hawraa H. Al-Waelly

Abstract:

In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image.

Keywords: fractal gray level image, fractal compression technique, iterated function system, moments feature, zero-mean range-domain block

Procedia PDF Downloads 478
27690 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly

Procedia PDF Downloads 204
27689 On Estimating the Low Income Proportion with Several Auxiliary Variables

Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández

Abstract:

Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.

Keywords: inclusion probability, poverty, poverty line, survey sampling

Procedia PDF Downloads 432
27688 ArcGIS as a Tool for Infrastructure Documentation and Asset Management: Establishing a GIS for Computer Network Documentation

Authors: John Segars

Abstract:

Built out of a real-world need to have better, more detailed, asset and infrastructure documentation, this project will lay out the case for using the database functionality of ArcGIS as a tool to track and maintain infrastructure location, status, maintenance and serviceability. Workflows and processes will be presented and detailed which may be applied to an organizations’ infrastructure needs that might allow them to make use of the robust tools which surround the ArcGIS platform. The end result is a value-added information system framework with a geographic component e.g., the spatial location of various I.T. assets, a detailed set of records which not only documents location but also captures the maintenance history for assets along with photographs and documentation of these various assets as attachments to the numerous feature class items. In addition to the asset location and documentation benefits, the staff will be able to log into the devices and pull SNMP (Simple Network Management Protocol) based query information from within the user interface. The entire collection of information may be displayed in ArcGIS, via a JavaScript based web application or via queries to the back-end database. The project is applicable to all organizations which maintain an IT infrastructure but specifically targets post-secondary educational institutions where access to ESRI resources is generally already available in house.

Keywords: ESRI, GIS, infrastructure, network documentation, PostgreSQL

Procedia PDF Downloads 162
27687 Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator

Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Kim Dowon, Qing Fang, Mingbin Yu, Guoqiang Lo

Abstract:

Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed.

Keywords: integrated optical devices, silicon photonics, micro-resonator, photodetectors

Procedia PDF Downloads 388
27686 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic

Procedia PDF Downloads 186
27685 A Novel Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading Process

Authors: Amar Sabih, James Nemes

Abstract:

The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion.

Keywords: adiabatic shear band, workability criterion, ductile failure, stress instability

Procedia PDF Downloads 70
27684 An Integer Nonlinear Program Proposal for Intermodal Transportation Service Network Design

Authors: Laaziz El Hassan

Abstract:

The Service Network Design Problem (SNDP) is a tactical issue in freight transportation firms. The existing formulations of the problem for intermodal rail-road transportation were not always adapted to the intermodality in terms of full asset utilization and modal shift reinforcement. The objective of the article is to propose a model having a more compliant formulation with intermodality, including constraints highlighting the imperatives of asset management, reinforcing modal shift from road to rail and reducing, by the way, road mode CO2 emissions. The model is a fixed charged, path based integer nonlinear program. Its objective is to minimize services total cost while ensuring full assets utilization to satisfy freight demand forecast. The model's main feature is that it gives as output both the train sizes and the services frequencies for a planning period. We solved the program using a commercial solver and discussed the numerical results.

Keywords: intermodal transport network, service network design, model, nonlinear integer program, path-based, service frequencies, modal shift

Procedia PDF Downloads 101
27683 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks

Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE

Abstract:

Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.

Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network

Procedia PDF Downloads 94
27682 Thermal and Hydraulic Design of Shell and Tube Heat Exchangers

Authors: Ahmed R. Ballil

Abstract:

Heat exchangers are devices used to transfer heat between two fluids. These devices are utilized in many engineering and industrial applications such as heating, cooling, condensation and boiling processes. The fluids might be in direct contact (mixed), or they separated by a solid wall to avoid mixing. In the present paper, interactive computer-aided design of shell and tube heat exchangers is developed using Visual Basic computer code as a framework. This design is based on the Bell-Delaware method, which is one of the very well known methods reported in the literature for the design of shell and tube heat exchangers. Physical properties for either the tube or the shell side fluids are internally evaluated by calling on an enormous data bank composed of more than a hundred fluid compounds. This contributes to increase the accuracy of the present design. The international system of units is considered in the developed computer program. The present design has an added feature of being capable of performing modification based upon a preset design criterion, such that an optimum design is obtained at satisfying constraints set either by the user or by the method itself. Also, the present code is capable of giving an estimate of the approximate cost of the heat exchanger based on the predicted surface area of the exchanger evaluated by the program. Finally, the present thermal and hydraulic design code is tested for accuracy and consistency against some of existed and approved designs of shell and tube heat exchangers.

