Search results for: demand forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3633

Search results for: demand forecast

2763 Quantification of Pollution Loads for the Rehabilitation of Pusu River

Authors: Abdullah Al-Mamun, Md. Nuruzzaman, Md. Noor Salleh, Muhammad Abu Eusuf, Ahmad Jalal Khan Chowdhury, Mohd. Zaki M. Amin, Norlida Mohd. Dom

Abstract:

Identification of pollution sources and determination of pollution loads from all areas are very important for sustainable rehabilitation of any contaminated river. Pusu is a small river which, flows through the main campus of International Islamic University Malaysia (IIUM) at Gombak. Poor aesthetics of the river, which is flowing through the entrance of the campus, gives negative impression to the local and international visitors. As such, this study is being conducted to find ways to rehabilitate the river in a sustainable manner. The point and non-point pollution sources of the river basin are identified. Upper part of the 12.6 km2 river basin is covered with secondary forest. However, it is the lower-middle reaches of the river basin which is being cleared for residential development and source of high sediment load. Flow and concentrations of the common pollutants, important for a healthy river, such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Suspended Solids (SS), Turbidity, pH, Ammoniacal Nitrogen (AN), Total Nitrogen (TN) and Total Phosphorus (TP) are determined. Annual pollution loading to the river was calculated based on the primary and secondary data. Concentrations of SS were high during the rainy day due to contribution from the non-point sources. There are 7 ponds along the river system within the campus, which are severely affected by high sediment load from the land clearing activities. On the other hand, concentrations of other pollutants were high during the non-rainy days. The main sources of point pollution are the hostels, cafeterias, sewage treatment plants located in the campus. Therefore, both pollution sources need to be controlled in order to rehabilitate the river in a sustainable manner.

Keywords: river pollution, rehabilitation, point pollution source, non-point pollution sources, pollution loading

Procedia PDF Downloads 358
2762 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy

Procedia PDF Downloads 380
2761 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 322
2760 Study of the Physicochemical Characteristics of Liquid Effluents from the El Jadida Wastewater Treatment Plant

Authors: Aicha Assal, El Mostapha Lotfi

Abstract:

Rapid industrialization and population growth are currently the main causes of energy and environmental problems associated with wastewater treatment. Wastewater treatment plants (WWTPs) aim to treat wastewater before discharging it into the environment, but they are not yet capable of treating non-biodegradable contaminants such as heavy metals. Toxic heavy metals can disrupt biological processes in WWTPs. Consequently, it is crucial to combine additional physico-chemical treatments with WWTPs to ensure effective wastewater treatment. In this study, the authors examined the pretreatment process for urban wastewater generated by the El Jadida WWTP in order to assess its treatment efficiency. Various physicochemical and spatiotemporal parameters of the WWTP's raw and treated water were studied, including temperature, pH, conductivity, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen, and total phosphorus. The results showed an improvement in treatment yields, with measured performance values of 77% for BOD5, 63% for COD, and 66% for TSS. However, spectroscopic analyses revealed persistent coloration in wastewater samples leaving the WWTP, as well as the presence of heavy metals such as Zn, cadmium, chromium, and cobalt, detected by inductively coupled plasma optical emission spectroscopy (ICP-OES). To remedy these staining problems and reduce the presence of heavy metals, a new low-cost, environmentally-friendly eggshell-based solution was proposed. This method eliminated most heavy metals such as cobalt, beryllium, silver, and copper and significantly reduced the amount of cadmium, lead, chromium, manganese, aluminium, and Zn. In addition, the bioadsorbent was able to decolorize wastewater by up to 84%. This adsorption process is, therefore, of great interest for ensuring the quality of wastewater and promoting its reuse in irrigation.

