Search results for: finite clauses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2465

Search results for: finite clauses

1595 Investigating Jacket-Type Offshore Structures Failure Probability by Applying the Reliability Analyses Methods

Authors: Majid Samiee Zonoozian

Abstract:

For such important constructions as jacket type platforms, scrupulous attention in analysis, design and calculation processes is needed. The reliability assessment method has been established into an extensively used method to behavior safety calculation of jacket platforms. In the present study, a methodology for the reliability calculation of an offshore jacket platform in contradiction of the extreme wave loading state is available. Therefore, sensitivity analyses are applied to acquire the nonlinear response of jacket-type platforms against extreme waves. The jacket structure is modeled by applying a nonlinear finite-element model with regards to the tubular members' behave. The probability of a member’s failure under extreme wave loading is figured by a finite-element reliability code. The FORM and SORM approaches are applied for the calculation of safety directories and reliability indexes have been detected. A case study for a fixed jacket-type structure positioned in the Persian Gulf is studied by means of the planned method. Furthermore, to define the failure standards, equations suggested by the 21st version of the API RP 2A-WSD for The jacket-type structures’ tubular members designing by applying the mixed axial bending and axial pressure. Consequently, the effect of wave Loades in the reliability index was considered.

Keywords: Jacket-Type structure, reliability, failure probability, tubular members

Procedia PDF Downloads 172
1594 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 71
1593 Improvement in Acoustic Performance at Low Frequency via Application of Acoustic Resistance of Vented Hole in In-Ear Earphones

Authors: Tzu-Hsuan Lei, Shu-Chien Wu, Kuang-Che Lo, Shu-Chi Liu, Yu-Cheng Liu

Abstract:

The focus of this study was on the effects of air propagation associated with vented holes on acoustic resistance properties. A cylindrical hole with diameter and depth of 0.7 mm and 1.0 mm, respectively, was the research target. By constructing a finite element analytical model of its sound field properties, the acoustic-specific airflow resistance relationships were obtained for the differences in sound pressure and flow velocity at the two ends of this vented hole. In addition, the acoustic properties of this vented hole were included in the in-ear earphone simulation model to complete the sound pressure curve simulation analysis of the in-ear earphone system with a vented hole of corresponding size. Then, the simulation results were compared with actual measurements obtained from the standard system. Based on the results, when the in-ear earphone vented hole simulation model considered the simulated specific airflow resistance values of this cylindrical hole, the overall simulated sound pressure performance was highly consistent with that of measured values. The difference in the first peak values of sound pressure at mid-to-low frequencies was reduced from 5.64% when the simulation model did not consider the specific airflow resistance of the cylindrical hole to 1.18%, and the accuracy of the overall simulation was around 70%. This indicates the importance of the acoustic resistance properties of vented holes. Moreover, as specific airflow resistance values were able to be further quantified, the accuracy of the entire in-ear earphone simulation was ultimately and effectively elevated.

Keywords: specific airflow resistance, vented holes, in-ear earphone, finite element method

Procedia PDF Downloads 43
1592 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns

Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)

Procedia PDF Downloads 76
1591 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads

Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin

Abstract:

Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.

Keywords: FEM, tissue, indentation, properties

Procedia PDF Downloads 358
1590 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Shaheen Bachy, Jörg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: laser structuring, simulation, finite element analysis, thermal modeling

Procedia PDF Downloads 349
1589 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation

Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana

Abstract:

Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.

Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade

Procedia PDF Downloads 448
1588 Finite Element Analysis of Steel-Concrete Composite Structures Considering Bond-Slip Effect

Authors: WonHo Lee, Hyo-Gyoung Kwak

Abstract:

A numerical model considering slip behavior of steel-concrete composite structure is introduced. This model is based on a linear bond stress-slip relation along the interface. Single node was considered at the interface of steel and concrete member in finite element analysis, and it improves analytical problems of model that takes double nodes at the interface by adopting spring elements to simulate the partial interaction. The slip behavior is simulated by modifying material properties of steel element contacting concrete according to the derived formulation. Decreased elastic modulus simulates the slip occurrence at the interface and decreased yield strength simulates drop in load capacity of the structure. The model is verified by comparing numerical analysis applying this model with experimental studies. Acknowledgment—This research was supported by a grant(13SCIPA01) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement(KAIA) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.