Keywords: bell-delaware method, heat exchangers, shell and tube, thermal and hydraulic design

Procedia PDF Downloads 128
27681 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 118
27680 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition

Procedia PDF Downloads 104
27679 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 437
27678 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: android, API Calls, machine learning, permissions combination

Procedia PDF Downloads 314
27677 Information-Controlled Laryngeal Feature Variations in Korean Consonants

Authors: Ponghyung Lee

Abstract:

This study seeks to investigate the variations occurring to Korean consonantal variations center around laryngeal features of the concerned sounds, to the exclusion of others. Our fundamental premise is that the weak contrast associated with concerned segments might be held accountable for the oscillation of the status quo of the concerned consonants. What is more, we assume that an array of notions as a measure of communicative efficiency of linguistic units would be significantly influential on triggering those variations. To this end, we have tried to compute the surprisal, entropic contribution, and relative contrastiveness associated with Korean obstruent consonants. What we found therein is that the Information-theoretic perspective is compelling enough to lend support our approach to a considerable extent. That is, the variant realizations, chronologically and stylistically, prove to be profoundly affected by a set of Information-theoretic factors enumerated above. When it comes to the biblical proper names, we use Georgetown University CQP Web-Bible corpora. From the 8 texts (4 from Old Testament and 4 from New Testament) among the total 64 texts, we extracted 199 samples. We address the issue of laryngeal feature variations associated with Korean obstruent consonants under the presumption that the variations stem from the weak contrast among the triad manifestations of laryngeal features. The variants emerge from diverse sources in chronological and stylistic senses: Christianity biblical texts, ordinary casual speech, the shift of loanword adaptation over time, and ideophones. For the purpose of discussing what they are really like from the perspective of Information Theory, it is necessary to closely look at the data. Among them, the massive changes occurring to loanword adaptation of proper nouns during the centennial history of Korean Christianity draw our special attention. We searched 199 types of initially capitalized words among 45,528-word tokens, which account for around 5% of total 901,701-word tokens (12,786-word types) from Georgetown University CQP Web-Bible corpora. We focus on the shift of the laryngeal features incorporated into word-initial consonants, which are available through the two distinct versions of Korean Bible: one came out in the 1960s for the Protestants, and the other was published in the 1990s for the Catholic Church. Of these proper names, we have closely traced the adaptation of plain obstruents, e. g. /b, d, g, s, ʤ/ in the sources. The results show that as much as 41% of the extracted proper names show variations; 37% in terms of aspiration, and 4% in terms of tensing. This study set out in an effort to shed light on the question: to what extent can we attribute the variations occurring to the laryngeal features associated with Korean obstruent consonants to the communicative aspects of linguistic activities? In this vein, the concerted effects of the triad, of surprisal, entropic contribution, and relative contrastiveness can be credited with the ups and downs in the feature specification, despite being contentiousness on the role of surprisal to some extent.

Keywords: entropic contribution, laryngeal feature variation, relative contrastiveness, surprisal

Procedia PDF Downloads 109
27676 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission

Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola

Abstract:

The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.

Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering

Procedia PDF Downloads 304
27675 An Application of Geographic Information System to Select Areas for Sanitary Landfill in Bang Nok- Khwaek Municipality

Authors: Musthaya Patchanee

Abstract:

The study of Sanitary landfill in Bang Nok-khwaek municipality consists of two procedures. First, to survey and create the spatial database by using physical factor, environmental factor, economical factor and social factor to follow the method of Geographic information system: GIS, second, to analyze the proper spatial for allocating the sanitary landfill in Bang Nok-khwaek municipality by using Overlay techniques to calculate the weighting linear total in Arc GIS program. The study found that there are 2.49 sq.km. proper spatial for the sanitary landfill in Bang Nok-khwaek municipals city which is 66.76% of the whole area. The highest proper spatial is 0.02 sq.km. which is 0.54%, The high proper spatial is 0.3 sq.km. which is 8.04%, the moderate spatial is 1.62 sq.km. which is 43.43% and the low proper spatial is 0.55 sq.km. which is 14.75%. These results will be used as the guideline to select the sanitary landfill area in accordance with sanitation standard for Subdistrict Administrative Organization and Subbdistrict Municipality in Samut Songkhram provice.

Keywords: Geographic Information System (GIS), sanitary landfill, Bang Nok-Khwaek municipality, Subdistrict Administrative Organization

Procedia PDF Downloads 379
27674 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System

Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee

Abstract:

In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.

Keywords: augmented reality framework, server-client model, vision-based tracking, image search

Procedia PDF Downloads 265
27673 Roughness Discrimination Using Bioinspired Tactile Sensors

Authors: Zhengkun Yi

Abstract:

Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.

Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination

Procedia PDF Downloads 292
27672 Neural Networks Models for Measuring Hotel Users Satisfaction

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.

Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring

Procedia PDF Downloads 114
27671 Pharyngealization Spread in Ibbi Dialect of Yemeni Arabic: An Acoustic Study

Authors: Fadhl Qutaish

Abstract:

This paper examines the pharyngealization spread in one of the Yemeni Arabic dialects, namely, Ibbi Arabic (IA). It investigates how pharyngealized sounds spread their acoustic features onto the neighboring vowels and change their default features. This feature has been investigated quietly well in MSA but still has to be deeply studied in the different dialect of Arabic which will bring about a clearer picture of the similarities and the differences among these dialects and help in mapping them based on the way this feature is utilized. Though the studies are numerous, no one of them has illustrated how far in the multi-syllabic word the spread can be and whether it takes a steady or gradient manner. This study tries to fill this gap and give a satisfactory explanation of the pharyngealization spread in Ibbi Dialect. This study is the first step towards a larger investigation of the different dialects of Yemeni Arabic in the future. The data recorded are represented in minimal pairs in which the trigger (pharyngealized or the non-pharyngealized sound) is in the initial or final position of monosyllabic and multisyllabic words. A group of 24 words were divided into four groups and repeated three times by three subjects which will yield 216 tokens that are tested and analyzed. The subjects are three male speakers aged between 28 and 31 with no history of neurological, speaking or hearing problems. All of them are bilingual speakers of Arabic and English and native speakers of Ibbi-Dialect. Recordings were done in a sound-proof room and praat software was used for the analysis and coding of the trajectories of F1 and F2 for the low vowel /a/ to see the effect of pharyngealization on the formant trajectory within the same syllable and in other syllables of the same word by comparing the F1 and F2 formants to the non-pharyngealized environment. The results show that pharyngealization spread is gradient (progressively and regressively). The spread is reflected in the gradual raising of F1 as we move closer towards the trigger and the gradual lowering of F2 as well. The results of the F1 mean values in tri-syllabic words when the trigger is word initially show that there is a raise of 37.9 HZ in the first syllable, 26.8HZ in the second syllable and 14.2HZ in the third syllable. F2 mean values undergo a lowering of 239 HZ in the first syllable, 211.7 HZ in the second syllable and 176.5 in the third syllable. This gradual decrease in the difference of F2 values in the non-pharyngealized and pharyngealized context illustrates that the spread is gradient. A similar result was found when the trigger is word-final which proves that the spread is gradient (progressively and regressively.

Keywords: pharyngealization, Yemeni Arabic, Ibbi dialect, pharyngealization spread

Procedia PDF Downloads 201