Keywords: WWTP, wastewater, heavy metals, decoloration, depollution, COD, BOD5

Procedia PDF Downloads 69
2759 Design and Assessment of Traffic Management Strategies for Improved Mobility on Major Arterial Roads in Lahore City

Authors: N. Ali, S. Nakayama, H. Yamaguchi, M. Nadeem

Abstract:

Traffic congestion is a matter of prime concern in developing countries. This can be primarily attributed due to poor design practices and biased allocation of resources based on political will neglecting the technical feasibilities in infrastructure design. During the last decade, Lahore has expanded at an unprecedented rate as compared to surrounding cities due to more funding and resource allocation by the previous governments. As a result of this, people from surrounding cities and areas moved to the Lahore city for better opportunities and quality of life. This migration inflow inherited the city with an increased population yielding the inefficiency of the existing infrastructure to accommodate enhanced traffic demand. This leads to traffic congestion on major arterial roads of the city. In this simulation study, a major arterial road was selected to evaluate the performance of the five intersections by changing the geometry of the intersections or signal control type. Simulations were done in two software; Highway Capacity Software (HCS) and Synchro Studio and Sim Traffic Software. Some of the traffic management strategies that were employed include actuated-signal control, semi-actuated signal control, fixed-time signal control, and roundabout. The most feasible solution for each intersection in the above-mentioned traffic management techniques was selected with the least delay time (seconds) and improved Level of Service (LOS). The results showed that Jinnah Hospital Intersection and Akbar Chowk Intersection improved 92.97% and 92.67% in delay time reduction, respectively. These results can be used by traffic planners and policy makers for decision making for the expansion of these intersections keeping in mind the traffic demand in future years.

Keywords: traffic congestion, traffic simulation, traffic management, congestion problems

Procedia PDF Downloads 473
2758 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 132
2757 Fragility Analysis of a Soft First-Story Building in Mexico City

Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana

Abstract:

On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.

Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity

Procedia PDF Downloads 179
2756 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen

Procedia PDF Downloads 235
2755 Socio-Economic and Environmental Impact of Urban Sprawl: A Case Study Adigrat City, Tigray, Ethiopia

Authors: Fikre Belay Tekulu

Abstract:

This thesis presents the socio-economic and environmental impacts of urban sprawl in the case of Adigrat city, Tigray Region, Ethiopia. The main objective of this research is to assess major causes, trends and socio-economic and environmental impacts of the urban sprawl of Adigrat city. The study employed both quantitative and qualitative methods as questionnaires, interviews and observation used for data collection. Simple random sampling has been used to select the participants. The land use and land cover change for agricultural land and forest and grassland resource analysis is done with the aid of GIS. Urban sprawl is mainly caused by the rapid population growth, increase in the living and property cost in the core of the city, land demand and land speculation and the growth of transport and an increase in income of people and demand of more living space. The study indicates 15726.24 hectares (515.49 per cent) of new land added to the city jurisdiction from its adjacent Gantafeshum Wereda between 1986 and 2018. The population of Adigrat city increased by 9.045 per cent per year, while the city expanded 16.01 per cent per annum and the LCR was 0.0233 hectares per person between 1986 and 2018.Built-up area increased by 35.27 per cent per annum, while agricultural land, forests and grassland cover decreased by 1.68 per cent and 1.26 per cent per annum respectively in the last thirty three years. This rapid growth of urban sprawl brought social-economic and environmental change in the city that has been observed by the city residents. Therefore, the city administration should need strong, integrated, effective and efficient work, with its neighbor rural area and also done timely preparation, implementation, supervision, and evaluation of the structural plan of the city to bring out sustainable development of the city.

Keywords: cause, , trends, urban sprawl, land use land cover, GIS

Procedia PDF Downloads 142
2754 Research on Land Use Pattern and Employment-Housing Space of Coastal Industrial Town Based on the Investigation of Liaoning Province, China

Authors: Fei Chen, Wei Lu, Jun Cai

Abstract:

