Search results for: pathwise sensitivities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 69

Search results for: pathwise sensitivities

9 Turkish Validation of the Nursing Outcomes for Urinary Incontinence and Their Sensitivities on Nursing Interventions

Authors: Dercan Gencbas, Hatice Bebis, Sue Moorhead

Abstract:

In the nursing process, many of the nursing classification systems were created to be used in international. From these, NANDA-I, Nursing Outcomes Classification (NOC) and Nursing Interventions Classification (NIC). In this direction, the main objective of this study is to establish a model for caregivers in hospitals and communities in Turkey and to ensure that nursing outputs are assessed by NOC-based measures. There are many scales to measure Urinary Incontinence (UI), which is very common in children, in old age, vaginal birth, NOC scales are ideal for use in the nursing process for comprehensive and holistic assessment, with surveys available. For this reason, the purpose of this study is to evaluate the validity of the NOC outputs and indicators used for UI NANDA-I. This research is a methodological study. In addition to the validity of scale indicators in the study, how much they will contribute to recovery after the nursing intervention was assessed by experts. Scope validations have been applied and calculated according to Fehring 1987 work model. According to this, nursing inclusion criteria and scores were determined. For example, if experts have at least four years of clinical experience, their score was 4 points or have at least one year of the nursing classification system, their score was 1 point. The experts were a publication experience about nursing classification, their score was 1 point, or have a doctoral degree in nursing, their score was 2 points. If the expert has a master degree, their score was 1 point. Total of 55 experts rated Fehring as a “senior degree” with a score of 90 according to the expert scoring. The nursing interventions to be applied were asked to what extent these indicators would contribute to recovery. For coverage validity tailored to Fehring's model, each NOC and NOC indicator from specialists was asked to score between 1-5. Score for the significance of indicators was from 1=no precaution to 5=very important. After the expert opinion, these weighted scores obtained for each NOC and NOC indicator were classified as 0.8 critical, 0.8 > 0.5 complements, > 0.5 are excluded. In the NANDA-I / NOC / NIC system (guideline), 5 NOCs proposed for nursing diagnoses for UI were proposed. These outputs are; Urinary Continence, Urinary Elimination, Tissue Integrity, Self CareToileting, Medication Response. After the scales are translated into Turkish, the weighted average of the scores obtained from specialists for the coverage of all 5 NOCs and the contribution of nursing initiatives exceeded 0.8. After the opinions of the experts, 79 of the 82 indicators were calculated as critical, 3 of the indicators were calculated as supplemental. Because of 0.5 > was not obtained, no substance was removed. All NOC outputs were identified as valid and usable scales in Turkey. In this study, five NOC outcomes were verified for the evaluation of the output of individuals who have received nursing knowledge of UI and variant types. Nurses in Turkey can benefit from the outputs of the NOC scale to perform the care of the elderly incontinence.

Keywords: nursing outcomes, content validity, nursing diagnosis, urinary incontinence

Procedia PDF Downloads 124
8 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications

Authors: S. Trafela, X. Xua, K. Zuzek Rozmana

Abstract:

In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.

Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation

Procedia PDF Downloads 159
7 Assessment of Water Pollution in the River Nile (Egypt) by Applying Blood Biomarkers in Two Excellent Model Species Oreochromis niloticus niloticus and Clarias gariepinus

Authors: Alaa G. M. Osman, Abd-El –Baset M. Abd El Reheem, Khaled Y. Abouelfadl, Usama M. Mahmoud, Mohsen A. Moustafa

Abstract:

This study aimed to explore new sites of biomarker research and to establish the use of blood parameters in wild fish populations. Four hundred and twenty fish samples were collected from six sites along the whole course of the river Nile, Egypt. The mean values of erythrocytes, thrombocytes, hemoglobin concentration, hematocrit value, and mean corpuscular volume were significantly lower in the blood of Nile tilapia and African catfish collected from downstream (contaminated) compared to upstream sites. In contrast, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in the peripheral blood of both fish species significantly increased from upstream to downstream river Nile. The leukocytes count was significantly decreased in contaminated sites compared to upstream area. Hematological variables in the peripheral blood of Oreochromis niloticus niloticus and Clarias gariepinus exhibited significant (p<0.05) correlation with nearly all the detected chemical and physical parameters along the Nile course. In the present study, lower cellular and nuclear areas and cellular and nuclear shape factor were recorded in the erythrocytes of fish collected from downstream compared to those caught from upstream sites. This was confirmed by higher immature ratios of red cells in the blood of fish sampled from downstream river Nile. Karyorrhetic and enucleated erythrocytes were significantly correlated with physiochemical parameters in water samples collected from the same sites is being higher in the blood of fish collected from downstream sites. To see if there was any correlation between fish altered physiological fitness and environmental stress, we measured serum biochemical variables namely; total protein, cholesterol, triglycerides, calcium, chlorides, alkaline phosphatase activity (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid activity, creatinine, and serum glucose. The level of all the selected biochemical variables in the blood of O. niloticus niloticus and C. gariepinus were recorded to be significantly higher (p<0.05) in downstream sites. According to the present results, nearly all the detected haematological and blood biochemical variables are suitable indicators of contaminant exposure in O. niloticus niloticus and C. gariepinus. Also the detected erythrocytes malformations in blood collected from Nile tilapia and African catfish were proven to be suitable for bio-monitoring aquatic pollution. The results revealed species-specific differences in sensitivities, suggesting that Nile tilapia may serve as a more sensitive test species compared to African catfish.