Keywords: bond-slip, composite structure, partial interaction, steel-concrete structure

Procedia PDF Downloads 177
1587 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique

Authors: B. Almassri, F. Almahmoud, R. Francois

Abstract:

Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.

Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX

Procedia PDF Downloads 164
1586 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading

Authors: Mohammad Zaid, Md. Rehan Sadique

Abstract:

Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.

Keywords: finite element method, blast, rock, tunnel, CEL, JWL

Procedia PDF Downloads 147
1585 Suggestion of Two-Step Traction Therapy for Safer and More Effective Conservative Treatment for Low Back Pain

Authors: Won Man Park, Dae Kyung Choi, Kyungsoo Kim, Yoon Hyuk Kim

Abstract:

Traction therapy has been used in the treatment of spinal pain for decades. However, a case study reported the occurrence of large disc protrusion during motorized traction therapy. In this study, we hypothesized that additional local decompression with a global axial traction could be helpful for risk reduction of intervertebral disc damage. A validated three dimensional finite element model of the lumbar spine was used. Two-step traction therapy using the axial global traction (the first step) with 1/3 body weight and the additional local decompression (the second step) with 7 mm translation of L4 spinal bone was determined for the traction therapy. During two-step traction therapy, the sacrum was constrained in all translational directions. Reduced lordosis angle by the global axial traction recovered with the additional local decompression. Stress on fibers of the annulus fibrosus by the axial global traction decreased with the local decompression by 17%~96% in the posterior region of intervertebral disc. Stresses on ligaments except anterior longitudinal ligaments in all motion segments decreased till 4.9 mm~5.6 mm translation of L4 spinal bone. The results of this study showed that the additional local decompression is very useful for reducing risk of damage in the intervertebral disc and ligaments caused by the global axial traction force. Moreover, the local decompression could be used to enhance reduction of intradiscal pressure.

Keywords: lumbar spine, traction-therapy, biomechanics, finite element analysis

Procedia PDF Downloads 486
1584 Design, Analysis and Optimization of Space Frame for BAJA SAE Chassis

Authors: Manoj Malviya, Shubham Shinde

Abstract:

The present study focuses on the determination of torsional stiffness of a space frame chassis and comparison of elements used in the Finite Element Analysis of frame. The study also discusses various concepts and design aspects of a space frame chassis with the emphasis on their applicability in BAJA SAE vehicles. Torsional stiffness is a very important factor that determines the chassis strength, vehicle control, and handling. Therefore, it is very important to determine the torsional stiffness of the vehicle before designing an optimum chassis so that it should not fail during extreme conditions. This study determines the torsional stiffness of frame with respect to suspension shocks, roll-stiffness and anti-roll bar rates. A spring model is developed to study the effects of suspension parameters. The engine greatly contributes to torsional stiffness, and therefore, its effects on torsional stiffness need to be considered. Deflections in the tire have not been considered in the present study. The proper element shape should be selected to analyze the effects of various loadings on chassis while implementing finite element methods. The study compares the accuracy of results and computational time for different element types. Shape functions of these elements are also discussed. Modelling methodology is discussed for the multibody analysis of chassis integrated with suspension arms and engine. Proper boundary conditions are presented so as to replicate the real life conditions.

Keywords: space frame chassis, torsional stiffness, multi-body analysis of chassis, element selection

Procedia PDF Downloads 354
1583 A Uniformly Convergent Numerical Scheme for a Singularly Perturbed Volterra Integrodifferential Equation

Authors: Nana Adjoah Mbroh, Suares Clovis Oukouomi Noutchie

Abstract:

Singularly perturbed problems are parameter dependent problems, and they play major roles in the modelling of real-life situational problems in applied sciences. Thus, designing efficient numerical schemes to solve these problems is of much interest since the exact solutions of such problems may not even exist. Generally, singularly perturbed problems are identified by a small parameter multiplying at least the highest derivative in the equation. The presence of this parameter causes the solution of these problems to be characterized by rapid oscillations. This unique feature renders classical numerical schemes inefficient since they are unable to capture the behaviour of the exact solution in the part of the domain where the rapid oscillations are present. In this paper, a numerical scheme is proposed to solve a singularly perturbed Volterra Integro-differential equation. The scheme is based on the midpoint rule and employs the non-standard finite difference scheme to solve the differential part whilst the composite trapezoidal rule is used for the integral part. A fully fledged error estimate is performed, and Richardson extrapolation is applied to accelerate the convergence of the scheme. Numerical simulations are conducted to confirm the theoretical findings before and after extrapolation.