During the Twelve Five period, China promulgated industrial policies promoting the relocation of energy-intensive industries to coastal areas in order to utilize marine shipping resources. Consequently, some major state-owned steel and gas enterprises have relocated and resulted in a large-scale coastal area development. However, some land may have been over-exploited with seamless coastline projects. To balance between employment and housing, new industrial coastal towns were constructed to support the industrial-led development. In this paper, we adopt a case-study approach to closely examine the development of several new industrial coastal towns of Liaoning Province situated in the Bohai Bay area, which is currently under rapid economic growth. Our investigations reflect the common phenomenon of long distance commuting and a massive amount of vacant residences. More specifically, large plant relocation caused hundreds of kilometers of daily commute and enterprises had to provide housing subsidies and education incentives to motivate employees to relocate to coastal areas. Nonetheless, many employees still refuse to relocate due to job stability, diverse needs of family members and access to convenient services. These employees averaged 4 hours of commute daily and some who lived further had to reside in temporary industrial housing units and subject to long-term family separation. As a result, only a small portion of employees purchase new coastal residences but mostly for investment and retirement purposes, leading to massive vacancy and ghost-town phenomenon. In contrast to the low demand, coastal areas tend to develop large amount of residences prior to industrial relocation, which may be directly related to local government finances. Some local governments have sold residential land to developers to general revenue to support the subsequent industrial development. Subject to the strong preference of ocean-view, residential housing developers tend to select coast-line land to construct new residential towns, which further reduces the access of marine resources for major industrial enterprises. This violates the original intent of developing industrial coastal towns and drastically limits the availability of marine resources. Lastly, we analyze the co-existence of over-exploiting residential areas and massive vacancies in reference to the demand and supply of land, as well as the demand of residential housing units with the choice criteria of enterprise employees.

Keywords: coastal industry town, commuter traffic, employment-housing space, outer suburb industrial area

Procedia PDF Downloads 227
2753 Identification of the Microalgae Species in a Wild Mix Culture Acclimated to Landfill Leachate and Ammonia Removal Performances in a Microbubble Assisted Photobioreactor

Authors: Neslihan Ozman Say, Jim Gilmour, Pratik Desai, William Zimmerman

Abstract:

Landfill leachate treatment has been attracting researchers recently for various environmental and economical reasons. Leachate discharge to receiving waterbodies without treatment causes serious detrimental effects including partial oxygen depletion due to high biological oxygen demand (BOD) and chemical oxygen demand (COD) concentrations besides toxicity of heavy metals it contains and high ammonia concentrations. In this study, it is aimed to show microalgal ammonia removal performances of a wild microalgae consortia as an alternative treatment method and determine the dominant leachate tolerant species for this consortia. For the microalgae species identification experiments a microalgal consortium which has been isolated from a local pond in Sheffield inoculated in %5 diluted raw landfill leachate and acclimated to the leachate by batch feeding for a month. In order to determine the most tolerant microalgal consortium, four different untreated landfill leachate samples have been used as diluted in four different ratios as 5%, 10%, 20%, and 40%. Microalgae cell samples have been collected from all experiment sets and have been examined by using 18S rDNA sequencing and specialised gel electrophoresis which are adapted molecular biodiversity methods. The best leachate tolerant algal consortium is being used in order to determine ammonia removal performances of the culture in a microbubble assisted photobioreactor (PBR). A porous microbubble diffuser which is supported by a fluidic oscillator is being used for dosing CO₂ and air mixture in the PBR. It is known that high mass transfer performance of microbubble technology provides a better removal efficiency and a better mixing in the photobioreactor. Ammonia concentrations and microalgal growth are being monitored for PBR currently. It is aimed to present all the results of the study in final paper submission.

Keywords: ammonia removal from leachate, landfill leachate treatment, microalgae species identification, microbubble assisted photobioreactors

Procedia PDF Downloads 163
2752 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment

Authors: Fatma Ünal, Hasancan Okutan

Abstract:

Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).

Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.

Procedia PDF Downloads 70
2751 Optimisation of Dyes Decolourisation by Bacillus aryabhattai

Authors: A. Paz, S. Cortés Diéguez, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l.

Keywords: Bacillus aryabhattai, dyes, decolourisation, central composite design

Procedia PDF Downloads 226
2750 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 168
2749 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components

Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler

Abstract:

Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.

