Search results for: gripper optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3266

Search results for: gripper optimization

2396 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
2395 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.

Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks

Procedia PDF Downloads 401
2394 Optimization the Freeze Drying Conditions of Olive Seeds

Authors: Alev Yüksel Aydar, Tuncay Yılmaz, Melisa Özçeli̇k, Tuba Aydın, Elif Karabaş

Abstract:

In this study, response surface methodology (RSM) was used to obtain the optimum conditions for the freeze-drying of Gemlik variety olive seeds of to achieve the desired quality characteristics. The Box Behnken Design (BBD) was applied with three-variable and three replications in the center point. The effects of the different drying parameters including initial temperature of olive seed, pressure and time for freezing on the DPPH activity, total phenolic contents, and oleuropein absorbance value of the samples were investigated. Temperature (50 – 82 °C), pressure (0.2-0.5 mbar), time (6-10 hours) were chosen as independent variables. The analysis revealed that, while the temperature of the product prior to lyophilization and the drying time had no statistically significant effect on DPPH activity (p>0.05), the pressure was more important than the other two variables , and the quadratic effect of pressure had a significant effect on DPPH activity (p<0.05). The R2 and Adj-R2 values of the DPPH activity model were calculated to be 0.8962 and 0.7045, respectively.

Keywords: olive seed, gemlik variety, DPPH, phenolics, optimization

Procedia PDF Downloads 87
2393 Optimization, Yield and Chemical Composition of Essential Oil from Cymbopogon citratus: Comparative Study with Microwave Assisted Extraction and Hydrodistillation

Authors: Irsha Dhotre

Abstract:

Cymbopogon citratus is generally known as Indian Lemongrass and is widely applicable in the cosmetic, pharmaceutical, dairy puddings, and food industries. To enhance the quality of extraction, microwave-oven-aided hydro distillation processes were implemented. The basic parameter which influences the rate of extraction is considered, such as the temperature of extraction, the time required for extraction, and microwave-oven power applied. Locally available CKP 25 Cymbopogon citratus was used for the extraction of essential oil. Optimization of Extractions Parameters and full factorial Box–Behnken design (BBD) evaluated by using Design expert 13 software. The regression model revealed that the optimum parameters required for extractions are a temperature of 35℃, a time of extraction of 130 minutes, and microwave-oven power of 700 W. The extraction efficiency of yield is 4.76%. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis confirmed the significant components present in the extraction of lemongrass oil.

Keywords: Box–Behnken design, Cymbopogon citratus, hydro distillation, microwave-oven, response surface methodology

Procedia PDF Downloads 94
2392 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: thermal performance, phase change material, energy efficiency, PCM optimization

Procedia PDF Downloads 402
2391 Wake Effects of Wind Turbines and Its Impacts on Power Curve Measurements

Authors: Sajan Antony Mathew, Bhukya Ramdas

Abstract:

Abstract—The impetus of wind energy deployment over the last few decades has seen potential sites being harvested very actively for wind farm development. Due to the scarce availability of highly potential sites, the turbines are getting more optimized in its location wherein minimum spacing between the turbines are resorted without comprising on the optimization of its energy yield. The optimization of the energy yield from a wind turbine is achieved by effective micrositing techniques. These time-tested techniques which are applied from site to site on terrain conditions that meet the requirements of the International standard for power performance measurements of wind turbines result in the positioning of wind turbines for optimized energy yields. The international standard for Power Curve Measurements has rules of procedure and methodology to evaluate the terrain, obstacles and sector for measurements. There are many challenges at the sites for complying with the requirements for terrain, obstacles and sector for measurements. Studies are being attempted to carry out these measurements within the scope of the international standard as various other procedures specified in alternate standards or the integration of LIDAR for Power Curve Measurements are in the nascent stage. The paper strives to assist in the understanding of the fact that if positioning of a wind turbine at a site is based on an optimized output, then there are no wake effects seen on the power curve of an adjacent wind turbine. The paper also demonstrates that an invalid sector for measurements could be used in the analysis in alteration to the requirement as per the international standard for power performance measurements. Therefore the paper strives firstly to demonstrate that if a wind turbine is optimally positioned, no wake effects are seen and secondly the sector for measurements in such a case could include sectors which otherwise would have to be excluded as per the requirements of International standard for power performance measurements.

Keywords: micrositing, optimization, power performance, wake effects

Procedia PDF Downloads 461
2390 Multiobjective Optimization of Wastwater Treatment by Electrochemical Process

Authors: Malek Bendjaballah, Hacina Saidi, Sarra Hamidoud

Abstract:

The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater,

Keywords: electrocoagulation, green process, experimental design, optimization

Procedia PDF Downloads 97
2389 Inventory Optimization in Restaurant Supply Chain Outlets

Authors: Raja Kannusamy

Abstract:

The research focuses on reducing food waste in the restaurant industry. A study has been conducted on the chain of retail restaurant outlets. It has been observed that the food wastages are due to the inefficient inventory management systems practiced in the restaurant outlets. The major food items which are wasted more in quantity are being selected across the retail chain outlets. A moving average forecasting method has been applied for the selected food items so that their future demand could be predicted accurately and food wastage could be avoided. It has been found that the moving average prediction method helps in predicting forecasts accurately. The demand values obtained from the moving average method have been compared to the actual demand values and are found to be similar with minimum variations. The inventory optimization technique helps in reducing food wastage in restaurant supply chain outlets.