Keywords: midpoint rule, non-standard finite difference schemes, Richardson extrapolation, singularly perturbed problems, trapezoidal rule, uniform convergence

Procedia PDF Downloads 125
1582 Stem Covers of Leibniz n-Algebras

Authors: Natália Maria Rego

Abstract:

ALeibnizn-algebraGis aK-vector space endowed whit a n-linearbracket operation [-,…-] : GG … G→ Gsatisfying the fundamental identity, which can be expressed saying that the right multiplication map Ry2, …, ᵧₙ: Gn→ G, Rᵧ₂, …, ᵧₙn(ˣ¹, …, ₓₙ) = [[ˣ¹, …, ₓₙ], ᵧ₂, …, ᵧₙ], is a derivation. This structure, together with its skew-symmetric version, named as Lie n-algebra or Filippov algebra, arose in the setting of Nambumechanics, an n-ary generalization of the Hamiltonian mechanics. Thefirst goal of this work is to provide a characterization of various classes of central extensions of Leibniz n-algebras in terms of homological properties. Namely, Commutator extension, Quasi-commutator extension, Stem extension, and Stem cover. These kind of central extensions are characterized by means of the character of the map *(E): nHL1(G) → M provided by the five-term exact sequence in homology with trivial coefficients of Leibniz n-algebras associated to an extension E : 0 → M → K → G → 0. For a free presentation 0 →R→ F →G→ 0of a Leibniz n-algebra G,the term M(G) = (R[F,…n.., F])/[R, F,..n-1..,F] is called the Schur multiplier of G, which is a Baer invariant, i.e., it does not depend on the chosen free presentation, and it is isomorphic to the first Leibniz n-algebras homology with trivial coefficients of G. A central extension of Leibniz n-algebras is a short exact sequenceE : 0 →M→K→G→ 0such that [M, K,.. ⁿ⁻¹.., K]=0. It is said to be a stem extension if M⊆[G, .. n.., G]. Additionally, if the induced map M(K) → M(G) is the zero map, then the stem extension Eis said to be a stem cover. The second aim of this work is to analyze the interplay between stem covers of Leibniz n-algebras and the Schur multiplier. Concretely, in the case of finite-dimensional Leibniz n-algebras, we show the existence of coverings, and we prove that all stem covers with finite-dimensional Schur multiplier are isoclinic. Additionally, we characterize stem covers of perfect Leibniz n-algebras.

Keywords: leibniz n-algebras, central extensions, Schur multiplier, stem cover

Procedia PDF Downloads 157
1581 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method

Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah

Abstract:

LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.

Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping

Procedia PDF Downloads 287
1580 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch

Authors: Eliska Smidova, Petr Kabele

Abstract:

This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.

Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model

Procedia PDF Downloads 290
1579 Analysis of Lift Force in Hydrodynamic Transport of a Finite Sized Particle in Inertial Microfluidics with a Rectangular Microchannel

Authors: Xinghui Wu, Chun Yang

Abstract:

Inertial microfluidics is a competitive fluidic method with applications in separation of particles, cells and bacteria. In contrast to traditional microfluidic devices with low Reynolds number, inertial microfluidics works in the intermediate Re number range which brings about several intriguing inertial effects on particle separation/focusing to meet the throughput requirement in the real-world. Geometric modifications to make channels become irregular shapes can leverage fluid inertia to create complex secondary flow for adjusting the particle equilibrium positions and thus enhance the separation resolution and throughput. Although inertial microfluidics has been extensively studied by experiments, our current understanding of its mechanisms is poor, making it extremely difficult to build rational-design guidelines for the particle focusing locations, especially for irregularly shaped microfluidic channels. Inertial particle microfluidics in irregularly shaped channels were investigated in our group. There are several fundamental issues that require us to address. One of them is about the balance between the inertial lift forces and the secondary drag forces. Also, it is critical to quantitatively describe the dependence of the life forces on particle-particle interactions in irregularly shaped channels, such as a rectangular one. To provide physical insights into the inertial microfluidics in channels of irregular shapes, in this work the immersed boundary-lattice Boltzmann method (IB-LBM) was introduced and validated to explore the transport characteristics and the underlying mechanisms of an inertial focusing single particle in a rectangular microchannel. The transport dynamics of a finitesized particle were investigated over wide ranges of Reynolds number (20 < Re < 500) and particle size. The results show that the inner equilibrium positions are more difficult to occur in the rectangular channel, which can be explained by the secondary flow caused by the presence of a finite-sized particle. Furthermore, force decoupling analysis was utilized to study the effect of each type of lift force on the inertia migration, and a theoretical model for the lateral lift force of a finite-sized particle in the rectangular channel was established. Such theoretical model can be used to provide theoretical guidance for the design and operation of inertial microfluidics.