Keywords: case study, internet of things, predictive maintenance, reference architecture

Procedia PDF Downloads 256
2748 Demand-Oriented Supplier Integration in Agile New Product Development Projects

Authors: Guenther Schuh, Stephan Schroeder, Marcel Faulhaber

Abstract:

Companies are facing an increasing pressure to innovate faster, cheaper and more radical in last years, due to shrinking product lifecycles and higher volatility of markets and customer demands. Especially established companies struggle meeting those demands. Thus, many producing companies are adapting their development processes to address this increasing pressure. One approach taken by many companies is the use of agile, highly iterative development processes to reduce development times and costs as well as to increase the fulfilled customer requirements and the realized level of innovation. At the same time decreasing depths of added value and increasing focus on core competencies as well as a growing product complexity result in a high dependency on suppliers and external development partners during the product development. Thus, a successful introduction of agile development methods into the development of physical products requires also a successful integration of the necessary external partners and suppliers into the new processes and procedures and an adaption of the organizational interfaces to external partners according to the new circumstances and requirements of agile development processes. For an effective and efficient product development, the design of customer-supplier-relationships should be demand-oriented. A significant influence on the required design has the characteristics of the procurement object. Examples therefore are the complexity of technical interfaces between supply object and final product or the importance of the supplied component for the major product functionalities. Thus, this paper presents an approach to derive general requirements on the design of supplier integration according to the characteristics of supply objects. First, therefore the most relevant evaluation criteria and characteristics have been identified based on a thorough literature review. Subsequently the resulting requirements on the design of the supplier integration were derived depending on the different possible values of these criteria.

Keywords: iterative development processes, agile new product development, procurement, supplier integration

Procedia PDF Downloads 175
2747 Content Monetization as a Mark of Media Economy Quality

Authors: Bela Lebedeva

Abstract:

Characteristics of the Web as a channel of information dissemination - accessibility and openness, interactivity and multimedia news - become wider and cover the audience quickly, positively affecting the perception of content, but blur out the understanding of the journalistic work. As a result audience and advertisers continue migrating to the Internet. Moreover, online targeting allows monetizing not only the audience (as customarily given to traditional media) but also the content and traffic more accurately. While the users identify themselves with the qualitative characteristics of the new market, its actors are formed. Conflict of interests is laid in the base of the economy of their relations, the problem of traffic tax as an example. Meanwhile, content monetization actualizes fiscal interest of the state too. The balance of supply and demand is often violated due to the political risks, particularly in terms of state capitalism, populism and authoritarian methods of governance such social institutions as the media. A unique example of access to journalistic material, limited by monetization of content is a television channel Dozhd' (Rain) in Russian web space. Its liberal-minded audience has a better possibility for discussion. However, the channel could have been much more successful in terms of unlimited free speech. Avoiding state pressure and censorship its management has decided to save at least online performance and monetizing all of the content for the core audience. The study Methodology was primarily based on the analysis of journalistic content, on the qualitative and quantitative analysis of the audience. Reconstructing main events and relationships of actors on the market for the last six years researcher has reached some conclusions. First, under the condition of content monetization the capitalization of its quality will always strive to quality characteristics of user, thereby identifying him. Vice versa, the user's demand generates high-quality journalism. The second conclusion follows the previous one. The growth of technology, information noise, new political challenges, the economy volatility and the cultural paradigm change – all these factors form the content paying model for an individual user. This model defines him as a beneficiary of specific knowledge and indicates the constant balance of supply and demand other conditions being equal. As a result, a new economic quality of information is created. This feature is an indicator of the market as a self-regulated system. Monetized information quality is less popular than that of the Public Broadcasting Service, but this audience is able to make decisions. These very users keep the niche sectors which have more potential of technology development, including the content monetization ways. The third point of the study allows develop it in the discourse of media space liberalization. This cultural phenomenon may open opportunities for the development of social and economic relations architecture both locally and regionally.