Keywords: biomarkers, water pollution, blood parameters, river nile, african catfish, nile tilapia

Procedia PDF Downloads 290
6 The Radicalization of Islam in the Syrian Conflict: A Systematic Review from the Interreligious Dialogue Perspective

Authors: Cosette Maiky

Abstract:

Seven years have passed since the crisis erupted and the list of challenges to peacebuilding and interreligious dialogue is still growing ever more discouraging: Violence, displacement, sectarianism, discrimination, radicalisation, fragmentation, and collapse of various social and economic infrastructure have notoriously plagued the war-torn country. As the situation in Syria and neighbouring countries is still creating a real concern about the future of the social cohesion and the coexistence in the region, in her function as Field Expert on Arab Countries at King Abdullah bin Abdelaziz Centre for Interreligious and Intercultural Dialogue, the author shall present a systematic review paper that focuses on the radicalization of Islam in Syria. The exercise was based on a series of research questions that guided both the review of literature as well as the interviews. Their relative meaningfulness shall be assessed and trade-offs discussed in each case to ensure that key questions were addressed and to avoid unnecessary effort. There was an element of flexibility, as the assessment progressed, to further provide and inject additional generic questions. The main sources for the information were: Documents and literature with a direct bearing on the issues of relevance collected in all available formats and information collected through key informant interviews. This latter was particularly helpful to understand what some of the capacity constraints are, as well as the gaps, enablers and barriers. Respondents were selected among those who are engaged in IRD activities clearly linked to peacebuilding (i.e. religious leaders, leaders in religious communities, peace actors, religious actors, conflict parties, minority groups, women initiatives, youth initiatives, civil society organizations, academia, etc.), with relevant professional qualifications and work experience. During the research process, the Consultant carefully took account of sensitivities around terminologies as well as a highly insecure and dynamic context. The Consultant (Arabic native speaker), therefore, adapted terminologies while conducting interviews according to the area and respondent. Findings revealed: the deep ideological polarization and lack of trust dividing communities and preventing meaningful dialogue opportunities; the challenge of prioritizing IRD and peacebuilding work in the context of such a severe humanitarian crisis facing the country; the need to engage religious leaders and institutions in peacebuilding processes and initiatives, the need to have institutions with specific IRD mandate, which can have a sustainable influence on peace through various levels of interventions (from grassroots level to policy and research), and lastly, the need to address stigma in media representation of Muslims and Islam. While religion and religious agendas have been massively used for political issues and power play in the Middle East – and elsewhere, more extensive policy and research efforts are needed to highlight the positive role of religion and religious actors in dialogue and peacebuilding processes.

Keywords: radicalisation, Islam, Syria, conflict

Procedia PDF Downloads 171
5 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 70
4 Increasing Prevalence of Multi-Allergen Sensitivities in Patients with Allergic Rhinitis and Asthma in Eastern India

Authors: Sujoy Khan

Abstract:

There is a rising concern with increasing allergies affecting both adults and children in rural and urban India. Recent report on adults in a densely populated North Indian city showed sensitization rates for house dust mite, parthenium, and cockroach at 60%, 40% and 18.75% that is now comparable to allergy prevalence in cities in the United States. Data from patients residing in the eastern part of India is scarce. A retrospective study (over 2 years) was done on patients with allergic rhinitis and asthma where allergen-specific IgE levels were measured to see the aero-allergen sensitization pattern in a large metropolitan city of East India. Total IgE and allergen-specific IgE levels were measured using ImmunoCAP (Phadia 100, Thermo Fisher Scientific, Sweden) using region-specific aeroallergens: Dermatophagoides pteronyssinus (d1); Dermatophagoides farinae (d2); cockroach (i206); grass pollen mix (gx2) consisted of Cynodon dactylon, Lolium perenne, Phleum pratense, Poa pratensis, Sorghum halepense, Paspalum notatum; tree pollen mix (tx3) consisted of Juniperus sabinoides, Quercus alba, Ulmus americana, Populus deltoides, Prosopis juliflora; food mix 1 (fx1) consisted of Peanut, Hazel nut, Brazil nut, Almond, Coconut; mould mix (mx1) consisted of Penicillium chrysogenum, Cladosporium herbarum, Aspergillus fumigatus, Alternaria alternate; animal dander mix (ex1) consisted of cat, dog, cow and horse dander; and weed mix (wx1) consists of Ambrosia elatior, Artemisia vulgaris, Plantago lanceolata, Chenopodium album, Salsola kali, following manufacturer’s instructions. As the IgE levels were not uniformly distributed, median values were used to represent the data. 92 patients with allergic rhinitis and asthma (united airways disease) were studied over 2 years including 21 children (age < 12 years) who had total IgE and allergen-specific IgE levels measured. The median IgE level was higher in 2016 than in 2015 with 60% of patients (adults and children) being sensitized to house dust mite (dual positivity for Dermatophagoides pteronyssinus and farinae). Of 11 children in 2015, whose total IgE ranged from 16.5 to >5000 kU/L, 36% of children were polysensitized (≥4 allergens), and 55% were sensitized to dust mites. Of 10 children in 2016, total IgE levels ranged from 37.5 to 2628 kU/L, and 20% were polysensitized with 60% sensitized to dust mites. Mould sensitivity was 10% in both of the years in the children studied. A consistent finding was that ragweed sensitization (molecular homology to Parthenium hysterophorus) appeared to be increasing across all age groups, and throughout the year, as reported previously by us where 25% of patients were sensitized. In the study sample overall, sensitizations to dust mite, cockroach, and parthenium were important risks in our patients with moderate to severe asthma that reinforces the importance of controlling indoor exposure to these allergens. Sensitizations to dust mite, cockroach and parthenium allergens are important predictors of asthma morbidity not only among children but also among adults in Eastern India.

Keywords: aAeroallergens, asthma, dust mite, parthenium, rhinitis

Procedia PDF Downloads 198
3 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 239
2 Exploring the Ethics and Impact of Slum Tourism in Kenya: A Critical Examination on the Ethical Implications, Legalities and Beneficiaries of This Trade and Long-Term Implications to the Slum Communities

Authors: Joanne Ndirangu

Abstract:

Delving into the intricate landscape of slum tourism in Kenya, this study critically evaluates its ethical implications, legal frameworks, and beneficiaries. By examining the complex interplay between tourism operators, visitors, and slum residents, it seeks to uncover the long-term consequences for the communities involved. Through an exploration of ethical considerations, legal parameters, and the distribution of benefits, this examination aims to shed light on the broader socio-economic impacts of slum tourism in Kenya, particularly on the lives of those residing in these marginalized communities. Assessing the ethical considerations surrounding slum tourism in Kenya, including the potential exploitation of residents and cultural sensitivities and examine the legal frameworks governing slum tourism in Kenya and evaluate their effectiveness in protecting the rights and well-being of slum dwellers. Identifying the primary beneficiaries of slum tourism in Kenya, including tour operators, local businesses, and residents, and analysing the distribution of economic benefits. Exploring the long-term socio-economic impacts of slum tourism on the lives of residents, including changes in living conditions, access to resources, and community development. Understanding the motivations and perceptions of tourists participating in slum tourism in Kenya and assess their role in shaping the industry's dynamics and investigate the potential for sustainable and responsible forms of slum tourism that prioritize community empowerment, cultural exchange, and mutual respect. Providing recommendations for policymakers, tourism stakeholders, and community organizations to promote ethical and sustainable practices in slum tourism in Kenya. The main contributions of researching slum tourism in Kenya would include; Ethical Awareness: By critically examining the ethical implications of slum tourism, the research can raise awareness among tourists, operators, and policymakers about the potential exploitation of marginalized communities. Beneficiary Analysis: By identifying the primary beneficiaries of slum tourism, the research can inform discussions on fair distribution of economic benefits and potential strategies for ensuring that local communities derive meaningful advantages from tourism activities. Socio-Economic Understanding: By exploring the long-term socio-economic impacts of slum tourism, the research can deepen understanding of how tourism activities affect the lives of slum residents, potentially informing policies and initiatives aimed at improving living conditions and promoting community development. Tourist Perspectives: Understanding the motivations and perceptions of tourists participating in slum tourism can provide valuable insights into consumer behaviour and preferences, informing the development of responsible tourism practices and marketing strategies. Promotion of Responsible Tourism: By providing recommendations for promoting ethical and sustainable practices in slum tourism, the research can contribute to the development of guidelines and initiatives aimed at fostering responsible tourism and minimizing negative impacts on host communities. Overall, the research can contribute to a more comprehensive understanding of slum tourism in Kenya and its broader implications, while also offering practical recommendations for promoting ethical and sustainable tourism practices.

Keywords: slum tourism, dark tourism, ethical tourism, responsible tourism

Procedia PDF Downloads 66
1 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide

Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar

Abstract:

Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.

Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite

Procedia PDF Downloads 284