Search results for: support vector data description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30371

Search results for: support vector data description

30311 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification

Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang

Abstract:

Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.

Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification

Procedia PDF Downloads 133
30310 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 231
30309 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 357
30308 Integration of Knowledge and Metadata for Complex Data Warehouses and Big Data

Authors: Jean Christian Ralaivao, Fabrice Razafindraibe, Hasina Rakotonirainy

Abstract:

This document constitutes a resumption of work carried out in the field of complex data warehouses (DW) relating to the management and formalization of knowledge and metadata. It offers a methodological approach for integrating two concepts, knowledge and metadata, within the framework of a complex DW architecture. The objective of the work considers the use of the technique of knowledge representation by description logics and the extension of Common Warehouse Metamodel (CWM) specifications. This will lead to a fallout in terms of the performance of a complex DW. Three essential aspects of this work are expected, including the representation of knowledge in description logics and the declination of this knowledge into consistent UML diagrams while respecting or extending the CWM specifications and using XML as pivot. The field of application is large but will be adapted to systems with heteroge-neous, complex and unstructured content and moreover requiring a great (re)use of knowledge such as medical data warehouses.

Keywords: data warehouse, description logics, integration, knowledge, metadata

Procedia PDF Downloads 138
30307 Information Retrieval for Kafficho Language

Authors: Mareye Zeleke Mekonen

Abstract:

The Kafficho language has distinct issues in information retrieval because of its restricted resources and dearth of standardized methods. In this endeavor, with the cooperation and support of linguists and native speakers, we investigate the creation of information retrieval systems specifically designed for the Kafficho language. The Kafficho information retrieval system allows Kafficho speakers to access information easily in an efficient and effective way. Our objective is to conduct an information retrieval experiment using 220 Kafficho text files, including fifteen sample questions. Tokenization, normalization, stop word removal, stemming, and other data pre-processing chores, together with additional tasks like term weighting, were prerequisites for the vector space model to represent each page and a particular query. The three well-known measurement metrics we used for our word were Precision, Recall, and and F-measure, with values of 87%, 28%, and 35%, respectively. This demonstrates how well the Kaffiho information retrieval system performed well while utilizing the vector space paradigm.

Keywords: Kafficho, information retrieval, stemming, vector space

Procedia PDF Downloads 57
30306 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data

Authors: Muthukumarasamy Govindarajan

Abstract:

Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.

Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine

Procedia PDF Downloads 142
30305 An Enhanced Support Vector Machine Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects

Authors: Gehad S. Kaseb, Mona F. Ahmed

Abstract:

Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. Few studies apply SA to Arabic dialects. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-AATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.

Keywords: Arabic, classification, sentiment analysis, tweets

Procedia PDF Downloads 148
30304 Improved Classification Procedure for Imbalanced and Overlapped Situations

Authors: Hankyu Lee, Seoung Bum Kim

Abstract:

The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.

Keywords: classification, imbalanced data with class overlap, split data space, support vector machine

Procedia PDF Downloads 308
30303 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 40
30302 Speed up Vector Median Filtering by Quasi Euclidean Norm

Authors: Vinai K. Singh

Abstract:

For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering.

Keywords: euclidean norm, quasi euclidean norm, vector median filtering, applied mathematics

Procedia PDF Downloads 474
30301 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan

Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas

Abstract:

The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.

Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1

Procedia PDF Downloads 169
30300 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration

Authors: Smaran Manchala

Abstract:

Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.

Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization

Procedia PDF Downloads 23
30299 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)

Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz

Abstract:

Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.

Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)

Procedia PDF Downloads 384
30298 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 490
30297 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets

Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou

Abstract:

Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.

Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification

Procedia PDF Downloads 405
30296 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 205
30295 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 409
30294 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 638
30293 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: data mining, digital libraries, digital preservation, file format

Procedia PDF Downloads 499
30292 Application of Machine Learning Techniques in Forest Cover-Type Prediction

Authors: Saba Ebrahimi, Hedieh Ashrafi

Abstract:

Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.

Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset

Procedia PDF Downloads 217
30291 Vector-Based Analysis in Cognitive Linguistics

Authors: Chuluundorj Begz

Abstract:

This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.

Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space

Procedia PDF Downloads 519
30290 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: linked open data, information integration, digital libraries, data mining

Procedia PDF Downloads 426
30289 Component Based Testing Using Clustering and Support Vector Machine

Authors: Iqbaldeep Kaur, Amarjeet Kaur

Abstract:

Software Reusability is important part of software development. So component based software development in case of software testing has gained a lot of practical importance in the field of software engineering from academic researcher and also from software development industry perspective. Finding test cases for efficient reuse of test cases is one of the important problems aimed by researcher. Clustering reduce the search space, reuse test cases by grouping similar entities according to requirements ensuring reduced time complexity as it reduce the search time for retrieval the test cases. In this research paper we proposed approach for re-usability of test cases by unsupervised approach. In unsupervised learning we proposed k-mean and Support Vector Machine. We have designed the algorithm for requirement and test case document clustering according to its tf-idf vector space and the output is set of highly cohesive pattern groups.

Keywords: software testing, reusability, clustering, k-mean, SVM

Procedia PDF Downloads 430
30288 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: classification, singing, spectral analysis, vocal emission, vocal register

Procedia PDF Downloads 304
30287 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.

Procedia PDF Downloads 153
30286 Fusion Models for Cyber Threat Defense: Integrating Clustering, Random Forests, and Support Vector Machines to Against Windows Malware

Authors: Azita Ramezani, Atousa Ramezani

Abstract:

In the ever-escalating landscape of windows malware the necessity for pioneering defense strategies turns into undeniable this study introduces an avant-garde approach fusing the capabilities of clustering random forests and support vector machines SVM to combat the intricate web of cyber threats our fusion model triumphs with a staggering accuracy of 98.67 and an equally formidable f1 score of 98.68 a testament to its effectiveness in the realm of windows malware defense by deciphering the intricate patterns within malicious code our model not only raises the bar for detection precision but also redefines the paradigm of cybersecurity preparedness this breakthrough underscores the potential embedded in the fusion of diverse analytical methodologies and signals a paradigm shift in fortifying against the relentless evolution of windows malicious threats as we traverse through the dynamic cybersecurity terrain this research serves as a beacon illuminating the path toward a resilient future where innovative fusion models stand at the forefront of cyber threat defense.

Keywords: fusion models, cyber threat defense, windows malware, clustering, random forests, support vector machines (SVM), accuracy, f1-score, cybersecurity, malicious code detection

Procedia PDF Downloads 71
30285 Diagonal Vector Autoregressive Models and Their Properties

Authors: Usoro Anthony E., Udoh Emediong

Abstract:

Diagonal Vector Autoregressive Models are special classes of the general vector autoregressive models identified under certain conditions, where parameters are restricted to the diagonal elements in the coefficient matrices. Variance, autocovariance, and autocorrelation properties of the upper and lower diagonal VAR models are derived. The new set of VAR models is verified with empirical data and is found to perform favourably with the general VAR models. The advantage of the diagonal models over the existing models is that the new models are parsimonious, given the reduction in the interactive coefficients of the general VAR models.

Keywords: VAR models, diagonal VAR models, variance, autocovariance, autocorrelations

Procedia PDF Downloads 116
30284 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 429
30283 Data Hiding by Vector Quantization in Color Image

Authors: Yung Gi Wu

Abstract:

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

Keywords: data hiding, vector quantization, watermark, color image

Procedia PDF Downloads 364
30282 Developed Text-Independent Speaker Verification System

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.

Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis

Procedia PDF Downloads 58