Keywords: content monetization, state capitalism, media liberalization, media economy, information quality

Procedia PDF Downloads 253
2746 An Affordability Evaluation of Computer-Based Social-Emotional Skills Interventions for School-Aged Children with Autism Spectrum Disorder

Authors: Ezra N. S. Lockhart

Abstract:

The number of children diagnosed with autism spectrum disorder (ASD) has increased approximately 173% during the last decade making ASD the fastest growing developmental disability in the United States. This rise in prevalence rates indeed has an effect on schools. ASD is overwhelmingly the most reported primary special education eligibility category for students accessing special education, at a national average of 61.3%. ASD is regarded as an urgent public health concern at an estimated annual per capita cost of $3.2 million. Furthermore, considering that ASD is a lifelong disorder estimated lifetime per capita cost reach $35 billion. The resources available to special education programs are insufficient to meet the educational needs of the 6.4 million students receiving special educational services. This is especially true given that there has been and continues to be a chronic shortage of fully certified special education teachers for decades. Reports indicate that 81.1% of students with special needs spend 40% or more in general education classrooms. Regardless of whether support is implemented in the special education or general education classroom the resource demand is obvious. Schools are actively seeking to implement low-cost alternatives and budget saving measures in response to this demand. In public school settings, programs such as Applied Behavior Analysis are challenging to implement and fund at $40,000 per student per year. As an alternative, computer-based interventions are inexpensive, less time-consuming to implement, and require minimal teacher or paraprofessional training to administer. Affordability, pricing schemes, availability, and compatibility of computer-based interventions that support social and emotional skill development in individuals with ASD are discussed.

Keywords: affordability, autism spectrum disorder, computer-based intervention, emotional skills, social skills

Procedia PDF Downloads 170
2745 AquaCrop Model Simulation for Water Productivity of Teff (Eragrostic tef): A Case Study in the Central Rift Valley of Ethiopia

Authors: Yenesew Mengiste Yihun, Abraham Mehari Haile, Teklu Erkossa, Bart Schultz

Abstract:

Teff (Eragrostic tef) is a staple food in Ethiopia. The local and international demand for the crop is ever increasing pushing the current price five times compared with that in 2006. To meet this escalating demand increasing production including using irrigation is imperative. Optimum application of irrigation water, especially in semi-arid areas is profoundly important. AquaCrop model application in irrigation water scheduling and simulation of water productivity helps both irrigation planners and agricultural water managers. This paper presents simulation and evaluation of AquaCrop model in optimizing the yield and biomass response to variation in timing and rate of irrigation water application. Canopy expansion, canopy senescence and harvest index are the key physiological processes sensitive to water stress. For full irrigation water application treatment there was a strong relationship between the measured and simulated canopy and biomass with r2 and d values of 0.87 and 0.96 for canopy and 0.97 and 0.74 for biomass, respectively. However, the model under estimated the simulated yield and biomass for higher water stress level. For treatment receiving full irrigation the harvest index value obtained were 29%. The harvest index value shows generally a decreasing trend under water stress condition. AquaCrop model calibration and validation using the dry season field experiments of 2010/2011 and 2011/2012 shows that AquaCrop adequately simulated the yield response to different irrigation water scenarios. We conclude that the AquaCrop model can be used in irrigation water scheduling and optimizing water productivity of Teff grown under water scarce semi-arid conditions.

Keywords: AquaCrop, climate smart agriculture, simulation, teff, water security, water stress regions

Procedia PDF Downloads 409
2744 Entrants’ Knowledge of the Host Country’s Institutional Environments: A Critical Success Factor of International Projects in Emerging Least Developed Countries

Authors: Rameshwar Dahal, S. Ping Ho

Abstract:

Although the demand for infrastructure development forms a promising market opportunity for international firms, the dominance of informal institutions over formal ones, investors are facing extraordinary institutional challenges when investing in emerging Least Developed Countries (LDCs). We believe that, in emerging LDCs, the project performance heavily depends on how well the entrants respond to the challenges exerted by the host institutional environments. Which primarily depends on how much they learn about the host institution and what strategy they apply in response. In Nepal, almost all international or global infrastructure projects are financed by international financers, so the procurement process of the infrastructure projects financed by foreign agencies is guided by the policies and regulations of the financer. Because of limited resources and the financers’ demand, contractors and consults are procured internationally. Moreover, the resources, including but not limited to construction material, manpower, and equipment, also need to be imported. Therefore, the involvement of international companies as an entrant in global infrastructure projects of LDCs is obvious. In a global project (GP), participants from different geographical and institutional environments hold different beliefs and have disparate interests. Therefore, the entrants face the challenges exerted by the host institutional environments. The entrants must either adapt to the institutions prevailing in the environment or resist the institutional pressures. It is hypothesized that, in emerging LDCs, the project performance heavily depends on how much the entrants learn about the host institutional knowledge and how well they respond to the institutional environments. While it is impossible to generalize the phenomenon and contextual conditions because of their vast diversity, this study has answered why and how participants’ level of institutional knowledge impacts the project's implementation performance. To draw that conclusion, firstly, we explored two typical GPs from Nepal. For this study, the data were collected by conducting interviews and examining the secondary data, such as the project reports published by the financers, project data provided by interviewees, and news reports. In an event analysis, firstly, we identify the sources, causes, or nature of the institutional challenges; secondly, we analyze the entrant’s responses to the exerted challenges and evaluate the impacts of the responses on the overall project performance. In this study, at first, the events occurred during the project implementation process have a causal link with the local institutions that demand the entrants’ response are extracted. Secondly, each event is scrutinized as the critical success factor of the case project. Finally, it is crucially examined whether and what institutional knowledge in these events played a critical role in project success or failure. The results also provide insights into the crucial institutional knowledge in LDCs and the subsequent strategy implications for undertaking projects in LDCs.

Keywords: emerging countries, LDC, project management, project performance, institutional knowledge, institutional theory

Procedia PDF Downloads 68
2743 Tackling Food Waste Challenge with Nanotechnology: Controllable Ripening via Metal Organic Framework

Authors: Boce Zhang, Yaguang Luo

Abstract:

Ripening of climacteric fruits, such as bananas and avocados, are usually initiated days prior to the retail marketing. However, upon the onset of irreversible ripening, they undergo rapid spoilage if not consumed within a narrow climacteric time window. Controlled ripening of climacteric fruits is a critical step to provide consumers with high-quality products while reducing postharvest losses and food waste. There is a high demand for technologies that can retard the ripening process or enable accelerated ripening immediately before consumption. In this work, metal−organic framework (MOF) was developed as a solid porous matrix to encapsulate gaseous hormone, including ethylene, for subsequent application. The feasibility of the on-demand stimulated ripening of bananas and avocados is also evaluated. MOF was synthesized and loaded with ethylene gas. The MOF−ethylene was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The fruits were treated for 24-48 hours, and evaluated for ripening progress. Results indicate that MOF−ethylene treatment significantly accelerated the ripening-related changes of color and textural properties in treated bananas and avocados. The average ripening period for both avocados and bananas were reduced in half by using this method. No significant differences of quality characteristics at respective ripening stages were observed between produce ripened via MOF-ethylene versus exogenously supplied ethylene gas or endogenously produced ethylene. Solid MOF matrices could have multiple advantages compared to existing systems, including easy to transport and safe to use by minimally trained produce handlers and consumers. We envision that this technology can help tackle food waste challenges at the critical retail and consumer stages in the food supply chain.

Keywords: climacteric produce, controllable ripening, food waste challenge, metal organic framework

Procedia PDF Downloads 249
2742 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 224
2741 Security of Database Using Chaotic Systems

Authors: Eman W. Boghdady, A. R. Shehata, M. A. Azem

Abstract:

Database (DB) security demands permitting authorized users and prohibiting non-authorized users and intruders actions on the DB and the objects inside it. Organizations that are running successfully demand the confidentiality of their DBs. They do not allow the unauthorized access to their data/information. They also demand the assurance that their data is protected against any malicious or accidental modification. DB protection and confidentiality are the security concerns. There are four types of controls to obtain the DB protection, those include: access control, information flow control, inference control, and cryptographic. The cryptographic control is considered as the backbone for DB security, it secures the DB by encryption during storage and communications. Current cryptographic techniques are classified into two types: traditional classical cryptography using standard algorithms (DES, AES, IDEA, etc.) and chaos cryptography using continuous (Chau, Rossler, Lorenz, etc.) or discreet (Logistics, Henon, etc.) algorithms. The important characteristics of chaos are its extreme sensitivity to initial conditions of the system. In this paper, DB-security systems based on chaotic algorithms are described. The Pseudo Random Numbers Generators (PRNGs) from the different chaotic algorithms are implemented using Matlab and their statistical properties are evaluated using NIST and other statistical test-suits. Then, these algorithms are used to secure conventional DB (plaintext), where the statistical properties of the ciphertext are also tested. To increase the complexity of the PRNGs and to let pass all the NIST statistical tests, we propose two hybrid PRNGs: one based on two chaotic Logistic maps and another based on two chaotic Henon maps, where each chaotic algorithm is running side-by-side and starting from random independent initial conditions and parameters (encryption keys). The resulted hybrid PRNGs passed the NIST statistical test suit.

