Search results for: healthy stock
2827 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 1272826 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 1702825 Multi-Level Framework for Effective Use of Stock Ordering System: Case Study of Small Enterprises in Kgautswane
Authors: Lethamaga Tladi, Ray Kekwaletswe
Abstract:
This study sought to conceptualise a multi-level framework for the effective use of stock ordering system in small enterprises in a rural area context. The interpretive research methodology has been used to enable the researcher to analyse, in-depth, and the subjective meanings of small enterprises’ employees in using the stock ordering system. The empirical data was collected from 13 small enterprises’ employees as participants through semi-structured interviews and observations. Interpretive Phenomenological Analysis (IPA) approach was used to analyse the small enterprises’ employee’s own account of lived experiences in relations to stock ordering system use in terms of their relatedness to, and cognitive engagement with. A case study of Kgautswane, a rural area in Limpopo Province, South Africa, served as a social context where the phenomenon manifested. Technology-Organisation-Environment Theory (TOE), Technology-to-Performance Chain Model (TPC), and Representation Theory (RT) underpinned this study. In this multi-level study, the findings revealed that; At the organisational level, the effective use of stock ordering system was found to be associated with the organisational performance gains such as efficiency, productivity, quality, competitiveness, and market share. Equally so, at the individual level, the effective use of stock ordering system minimised the end-user’s efforts and time to accomplish their tasks, which yields improved individual performance. The Multi-level framework for effective use of stock ordering system was presented.Keywords: effective use, multi-dimensions of use, multi-level of use, multi-level research, small enterprises, stock ordering system
Procedia PDF Downloads 1692824 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets
Authors: Yosra Mefteh Rekik
Abstract:
A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance
Procedia PDF Downloads 4382823 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market
Authors: Chih-Hsiang Chang, Fang-Jyun Su
Abstract:
This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.Keywords: stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship
Procedia PDF Downloads 2752822 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1892821 The Impact of the Global Financial Crises on MILA Stock Markets
Authors: Miriam Sosa, Edgar Ortiz, Alejandra Cabello
Abstract:
This paper examines the volatility changes and leverage effects of the MILA stock markets and their changes since the 2007 global financial crisis. This group integrates the stock markets from Chile, Colombia, Mexico and Peru. Volatility changes and leverage effects are tested with a symmetric GARCH (1,1) and asymmetric TARCH (1,1) models with a dummy variable in the variance equation. Daily closing prices of the stock indexes of Chile (IPSA), Colombia (COLCAP), Mexico (IPC) and Peru (IGBVL) are examined for the period 2003:01 to 2015:02. The evidence confirms the presence of an overall increase in asymmetric market volatility in the Peruvian share market since the 2007 crisis.Keywords: financial crisis, Latin American Integrated Market, TARCH, GARCH
Procedia PDF Downloads 2792820 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 4252819 Exposing Investor Sentiment In Stock Returns
Authors: Qiang Bu
Abstract:
This paper compares the explanatory power of sentiment level and sentiment shock. The preliminary test results show that sentiment shock plays a more significant role in explaining stocks returns, including the raw return and abnormal return. We also find that sentiment shock beta has a higher statistical significance than sentiment beta. These finding sheds new light on the relationship between investor sentiment and stock returns.Keywords: sentiment level, sentiment shock, explanatory power, abnormal stock return, beta
Procedia PDF Downloads 1372818 Does Pakistan Stock Exchange Offer Diversification Benefits to Regional and International Investors: A Time-Frequency (Wavelets) Analysis
Authors: Syed Jawad Hussain Shahzad, Muhammad Zakaria, Mobeen Ur Rehman, Saniya Khaild
Abstract:
This study examines the co-movement between the Pakistan, Indian, S&P 500 and Nikkei 225 stock markets using weekly data from 1998 to 2013. The time-frequency relationship between the selected stock markets is conducted by using measures of continuous wavelet power spectrum, cross-wavelet transform and cross (squared) wavelet coherency. The empirical evidence suggests strong dependence between Pakistan and Indian stock markets. The co-movement of Pakistani index with U.S and Japanese, the developed markets, varies over time and frequency where the long-run relationship is dominant. The results of cross wavelet and wavelet coherence analysis indicate moderate covariance and correlation between stock indexes and the markets are in phase (i.e. cyclical in nature) over varying durations. Pakistan stock market was lagging during the entire period in relation to Indian stock market, corresponding to the 8~32 and then 64~256 weeks scale. Similar findings are evident for S&P 500 and Nikkei 225 indexes, however, the relationship occurs during the later period of study. All three wavelet indicators suggest strong evidence of higher co-movement during 2008-09 global financial crises. The empirical analysis reveals a strong evidence that the portfolio diversification benefits vary across frequencies and time. This analysis is unique and have several practical implications for regional and international investors while assigning the optimal weightage of different assets in portfolio formulation.Keywords: co-movement, Pakistan stock exchange, S&P 500, Nikkei 225, wavelet analysis