Keywords: inertial microfluidics, particle focuse, life force, IB-LBM

Procedia PDF Downloads 71
1578 Analysis of Rectangular Concrete-Filled Double Skin Tubular Short Columns with External Stainless Steel Tubes

Authors: Omnia F. Kharoob, Nashwa M. Yossef

Abstract:

Concrete-filled double skin steel tubular (CFDST) columns could be utilized in structures such as bridges, high-rise buildings, viaducts, and electricity transmission towers due to its great structural performance. Alternatively, lean duplex stainless steel has recently gained significant interest for its high structural performance, similar corrosion resistance and lower cost compared to the austenitic steel grade. Hence, this paper presents the nonlinear finite element (FE) analysis, behaviour and design of rectangular outer lean duplex stainless steel (EN 1.4162) CFDST short columns under compression. All classes of the outer rectangular hollow section according to the depth-to-thickness (D/t) ratios were considered. The results showed that the axial ultimate strength of rectangular CFDST short columns increased linearly by increasing the concrete compressive strength, while it does not influence when changing the hollow ratios. Finally, the axial capacities were compared with the available design methods, and recommendations were conducted for the design strength of this type of column.

Keywords: concrete-filled double skin columns, compressive strength, finite element analysis, lean duplex stainless steel, ultimate axial strength, short columns

Procedia PDF Downloads 303
1577 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: fire dynamics, flame propagation, locomotive fire, soot flow pattern, non-air-conditioned coaches

Procedia PDF Downloads 293
1576 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 138
1575 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model

Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas

Abstract:

Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.

Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior

Procedia PDF Downloads 309
1574 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31

Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi

Abstract:

As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.

Keywords: magnesium, plasticity, superplastic forming, finite element analysis

Procedia PDF Downloads 155
1573 The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores

Authors: Natheer Alatawneh

Abstract:

The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores.

Keywords: alternating core losses, electric machines, finite element analysis, rotational core losses

Procedia PDF Downloads 252
1572 Constitutive Model for Analysis of Long-Term Municipal Solid Waste Landfill Settlement

Authors: Irena Basaric Ikodinovic, Dragoslav Rakic, Mirjana Vukicevic, Sanja Jockovic, Jovana Jankovic Pantic

Abstract:

Large long-term settlement occurs at the municipal solid waste landfills over an extended period of time which may lead to breakage of the geomembrane, damage of the cover systems, other protective systems or facilities constructed on top of a landfill. Also, municipal solid waste is an extremely heterogeneous material and its properties vary over location and time within a landfill. These material characteristics require the formulation of a new constitutive model to predict the long-term settlement of municipal solid waste. The paper presents a new constitutive model which is formulated to describe the mechanical behavior of municipal solid waste. Model is based on Modified Cam Clay model and the critical state soil mechanics framework incorporating time-dependent components: mechanical creep and biodegradation of municipal solid waste. The formulated constitutive model is optimized and defined with eight input parameters: five Modified Cam Clay parameters, one parameter for mechanical creep and two parameters for biodegradation of municipal solid waste. Thereafter, the constitutive model is implemented in the software suite for finite element analysis (ABAQUS) and numerical analysis of the experimental landfill settlement is performed. The proposed model predicts the total settlement which is in good agreement with field measured settlement at the experimental landfill.

Keywords: constitutive model, finite element analysis, municipal solid waste, settlement

Procedia PDF Downloads 231
1571 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures

Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin

Abstract:

A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.

Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material

Procedia PDF Downloads 323
1570 Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II

Authors: Khaled R. Khater

Abstract:

All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic.