Keywords: algorithms and data structure, DB security, encryption, chaotic algorithms, Matlab, NIST

Procedia PDF Downloads 267
2740 Conduction Transfer Functions for the Calculation of Heat Demands in Heavyweight Facade Systems

Authors: Mergim Gasia, Bojan Milovanovica, Sanjin Gumbarevic

Abstract:

Better energy performance of the building envelope is one of the most important aspects of energy savings if the goals set by the European Union are to be achieved in the future. Dynamic heat transfer simulations are being used for the calculation of building energy consumption because they give more realistic energy demands compared to the stationary calculations that do not take the building’s thermal mass into account. Software used for these dynamic simulation use methods that are based on the analytical models since numerical models are insufficient for longer periods. The analytical models used in this research fall in the category of the conduction transfer functions (CTFs). Two methods for calculating the CTFs covered by this research are the Laplace method and the State-Space method. The literature review showed that the main disadvantage of these methods is that they are inadequate for heavyweight façade elements and shorter time periods used for the calculation. The algorithms for both the Laplace and State-Space methods are implemented in Mathematica, and the results are compared to the results from EnergyPlus and TRNSYS since these software use similar algorithms for the calculation of the building’s energy demand. This research aims to check the efficiency of the Laplace and the State-Space method for calculating the building’s energy demand for heavyweight building elements and shorter sampling time, and it also gives the means for the improvement of the algorithms used by these methods. As the reference point for the boundary heat flux density, the finite difference method (FDM) is used. Even though the dynamic heat transfer simulations are superior to the calculation based on the stationary boundary conditions, they have their limitations and will give unsatisfactory results if not properly used.

Keywords: Laplace method, state-space method, conduction transfer functions, finite difference method

Procedia PDF Downloads 136
2739 The Location-Routing Problem with Pickup Facilities and Heterogeneous Demand: Formulation and Heuristics Approach

Authors: Mao Zhaofang, Xu Yida, Fang Kan, Fu Enyuan, Zhao Zhao

Abstract:

Nowadays, last-mile distribution plays an increasingly important role in the whole industrial chain delivery link and accounts for a large proportion of the whole distribution process cost. Promoting the upgrading of logistics networks and improving the layout of final distribution points has become one of the trends in the development of modern logistics. Due to the discrete and heterogeneous needs and spatial distribution of customer demand, which will lead to a higher delivery failure rate and lower vehicle utilization, last-mile delivery has become a time-consuming and uncertain process. As a result, courier companies have introduced a range of innovative parcel storage facilities, including pick-up points and lockers. The introduction of pick-up points and lockers has not only improved the users’ experience but has also helped logistics and courier companies achieve large-scale economy. Against the backdrop of the COVID-19 of the previous period, contactless delivery has become a new hotspot, which has also created new opportunities for the development of collection services. Therefore, a key issue for logistics companies is how to design/redesign their last-mile distribution network systems to create integrated logistics and distribution networks that consider pick-up points and lockers. This paper focuses on the introduction of self-pickup facilities in new logistics and distribution scenarios and the heterogeneous demands of customers. In this paper, we consider two types of demand, including ordinary products and refrigerated products, as well as corresponding transportation vehicles. We consider the constraints associated with self-pickup points and lockers and then address the location-routing problem with self-pickup facilities and heterogeneous demands (LRP-PFHD). To solve this challenging problem, we propose a mixed integer linear programming (MILP) model that aims to minimize the total cost, which includes the facility opening cost, the variable transport cost, and the fixed transport cost. Due to the NP-hardness of the problem, we propose a hybrid adaptive large-neighbourhood search algorithm to solve LRP-PFHD. We evaluate the effectiveness and efficiency of the proposed algorithm by using instances generated based on benchmark instances. The results demonstrate that the hybrid adaptive large neighbourhood search algorithm is more efficient than MILP solvers such as Gurobi for LRP-PFHD, especially for large-scale instances. In addition, we made a comprehensive analysis of some important parameters (e.g., facility opening cost and transportation cost) to explore their impacts on the results and suggested helpful managerial insights for courier companies.