Keywords: food wastage, restaurant supply chain, inventory optimisation, demand forecasting

Procedia PDF Downloads 91
2388 A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture

Authors: Selcuk Aslan, Dervis Karaboga, Celal Ozturk

Abstract:

Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm.

Keywords: Artificial Bee Colony algorithm, GPU computing, swarm intelligence, parallelization

Procedia PDF Downloads 378
2387 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems

Authors: Ramdan B. A. Koad, Ahmed F. Zobaa

Abstract:

Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.

Keywords: photovoltaic systems, maximum power point tracking, perturb and observe method, incremental conductance, methods and practical swarm optimization algorithm

Procedia PDF Downloads 358
2386 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.

Keywords: fuzzy goal programming, control charts, process capability, tablet optimization

Procedia PDF Downloads 270
2385 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 408
2384 Measurement of Sarcopenia Associated with the Extent of Gastrointestinal Oncological Disease

Authors: Adrian Hang Yue Siu, Matthew Holyland, Sharon Carey, Daniel Steffens, Nabila Ansari, Cherry E. Koh

Abstract:

Introduction: Peritoneal malignancies are challenging cancers to manage. While cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS and HIPEC) may offer a cure, it’s considered radical and morbid. Pre-emptive identification of deconditioned patients for optimization may mitigate the risks of surgery. However, the difficulty lies in the scarcity of validated predictive tools to identify high-risk patients. In recent times, there has been growing interest in sarcopenia, which can occur as a result of malnutrition and malignancies. Therefore, the purpose of this study was to assess the utility of sarcopenia in predicting post-operative outcomes. Methods: A single quaternary-center retrospective study of CRS and HIPEC patients between 2017-2020 was conducted to determine the association between pre-operative sarcopenia and post-operative outcomes. Lumbar CT images were analyzed using Slice-o-matic® to measure sarcopenia. Results : Cohort (n=94) analysis found that 40% had sarcopenia, with a majority being female (53.2%) and a mean age of 55 years. Sarcopenia was statistically associated with decreased weight compared to non-sarcopenia patients, 72.7kg vs. 82.2kg (p=0.014) and shorter overall survival, 1.4 years vs. 2.1 years (p=0.032). Post-operatively, patients with sarcopenia experienced more post-operative complications (p=0.001). Conclusion: Complex procedures often require optimization to prevent complications and improve survival. While patient biomarkers – BMI and weight – are used for optimization, this research advocates for the identification of sarcopenia status for pre-operative planning. Sarcopenia may be an indicator of advanced disease requiring further treatment and is an emerging area of research. Larger studies are required to confirm these findings and to assess the reversibility of sarcopenia after surgery.

Keywords: sarcopaenia, cytoreductive surgery, hyperthermic intraperitoneal chemotherapy, surgical oncology

Procedia PDF Downloads 85
2383 Laser Additive Manufacturing of Carbon Nanotube-Reinforced Polyamide 12 Composites

Authors: Kun Zhou

Abstract:

Additive manufacturing has emerged as a disruptive technology that is capable of manufacturing products with complex geometries through an accumulation of material feedstock in a layer-by-layer fashion. Laser additive manufacturing such as selective laser sintering has excellent printing resolution, high printing speed and robust part strength, and has led to a widespread adoption in the aerospace, automotive and biomedical industries. This talk highlights and discusses the recent work we have undertaken in the development of carbon nanotube-reinforced polyamide 12 (CNT/PA12) composites printed using laser additive manufacturing. Numerical modelling studies have been conducted to simulate various processes within laser additive manufacturing of CNT/PA12 composites, and extensive experimental work has been carried out to investigate the mechanical and functional properties of the printed parts. The results from these studies grant a deeper understanding of the intricate mechanisms occurring within each process and enables an accurate optimization of process parameters for the CNT/PA12 and other polymer composites.

Keywords: CNT/PA12 composites, laser additive manufacturing, process parameter optimization, numerical modeling

Procedia PDF Downloads 153
2382 Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach

Authors: Pius Babuna

Abstract:

Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC.

Keywords: water resources carrying capacity, smart water management, optimization, sustainable water use, water withdrawal

Procedia PDF Downloads 87
2381 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm

Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri

Abstract:

Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.

Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering

Procedia PDF Downloads 103
2380 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology

Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen

Abstract:

Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.