Procedia PDF Downloads 3572817 The Potential Dark and Bright Part of Behavioral Biases in Investor’s Investment Decisions: Mediated Moderation of Stock Market Anomalies and Financial Literacy
Authors: Zain Ul Abideen
Abstract:
The study examines the potentially dark and bright parts of behavioral biases in investors’ investment decisions in the Pakistani equity market. These biases, directly and indirectly, play a comprehensive role in controlling and deciding the investor’s investment decisions. Stock market anomalies are used as a mediator, while financial literacy is used as a moderator to check the mentioned relationship. The sample consisted of investors who have trading experience of more than two years in the stock market. The result indicates that calendar anomalies do not mediate between overconfidence bias and investment decisions. However, the study investigates the mediating role of fundamental and technical anomalies between overconfidence bias and investment decisions. Furthermore, calendar anomalies play a significant role between the disposition effect and investment decisions. Calendar anomalies also mediate between herding bias and investment decisions. Financial literacy significantly moderates between behavioral biases and stock market anomalies. This research would be beneficial for individual and professional investors in their investment decisions. They should be financially literate, consequently less biased and have no market anomalies. Investors in emerging and developed economies can make optimal decisions in their respective stock markets.Keywords: behavioral biases, financial literacy, stock market anomalies, investment decision
Procedia PDF Downloads 722816 Effect of Addition and Reduction of Sharia Index Constituents
Authors: Rosyidah, Permata Wulandari
Abstract:
We investigate the price effect of addition and deletions from the Indonesia Sharia Stock Index (ISSI) and Jakarta Islamic Index (JII). Using event study methodology, we measure abnormal returns for firms over the period June 2019 - to December 2021. Through the sample of 107 additions and 95 deletions, we find evidence to support the theory of Muslim country investment behavior. We find that additions to the Islamic index led to a significant positive stock market reaction and deletions to the Islamic index led to a negative stock market reaction on Jakarta Islamic Index (JII) and there is no significant reaction of addition and deletion on Indonesia Sharia Stock Index (ISSI).Keywords: abnormal return, abnormal volume, event study, index changes, sharia index
Procedia PDF Downloads 1302815 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange
Procedia PDF Downloads 1022814 Corporate Governance and Firms` Performance: Evidence from Quoted Firms on the Nigerian Stock Exchange
Authors: Ogunwole Cecilia Oluwakemi, Wahid Damilola Olanipekun, Omoyele Olufemi Samuel, Timothy Ayomitunde Aderemi
Abstract:
The issues relating to corporate governance in both locally and internationally managed firms cannot be overemphasized because the lack of efficient corporate governance could orchestrate serious problems in any organization. Against this backdrop, this study examines the nexus between corporate governance and performance of firms from 2012 to 2020, using the case study of the Nigerian stock exchange. Consequently, data was collected from forty (40) listed firms on the Nigerian Stock Exchange. The study employed a fixed effect technique of estimation to address the objective of the study. It was discovered from the study that the influence of corporate governance components such as gender diversity, board independence and managerial ownership led to a significant positive impact on the performance of the firms under the investigation. In view of the above finding, this study makes the following recommendations for the policymakers in Nigeria that anytime the goal of the policymakers is the improvement of performance of the listed firms in the Nigerian stock exchange, board independence and a balance in the inclusion of male and female among the board of directors should be encouraged in these firms.Keywords: corporate, governance, firms, performance, Nigeria, stock, exchange
Procedia PDF Downloads 1752813 Collect Meaningful Information about Stock Markets from the Web
Authors: Saleem Abuleil, Khalid S. Alsamara
Abstract:
Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market
Procedia PDF Downloads 3932812 An Empirical Study of the Best Fitting Probability Distributions for Stock Returns Modeling
Authors: Jayanta Pokharel, Gokarna Aryal, Netra Kanaal, Chris Tsokos
Abstract:
Investment in stocks and shares aims to seek potential gains while weighing the risk of future needs, such as retirement, children's education etc. Analysis of the behavior of the stock market returns and making prediction is important for investors to mitigate risk on investment. Historically, the normal variance models have been used to describe the behavior of stock market returns. However, the returns of the financial assets are actually skewed with higher kurtosis, heavier tails, and a higher center than the normal distribution. The Laplace distribution and its family are natural candidates for modeling stock returns. The Variance-Gamma (VG) distribution is the most sought-after distributions for modeling asset returns and has been extensively discussed in financial literatures. In this paper, it explore the other Laplace family, such as Asymmetric Laplace, Skewed Laplace, Kumaraswamy Laplace (KS) together with Variance-Gamma to model the weekly returns of the S&P 500 Index and it's eleven business sector indices. The method of maximum likelihood is employed to estimate the parameters of the distributions and our empirical inquiry shows that the Kumaraswamy Laplace distribution performs much better for stock returns modeling among the choice of distributions used in this study and in practice, KS can be used as a strong alternative to VG distribution.Keywords: stock returns, variance-gamma, kumaraswamy laplace, maximum likelihood
Procedia PDF Downloads 702811 StockTwits Sentiment Analysis on Stock Price Prediction
Authors: Min Chen, Rubi Gupta
Abstract:
Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing
Procedia PDF Downloads 1562810 Price to Earnings Growth (PEG) Predicting Future Returns Better than the Price to Earnings (PE) Ratio
Authors: Lindrianasari Stefanie, Aminah Khairudin
Abstract:
This study aims to provide empirical evidence regarding the ability of Price to Earnings Ratio and PEG Ratio in predicting future stock returns issuers. The samples used in this study are stocks that go into LQ45. The main contribution is to assign empirical evidence if the PEG Ratio can provide optimum return compared to Price to Earnings Ratio. This study used a sample of the entire company into the group LQ45 with the period of observation. The data used is limited to the financial statements of a company incorporated in LQ45 period July 2013-July 2014, using the financial statements and the position of the company's closing stock price at the end of 2010 as a reference benchmark for the growth of the company's stock price compared to the closing price of 2013. This study found that the method of PEG Ratio can outperform the method of PE ratio in predicting future returns on the stock portfolio of LQ45.Keywords: price to earnings growth, price to earnings ratio, future returns, stock price
Procedia PDF Downloads 4122809 Day of the Week Patterns and the Financial Trends' Role: Evidence from the Greek Stock Market during the Euro Era
Authors: Nikolaos Konstantopoulos, Aristeidis Samitas, Vasileiou Evangelos
Abstract:
The purpose of this study is to examine if the financial trends influence not only the stock markets’ returns, but also their anomalies. We choose to study the day of the week effect (DOW) for the Greek stock market during the Euro period (2002-12), because during the specific period there are not significant structural changes and there are long term financial trends. Moreover, in order to avoid possible methodological counterarguments that usually arise in the literature, we apply several linear (OLS) and nonlinear (GARCH family) models to our sample until we reach to the conclusion that the TGARCH model fits better to our sample than any other. Our results suggest that in the Greek stock market there is a long term predisposition for positive/negative returns depending on the weekday. However, the statistical significance is influenced from the financial trend. This influence may be the reason why there are conflict findings in the literature through the time. Finally, we combine the DOW’s empirical findings from 1985-2012 and we may assume that in the Greek case there is a tendency for long lived turn of the week effect.Keywords: day of the week effect, GARCH family models, Athens stock exchange, economic growth, crisis
Procedia PDF Downloads 4102808 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty
Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih
Abstract:
In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization
Procedia PDF Downloads 1252807 Investment Decision among Public Sector Retirees: A Behavioural Finance View
Authors: Bisi S. Olawoyin
Abstract:
This study attempts an exploration into behavioural finance in which the traditional assumptions of expected utility maximization with rational investors in efficient markets are dropped. It reviews prior research and evidence about how psychological biases affect investors behaviour and stock selection. This study examined the relationship between demographic variables and financial behaviour biases among public sector retirees who invested in the Nigerian Stock Exchange prior to their retirement. By using questionnaire survey method, a total of 214 valid convenient samples were collected in order to determine how specific demographic and psychological trait affect stock selection between dividend paying and non-dividend paying stocks. Descriptive statistics and OLS were used to analyse the results. Findings showed that most of the retirees prefer dividend paying stocks in few years preceding their retirement but still hold on to their non-dividend paying stock on retirement. A significant difference also exists between senior and junior retirees in preference for non-dividend paying stocks. These findings are consistent with the clientele theories of dividend.Keywords: behavioural finance, clientele theories, dividend paying stocks, stock selection
Procedia PDF Downloads 1412806 Measures of Corporate Governance Efficiency on the Quality Level of Value Relevance Using IFRS and Corporate Governance Acts: Evidence from African Stock Exchanges