Keywords: city logistics, last-mile delivery, location-routing, adaptive large neighborhood search

Procedia PDF Downloads 87
2738 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 83
2737 Evaluating and Reducing Aircraft Technical Delays and Cancellations Impact on Reliability Operational: Case Study of Airline Operator

Authors: Adel A. Ghobbar, Ahmad Bakkar

Abstract:

Although special care is given to maintenance, aircraft systems fail, and these failures cause delays and cancellations. The occurrence of Delays and Cancellations affects operators and manufacturers negatively. To reduce technical delays and cancellations, one should be able to determine the important systems causing them. The goal of this research is to find a method to define the most expensive delays and cancellations systems for Airline operators. A predictive model was introduced to forecast the failure and their impact after carrying out research that identifies relevant information to tackle the problems faced while answering the questions of this paper. Data were obtained from the manufacturers’ services reliability team database. Subsequently, delays and cancellations evaluation methods were identified. No cost estimation methods were used due to their complexity. The model was developed, and it takes into account the frequency of delays and cancellations and uses weighting factors to give an indication of the severity of their duration. The weighting factors are based on customer experience. The data Analysis approach has shown that delays and cancellations events are not seasonal and do not follow any specific trends. The use of weighting factor does have an influence on the shortlist over short periods (Monthly) but not the analyzed period of three years. Landing gear and the navigation system are among the top 3 factors causing delays and cancellations for all three aircraft types. The results did confirm that the cooperation between certain operators and manufacture reduce the impact of delays and cancellations.

Keywords: reliability, availability, delays & cancellations, aircraft maintenance

Procedia PDF Downloads 134
2736 Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future

Authors: Ludmilla Wikkeling-Scott, Amira Karim

Abstract:

Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment.

Keywords: ecological foot print, emirati students, plastic bottle consumption, sustainable campus

Procedia PDF Downloads 162
2735 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 60
2734 Monte Carlo Simulation of X-Ray Spectra in Diagnostic Radiology and Mammography Using MCNP4C

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

The overall goal Monte Carlo N-atom radioactivity transference PC program (MCNP4C) was done for the regeneration of x-ray groups in diagnostic radiology and mammography. The electrons were transported till they slow down and stopover in the target. Both bremsstrahlung and characteristic x-ray creation were measured in this study. In this issue, the x-ray spectra forecast by several computational models recycled in the diagnostic radiology and mammography energy kind have been calculated by appraisal with dignified spectra and their outcome on the scheming of absorbed dose and effective dose (ED) told to the adult ORNL hermaphroditic phantom quantified. This comprises practical models (TASMIP and MASMIP), semi-practical models (X-rayb&m, X-raytbc, XCOMP, IPEM, Tucker et al., and Blough et al.), and Monte Carlo modeling (EGS4, ITS3.0, and MCNP4C). Images got consuming synchrotron radiation (SR) and both screen-film and the CR system were related with images of the similar trials attained with digital mammography equipment. In sight of the worthy feature of the effects gained, the CR system was used in two mammographic inspections with SR. For separately mammography unit, the capability acquiesced bilateral mediolateral oblique (MLO) and craniocaudal(CC) mammograms attained in a woman with fatty breasts and a woman with dense breasts. Referees planned the common groups and definite absences that managed to a choice to miscarry the part that formed the scientific imaginings.

Keywords: mammography, monte carlo, effective dose, radiology

Procedia PDF Downloads 134