Keywords: absorption chillers (AC), turbine inlet air cooling (TIC), power purchase agreement (PPA), multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution (CDDE)

Procedia PDF Downloads 310
2379 Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield

Authors: Shashikant Kumar, Chandraraj K.

Abstract:

Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production.

Keywords: Napier grass, optimization, pretreatment, sodium hydroxide

Procedia PDF Downloads 506
2378 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients

Authors: Khaled M. EL-Naggar

Abstract:

Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.

Keywords: optimization, estimation, synchronous, machine, crow search

Procedia PDF Downloads 140
2377 A Robust Optimization Method for Service Quality Improvement in Health Care Systems under Budget Uncertainty

Authors: H. Ashrafi, S. Ebrahimi, H. Kamalzadeh

Abstract:

With the development of business competition, it is important for healthcare providers to improve their service qualities. In order to improve service quality of a clinic, four important dimensions are defined: tangibles, responsiveness, empathy, and reliability. Moreover, there are several service stages in hospitals such as financial screening and examination. One of the most challenging limitations for improving service quality is budget which impressively affects the service quality. In this paper, we present an approach to address budget uncertainty and provide guidelines for service resource allocation. In this paper, a service quality improvement approach is proposed which can be adopted to multistage service processes to improve service quality, while controlling the costs. A multi-objective function based on the importance of each area and dimension is defined to link operational variables to service quality dimensions. The results demonstrate that our approach is not ultra-conservative and it shows the actual condition very well. Moreover, it is shown that different strategies can affect the number of employees in different stages.

Keywords: allocation, budget uncertainty, healthcare resource, service quality assessment, robust optimization

Procedia PDF Downloads 184
2376 Clustering Based Level Set Evaluation for Low Contrast Images

Authors: Bikshalu Kalagadda, Srikanth Rangu

Abstract:

The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.

Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization

Procedia PDF Downloads 352
2375 Optimal Capacitor Placement in Distribution Using Cuckoo Optimization Algorithm

Authors: Ali Ravangard, S. Mohammadi

Abstract:

Shunt Capacitors have several uses in the electric power systems. They are utilized as sources of reactive power by connecting them in line-to-neutral. Electric utilities have also connected capacitors in series with long lines in order to reduce its impedance. This is particularly common in the transmission level, where the lines have length in several hundreds of kilometers. However, this post will generally discuss shunt capacitors. In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. For solving the problem, a new enhanced cuckoo optimization algorithm is presented.The proposed method is tested on distribution test system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: capacitor placement, power losses, voltage stability, radial distribution systems

Procedia PDF Downloads 377
2374 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications

Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.

Abstract:

Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.

Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.

Procedia PDF Downloads 61
2373 Value Engineering and Its Impact on Drainage Design Optimization for Penang International Airport Expansion

Authors: R.M. Asyraf, A. Norazah, S.M. Khairuddin, B. Noraziah

Abstract:

Designing a system at present requires a vital, challenging task; to ensure the design philosophy is maintained in economical ways. This paper perceived the value engineering (VE) approach applied in infrastructure works, namely stormwater drainage. This method is adopted in line as consultants have completed the detailed design. Function Analysis System Technique (FAST) diagram and VE job plan, information, function analysis, creative judgement, development, and recommendation phase are used to scrutinize the initial design of stormwater drainage. An estimated cost reduction using the VE approach of 2% over the initial proposal was obtained. This cost reduction is obtained from the design optimization of the drainage foundation and structural system, where the pile design and drainage base structure are optimized. Likewise, the design of the on-site detention tank (OSD) pump was revised and contribute to the cost reduction obtained. This case study shows that the VE approach can be an important tool in optimizing the design to reduce costs.

Keywords: value engineering, function analysis system technique, stormwater drainage, cost reduction

Procedia PDF Downloads 145
2372 User-Based Cannibalization Mitigation in an Online Marketplace

Authors: Vivian Guo, Yan Qu

Abstract:

Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.

Keywords: cannibalization, machine learning, online marketplace, revenue optimization, yield optimization

Procedia PDF Downloads 160
2371 Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Authors: Salem El-Tohami Ashoor

Abstract:

Here we show that the reduction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, this was optimization by using density functional theory (DFT) and then was comparing with experimental data, also other possibility of Cp interacted with ion metal were tested like η1 ,η2 ,η3 and η4 under optimization system. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP ( Becke)( Lee–Yang–Parr ) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of chromium cyclopentadienyl. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords: Chromium(III) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO

Procedia PDF Downloads 506
2370 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 240
2369 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks

Authors: Maya S. Rathod, Bahadur Singh Hathan

Abstract:

Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, hardness, antioxidant activity, total phenolic content and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100 g premix having 16.8 % moisture content (w.b).

Keywords: extrusion, mustard leaves powder, optimization, response surface methodology

Procedia PDF Downloads 545
2368 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
2367 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine

Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu

Abstract:

The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.

Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition

Procedia PDF Downloads 326