Keywords: design aids, numerical analysis, secant pile, Wall tip displacement

Procedia PDF Downloads 189
1569 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices

Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung

Abstract:

Snoring, the lay term for obstructive breathing during sleep, is one of the most prevalent of obnoxious human habits. Loud snoring usually makes others feel noisy and uncomfortable. Snoring also influences the sleep quality of snorers’ bed partners, because of the noise they do not get to sleep easily. Snoring causes the reduce of sleep quality leading to several medical problems, such as excessive daytime sleepiness, high blood pressure, increased risk for cardiovascular disease and cerebral vascular accident, and etc. There are many non-prescription devices offered for sale on the market, but very limited data are available to support a beneficial effect of these devices on snoring and use in treating obstructive sleep apnea (OSA). Mandibular advancement devices (MADs), also termed as the Mandibular reposition devices (MRDs) are removable devices which are worn at night during sleep. Most devices require dental impression, bite registration, and fabrication by a dental laboratory. Those devices are fixed to upper and lower teeth and are adjusted to advance the mandible. The amount of protrusion is adjusted to meet the therapeutic requirements, comfort, and tolerance. Many devices have a fixed degree of advancement. Some are adjustable in a limited degree. This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.

Keywords: finite element analysis, mandibular advancement devices, mechanical stress, snoring

Procedia PDF Downloads 356
1568 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration

Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai

Abstract:

Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.

Keywords: class v restoration, finite element analysis, loading situation, stress

Procedia PDF Downloads 243
1567 Computational Modeling of Heat Transfer from a Horizontal Array Cylinders for Low Reynolds Numbers

Authors: Ovais U. Khan, G. M. Arshed, S. A. Raza, H. Ali

Abstract:

A numerical model based on the computational fluid dynamics (CFD) approach is developed to investigate heat transfer across a longitudinal row of six circular cylinders. The momentum and energy equations are solved using the finite volume discretization technique. The convective terms are discretized using a second-order upwind methodology, whereas diffusion terms are discretized using a central differencing scheme. The second-order implicit technique is utilized to integrate time. Numerical simulations have been carried out for three different values of free stream Reynolds number (ReD) 100, 200, 300 and two different values of dimensionless longitudinal pitch ratio (SL/D) 1.5, 2.5 to demonstrate the fluid flow and heat transfer behavior. Numerical results are validated with the analytical findings reported in the literature and have been found to be in good agreement. The maximum percentage error in values of the average Nusselt number obtained from the numerical and analytical solutions is in the range of 10% for the free stream Reynolds number up to 300. It is demonstrated that the average Nusselt number for the array of cylinders increases with increasing the free stream Reynolds number and dimensionless longitudinal pitch ratio. The information generated would be useful in the design of more efficient heat exchangers or other fluid systems involving arrays of cylinders.

Keywords: computational fluid dynamics, array of cylinders, longitudinal pitch ratio, finite volume method, incompressible navier-stokes equations

Procedia PDF Downloads 85
1566 Analyzing of Arch Steel Beams with Pre-Stressed Cables

Authors: Erkan Polat, Barlas Ozden Caglayan

Abstract:

By day-to-day developed techniques, it is possible to pass through larger openings by using smaller beam-column sections. Parallel to this trend, it is aimed to produce not only smaller but also economical and architecturally more attractive beams. This study aims to explain the structural behavior of arch steel beam reinforced by using post-tension cable. Due to the effect of post-stressed cable, the arch beam load carrying capacity increases and an optimized section in a smaller size can be obtained with a better architectural view. It also allows better mechanical and applicational solutions for buildings. For better understanding the behavior of the reinforced beam, steel beam and arch steel beam with post-tensioned cable are all modeled and analyzed by using SAP2000 Finite element computer program and compared with each other. Also, full scale test specimens were prepared to test for figuring out the structural behavior and compare the results with the computer model results. Test results are very promising. The similarity of the results between the test and computer analysis shows us that there are no extra knowledge and effort of engineer is needed to calculate such beams. The predicted (and proved by tests) beam carrying capacity is 35% higher than the unreinforced beam carrying capacity. Even just three full scale tests were completed, it is seen that the ratio (%35) may be increased ahead by adjusting the cable post-tension force of beams in much smaller sizes.

Keywords: arch steel beams, pre-stressed cables, finite element, specimen Test

Procedia PDF Downloads 165