Authors: Tchapo Tchaga Sophia, Cai Chun
Abstract:
This study measures the efficiency level of corporate governance to improve the quality level of value relevance in the resolution of market value efficiency increase issues, transparency problems, risk frauds, agency problems, investors' confidence, and decision-making issues using IFRS and Corporate Governance Acts (CGA). The final sample of this study contains 3660 firms from ten countries' stock markets from 2010 to 2020. Based on the efficiency market theory and the positive accounting theory, this paper uses multiple econometrical methods (DID method, multivariate and univariate regression methods) and models (Ohlson model and compliance index model) regression to see the incidence results of corporate governance mechanisms on the value relevance level under the influence of IFRS and corporate governance regulations act framework in Africa's stock exchanges for non-financial firms. The results on value relevance show that the corporate governance system, strengthened by the adoption of IFRS and enforcement of new corporate governance regulations, produces better financial statement information when its compliance level is high. And that is both value-relevant and comparable to results in more developed markets. Similar positive and significant results were obtained when predicting future book value per share and earnings per share through the determination of stock price and stock return. The findings of this study have important implications for regulators, academics, investors, and other users regarding the effects of IFRS and the Corporate Governance Act (CGA) on the relationship between corporate governance and accounting information relevance in the African stock market. The contributions of this paper are also based on the uniqueness of the data used in this study. The unique data is from Africa, and not all existing findings provide evidence for Africa and of the DID method used to examine the relationship between corporate governance and value relevance on African stock exchanges.Keywords: corporate governance value, market efficiency value, value relevance, African stock market, stock return-stock price
Procedia PDF Downloads 572805 Assessment of Healthy Lifestyle Behavior Needs for Older Adults Living with Hypertension
Authors: P. Sutipan, U. Intarakamhang
Abstract:
The purpose of this study was to assess and prioritize the order of needs with regard to the healthy lifestyle behaviors for older adults living with hypertension. The participants involved 400 hypertensive elderly individuals in Chiang Mai, Thailand. The research instrument was a 26-item needs-assessment questionnaire in a dual response format on a four-level rating scale. The data was analyzed with the use of descriptive statistics and the needs were ranked using the Modified Priority Needs Index (PNIModified). The results indicated that the three priorities of healthy lifestyle behavior were healthy eating (PNImodified = 0.36), exercise (PNImodified = 0.35), and social contribution (PNImodified = 0.34), respectively. The implications of the findings for planning the intervention phase of the project are of particular interest.Keywords: needs assessment, the modified priority needs index (PNIModified), healthy lifestyle behavior, older adults
Procedia PDF Downloads 2982804 Causality between Stock Indices and Cryptocurrencies during the Russia-Ukraine War
Authors: Nidhal Mgadmi, Abdelhafidh Othmani
Abstract:
This article examines the causal relationship between stock indices and cryptocurrencies during the current war between Russia and Ukraine. The econometric investigation runs from February 24, 2022, to April 12, 2023, focusing on seven stock market indices (S&P500, DAX, CAC40, Nikkei, TSX, MOEX, and PFTS) and seven cryptocurrencies (Bitcoin, Ethereum, Litcoin, Dash, Ripple, DigiByte and XEM). In this article, we try to understand how investors react to fluctuations in financial assets to seek safe havens in cryptocurrencies. We used dynamic causality to detect a possible causal relationship in the short term and seven models to estimate the long-term relationship between cryptocurrencies and financial assets. The causal relationship between financial market indexes and cryptocurrency coins in the short run indicates that three famous cryptocurrencies (BITCOIN, ETHEREUM, RIPPLE) and the two digital assets with minor popularity (XEM, Digibyte) are impacted by the German, Russian, and Ukrainian stock markets. In the long run, we found a positive and significate effect of the American, Canadian, French, and Ukrainian stock market indexes on Bitcoin. Thus, the stability of the traditional financial markets during the current war period can be explained on the one hand by investors’ fears of an unstable business climate, and on the other hand, by speculators’ sentiment towards new electronic products, which are perceived as hedging instruments and a safe haven in the face of the conflict between Ukraine and Russia.Keywords: causality, stock indices, cryptocurrency, war, Russia, Ukraine
Procedia PDF Downloads 672803 A Study of Islamic Stock Indices and Macroeconomic Variables
Authors: Mohammad Irfan
Abstract:
The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.Keywords: Indian Shariah Indices, macroeconomic variables, co-integration, Granger causality, vector error correction model (VECM)
Procedia PDF Downloads 2792802 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying
Procedia PDF Downloads 5002801 Conformity and Differentiation in CSR Practices on Capital Market Performance: Empirical Evidence from Stock Liquidity and Price Crash Risk
Authors: Jie Zhang, Chaomin Zhang, Jihua Zhang, Haitong Li
Abstract:
Using the theory of optimal distinctiveness, this study examines the effects of conformity and differentiation within corporate social responsibility (CSR) practices on capital market performance. Analysing data from Chinese A-share listed firms from 2007 to 2022, this paper demonstrates that when firms conform to the expected scope of CSR, such behaviour enhances investor attention and market acceptance, thereby boosting stock liquidity. Conversely, emphasising differentiation in CSR practices more effectively mitigates stock price crash risk by addressing principal–agent problems and decreasing information asymmetry. This paper also investigates how organisational and environmental factors moderate the relationship between conformity and differentiation in CSR practices and their impact on capital market performance. The results also show that the influence of conformity on stock liquidity is accentuated in smaller firms and environments with stringent legal oversight. By contrast, the benefits of differentiation in reducing stock price crash risk are amplified in firms with robust corporate governance and markets characterised by high uncertainty.Keywords: corporate social responsibility, social responsibility practices, capital market performance, optimal distinctiveness
Procedia PDF Downloads 192800 Intangible Capital and Stock Prices: A Study of Jordanian Companies
Authors: Almoutassem Bellah Nasser
Abstract:
This paper is aimed at calculating the intangible assets of Jordanian economy. This effort is a response to the demand from corporations for these services which reflects a perceived gap in internal and external financial reporting on intangible investments. The main conclusion of the paper is to suggest that the way forward to a standardized, more comparable approach to measuring intangible capital is to employ CIV method of valuation. Published macroeconomic data traditionally exclude most intangible investment from measured GDP. This situation is beginning to change as some attempts have been made to measure the amount of intangible assets. It was found that intangible assets account for $164.20 million in all the listed companies of Jordan. All this money does not appear on the balance sheets of these companies and hence requires special attention of policy makers for better utilization.Keywords: intangible capital, stock prices, Amman Stock Exchange
Procedia PDF Downloads 3782799 The Construction of Healthy Bodies in U.S. and China: A Comparative Analysis of Women's Health and Trends Health
Authors: Yang L. Frances
Abstract:
Women's health and wellness has been becoming an increasingly important issue in mass media in the age of globalization. In this context, the current research focuses on comparing the construction of healthy bodies in women's health magazines of China and U.S. Trends Health in China and Women's Health in U.S are chosen. Textual analysis and in depth interviews are combined to examine how the healthy bodies are constructed in two magazines through discursive strategies. The interviews with the Deputy Editorial Director, Creative Director and Senior Visual Design of two magazines are undertaken to make the further comparisons. In both Trends Health and Women's Health, women's subjectivity is realized in the construction of ideal healthy body; nevertheless in the process of constructing healthy body, the disciplinary practices imposed on women's bodies are different in two magazines. This paper argues that women's health magazines in both China and America provide an alternative discourse to speak their voices on the one hand, but on the other hand, Women's Health and Trends Health construct the healthy body through disparate disciplinary practices because of the different socio-cultural contexts in two societies.Keywords: healthy body, women's health magazines, Foucault, textual analysis
Procedia PDF Downloads 3502798 Environment-Specific Political Risk Discourse, Environmental Reputation, and Stock Price Crash Risk
Authors: Sohanur Rahman, Elisabeth Sinnewe, Larelle (Ellie) Chapple, Sarah Osborne
Abstract:
Greater political attention to global climate change exposes firms to a higher level of political uncertainty, which can lead to adverse capital market consequences. However, a higher level of discourse on environment-specific political risk (EPR) between management and investors can mitigate information asymmetry, followed by less stock price crash risk. This study examines whether EPR discourse in discourse in the earnings conference calls (ECC) reduces firm-level stock price crash risk in the US market. This research also explores if adverse disclosures via media channels further moderates the association between EPR on crash risk. Employing a dataset of 28,933 firm-year observations from 2002 to 2020, the empirical analysis reveals that EPR discourse in ECC reduces future stock price crash risk. However, adverse disclosures via media channels can offset the favourable effect of EPR discourse on crash risk. The results are robust to the potential endogeneity concern in a quasi-natural experiment setting.Keywords: earnings conference calls, environment, environment-specific political risk discourse, environmental disclosures, information asymmetry, reputation risk, stock price crash risk
Procedia PDF Downloads 140